Submitted:
15 January 2024
Posted:
16 January 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Materials and Methods
Patient Selection
Clinical and pathological data collection
Renal and cardiovascular endpoints
The Definition of Platelet-Related Parameters
Statistical Analysis
Results
Discussion
Limitations of the study
Conclusion
Author Contributions
Funding
Acknowledgements
Availability of data and materials
Declarations
Consent for publication
Competing interests
References
- Rodrigues JC, Haas M, Reich HN. IgA Nephropathy. Clin J Am Soc Nephrol (2017) 12:677–86. [CrossRef]
- Kim JK, Kim JH, Lee SC, Kang EW, Chang TI, Moon SJ, et al. Clinical Features and Outcomes of IgA Nephropathy With Nephrotic Syndrome. Clin J Am Soc Nephrol (2012) 7:427–36. [CrossRef]
- Rauen T, Floege J. Inflammation in IgA Nephropathy. Pediatr Nephrol (2017) 32:2215–24. [CrossRef]
- Schena FP, Rossini M, Abbrescia DI, Zaza G. The Molecular Mechanisms of Inflammation and Scarring in the Kidneys of Immunoglobulin A Nephropathy: Gene Involvement in the Mechanisms of Inflammation and Scarring in Kidney Biopsy of IgAN Patients. Semin Immunopathol (2021) 43(5):691–705. [CrossRef]
- Kumarasamy C, Tiwary V, Sunil K, Suresh D, Shetty S, Muthukaliannan GK, et al.. Prognostic Utility of Platelet-Lymphocyte Ratio, Neutrophil-Lymphocyte Ratio and Monocyte-Lymphocyte Ratio in Head and Neck Cancers: A Detailed PRISMA Compliant Systematic Review and Meta-Analysis. Cancers (Basel) (2021) 13(16):4166. [CrossRef]
- Li L, Yu J, Zhou Z. Platelet-Associated Parameters in Patients With Psoriasis: A PRISMA-Compliant Systematic Review and Meta-Analysis. Med (Baltimore). (2021) 100(50):e28234. [CrossRef]
- Li LQ, Bai ZH, Zhang LH, Zhang Y, Lu XC, Zhang Y, et al.. Meta-Analysis of Hematological Biomarkers as Reliable Indicators of Soft Tissue Sarcoma Prognosis. Front Oncol (2020) 10:30. [CrossRef]
- Holinstat, M. Normal Platelet Function. Cancer Metastasis Rev (2017) 36(2):195–8. [CrossRef]
- Baaten C, Schröer JR, Floege J, Marx N, Jankowski J, Berger M, et al. Platelet Abnormalities in CKD and Their Implications for Antiplatelet Therapy. Clin J Am Soc Nephrol (2021) 17(1)155–70. [CrossRef]
- El Haouari, M. Platelet Oxidative Stress and its Relationship With Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients. Curr Med Chem (2019) 26(22):4145–65. [CrossRef]
- Tan J, Song G, Wang S, Dong L, Liu X et al. Platelet-to-Albumin Ratio: A Novel IgA Nephropathy Prognosis Predictor. Front Immun (2022) 13:1-10. [CrossRef]
- Sági B, Késői I, Vas T, Csiky B, Nagy J, Kovács TJ. Left ventricular myocardial mass index associated with cardiovascular and renal prognosis in IgA nephropathy. BMC Nephrol. 2022 Aug 16;23(1):285. [CrossRef]
- Sági B, Késői I, Vas T, Csiky B, Nagy J, Kovács T.The prognostic role of heart rate recovery after exercise and metabolic syndrome in IgA nephropathy. BMC Nephrol. 2021 Nov 23;22(1):390. [CrossRef]
- Arroyo V, Garcı́a-Martinez R, Salvatella X. Human Serum Albumin, Systemic Inflammation, and Cirrhosis. J Hepatol (2014) 61(2):396–407. [CrossRef]
- Li T, Li X, Wei Y, Dong G, Yang J, Yang J, et al. Predictive Value of C-Reactive Protein-To-Albumin Ratio for Neonatal Sepsis. J Inflammation Res (2021) 14:3207–15. [CrossRef]
- Haksoyler V, Topkan E. High Pretreatment Platelet-To-Albumin Ratio Predicts Poor Survival Results in Locally Advanced Nasopharyngeal Cancers Treated With Chemoradiotherapy. Ther Clin Risk Manage (2021) 17:691–700. [CrossRef]
- Fogo, AB. Mechanisms of Progression of Chronic Kidney Disease. Pediatr Nephrol (2007) 22(12):2011–22. [CrossRef]
- Huang Y, Deng W, Pan X, Liu M, Zhong Z, Huang Q, et al. The Relationship Between Platelet to Albumin Ratio and Disease Activity in Axial Spondyloarthritis Patients. Mod Rheumatol (2021). [CrossRef]
- Gui Y, Xu Y, Yang P. Predictive Value of the Platelet-To-Albumin Ratio (PAR) on the Risk of Death at Admission in Patients Suffering From Severe Fever With Thrombocytopenia Syndrome. J Inflammation Res (2021) 14:5647–52. [CrossRef]
- Yang Y, Yuan J, Liu L, Qie S, Yang L, Yan Z. Platelet-To-Albumin Ratio: A Risk Factor Associated With Technique Failure and Mortality in Peritoneal Dialysis Patients. Ren Fail (2021) 43(1):1359–67. [CrossRef]
- Li L, Yu J, Zhou Z. Platelet-Associated Parameters in Patients With Psoriasis: A PRISMA-Compliant Systematic Review and Meta-Analysis. Med (Baltimore). (2021) 100(50):e28234. [CrossRef]
- Li LQ, Bai ZH, Zhang LH, Zhang Y, Lu XC, Zhang Y, et al. Meta-Analysis of Hematological Biomarkers as Reliable Indicators of Soft Tissue Sarcoma Prognosis. Front Oncol (2020) 10:30. [CrossRef]
- Molnar MZ, Streja E, Kovesdy CP, Budoff MJ, Nissenson AR, Krishnan M, et al. High Platelet Count as a Link Between Renal Cachexia and Cardiovascular Mortality in End-Stage Renal Disease Patients. Am J Clin Nutr (2011) 94(3):945–54. [CrossRef]
- Peng F, Li Z, Yi C, Guo Q, Yang R, Long H, et al. Platelet Index Levels and Cardiovascular Mortality in Incident Peritoneal Dialysis Patients: A Cohort Study. Platelets (2017) 28(6):576–84. [CrossRef]
- Yamamoto R, Nagasawa Y, Shoji T, Iwatani H, Hamano T, Kawada N, et al. Cigarette Smoking and Progression of IgA Nephropathy. Am J Kidney Dis (2010) 56(2):313–24. [CrossRef]
- Saito N, Shirai Y, Horiuchi T, Sugano H, Shiba H, Sakamoto T, et al. Preoperative Platelet to Albumin Ratio Predicts Outcome of Patients With Cholangiocarcinoma. Anticancer Res (2018) 38(2):987–92. [CrossRef]
- Guo M, Sun T, Zhao Z, Ming L. Preoperative Platelet to Albumin Ratio Predicts Outcome of Patients With Non-Small-Cell Lung Cancer. Ann Thorac Cardiovasc Surg (2021) 27(2):84–90. [CrossRef]
- Wang S, Dong L, Pei G, Jiang Z, Qin A, Tan J, et al.. High Neutrophil-To-Lymphocyte Ratio Is an Independent Risk Factor for End Stage Renal Diseases in IgA Nephropathy. Front Immunol (2021) 12:700224. [CrossRef]
- Yi F, Li Z, Jiang J, Lan L, Bai Y. Related factors of crescents and prognosis in IgA nephropathy. Clin Nephrol. 2023 Jan;99(1):24-31. [CrossRef]
- Chang D, Cheng Y, Luo R, Zhang C, Zuo M, Xu Y, Dai W, Li Y, Han M, He X, Ge S, Xu G.The prognostic value of platelet-to-lymphocyte ratio on the long-term renal survival in patients with IgA nephropathy. Int Urol Nephrol. 2021 Mar;53(3):523-530. [CrossRef]
- Gan W, Guan Q, Hu X, Zeng X, Shao D, et al. The association between platelet-lymphocyte ratio and the risk of all-cause mortality in chronic kidney disease: a systematic review and meta-analysis. Int Urol Nephrol. 2022 Nov;54(11):2959-2967. [CrossRef]
- Zeng M, Liu Y, Liu F, Peng Y, Sun L, et al. J-shaped association of platelet-to—lymphocyte ratio with 5-year mortality among patients with chronic kidney disease in a prospective cohort study. Int Urol Nephrol. 2020 Oct;52(10):1943-1957. [CrossRef]
- Chen T, Yang M. Platelet-to. lymphocyte ratio is associated with cardiovascular disease in continuous ambulatory peritoneal dialysis patients. Int. Immunology. 2020; 78: 106063. [CrossRef]




| Clinical data | IgAN patients (n=124) |
PAR high (n=61) |
PAR low (n=63) |
P |
| Man/woman (n/%) | 83/29 (74/26) | 48/13 (79/21) | 35/28 (55/45) | 0.004 |
| Age (year) | 43.7±13.5 | 43.6±11.7 | 43.9±11.2 | NS |
| Average systolic/diastolic RR (mmHg) | 124/74±14/9 | 127/75±15/9 | 120/73±11/8 | 0.003 |
| 24h pulse pressure (mmHg) | 49.6±10.7 | 52.2±12.8 | 47.1±7.7 | 0.012 |
| Diurnal index systolic (%) | 9.66±5.6 | 10.2±6.2 | 9.2±5.2 | NS |
| Metabolic parameters | ||||
| Hypertension (n, %) | 94 (84) | 51 (81) | 43 (70) | NS |
| BMI (kg/m2) | 26.6±4.6 | 26.7±4.5 | 26.5±4.7 | NS |
| Dyslipidemia (n, %) | 58 (52) | 32 (51) | 26 (43) | NS |
| Diabetes (n, %) | 30 (27) | 15 (24) | 15 (24) | NS |
| eGFR (ml/min/1,73m2) | 84.5±32.4 | 83.8±29.6 | 85.2±27.8 | NS |
| Duration of kidney disease (year) | 10.8±9.4 | 11.5±10 | 10±9 | NS |
| Smoking (n, %) | 21 (19) | 11 (17) | 10 (16) | NS |
| Metabolic syndrome (n, %) | 27 (24) | 14 (22) | 13 (21) | NS |
| Platelet related parameters | ||||
| PLR | 140.14±65.18 | 158.05±73.05 | 122.23±50.15 | 0.001 |
| PAR (G/g) | 5.78±1.89 | 7.12±1.64 | 4.41±0.89 | <0.001 |
| PLT (G/L) | 238.9±68.88 | 290±51.29 | 187.7±40.24 | <0.001 |
| Echocardiographic parameters | ||||
| LVEF (%) | 62.4±6.5 | 62.9±7.7 | 62.5±4.9 | NS |
| LVMI (g/m2) | 107.7±22.8 | 110.5±23.2 | 104.9±16.1 | 0.034 |
| LVM (g) | 204.4±51.4 | 239.0±48.8 | 194.9±44.0 | 0.028 |
| LVEDD (cm) | 5.09±0.4 | 4.93±0.39 | 5.05±0.41 | NS |
| DD (n/%) | 37 (47) | 24 (39) | 13 (21) | 0.025 |
| Pathological lesions | ||||
| M (n/%) | 52 (46) | 29 (46) | 23 (38) | NS |
| E (n/%) | 2 (2) | 1 (1.6) | 1 (1.6) | NS |
| S (n/%) | 22 (20) | 14 (22) | 8 (13) | NS |
| T (n/%) | 56 (50) | 27 (43) | 29 (47) | NS |
| C (n/%) | 28 (25) | 17 (27) | 11 (18) | NS |
| Laboratory results | ||||
| Hb (g/dL) | 13.6±1.53 | 13.6±1.54 | 13.7±1.56 | NS |
| MAU (mg/L) | 484.6±658.4 | 494.8±521.8 | 431.4±550.9 | NS |
| UA (umol/L) | 320.5±76.7 | 318.1±68.8 | 342.3±76.7 | NS |
| Total cholesterol (mmol/L) | 5.03±1.21 | 4.95±1.41 | 4.98±0.95 | NS |
| HDL cholesterol (mmol/L) | 1.28±0.51 | 1.23±0.36 | 1.31±0.64 | NS |
| TG (mmol/L) | 1.69±1.05 | 1.76±1.12 | 1.71±0.90 | NS |
| Therapy | ||||
| ACEI/ARB (n, %) | 65 (82) | 52 (82) | 50 (82) | NS |
| BB (n, %) | 22 (28) | 18 (28) | 13 (21) | NS |
| Statin (n, %) | 26 (33) | 18 (28) | 18 (46) | NS |
| CCB (n, %) | 22 (28) | 12 (19) | 18 (29) | NS |
| PAR | PLR | PLT | ||||
| r | p | r | p | r | p | |
| Gender | -0.273 | 0.001 | 0.031 | 0.367 | -0.201 | 0.013 |
| Age | -0.007 | 0.468 | -0.029 | 0.377 | -0.128 | 0.079 |
| Dyslipidemia | 0.073 | 0.209 | 0.005 | 0.477 | 0.084 | 0.176 |
| Obesity | -0.024 | 0.397 | -0.079 | 0.192 | -0.077 | 0.198 |
| HT | 0.068 | 0.227 | 0.077 | 0.198 | 0.073 | 0.211 |
| DM | -0.064 | 0.239 | -0.097 | 0.141 | -0.131 | 0.074 |
| eGFR (ml/min) | 0.056 | 0.266 | 0.143 | 0.057 | 0.158 | 0.040 |
| MAU (mg/L) | 0.048 | 0.296 | -0.165 | 0.033 | 0.038 | 0.336 |
| M | 0.081 | 0.205 | 0.056 | 0.283 | 0.084 | 0.194 |
| E | 0.033 | 0.367 | -0.041 | 0.334 | 0.045 | 0.319 |
| S | 0.161 | 0.047 | 0.001 | 0.497 | 0.087 | 0.185 |
| T | -0.016 | 0.435 | 0.019 | 0.423 | -0.058 | 0.274 |
| C | 0.053 | 0.292 | 0.069 | 0.237 | 0.061 | 0.264 |
| LVH | 0.003 | 0.486 | -0.178 | 0.025 | -0.130 | 0.077 |
| UNIVARIATE ANALYSIS | MULTIVARIATE ANALYSIS | |||||||||||
| PAR | B | Std. errors | Beta | t | p | B | Std. errors | Beta | t | p | 95.0% CI for B lower |
95.0% CI for B upper |
| Gender | -1.098 | 0.348 | -0.273 | -3.153 | 0.002 | -1.264 | 0.418 | -0.315 | -3.025 | 0.003 | -2.094 | -0.434 |
| Age | -0.001 | 0.013 | -0.007 | -0.080 | 0.937 | 0.005 | 0.017 | 0.033 | 0.296 | 0.768 | -0.028 | 0.038 |
| Dyslipidemia | 0.278 | 0.342 | 0.073 | 0.812 | 0.418 | 0.351 | 0.395 | 0.092 | 0.888 | 0.377 | -0.434 | 1.136 |
| Obesity | -0.105 | 0.400 | -0.024 | -0.261 | 0.794 | 0.300 | 0.511 | 0.068 | 0.587 | 0.559 | -0.716 | 1.316 |
| HT | 0.297 | 0.395 | 0.068 | 0.751 | 0.454 | 0.669 | 0.510 | 0.152 | 1.313 | 0.193 | -0.344 | 1.683 |
| DM | -0.285 | 0.400 | -0.064 | -0.712 | 0.478 | -0.447 | 0.525 | -0.101 | -0.851 | 0.397 | -1.490 | 0.596 |
| eGFR | 0.003 | 0.005 | 0.056 | 0.627 | 0.532 | 0.008 | 0.006 | 0.156 | 1.298 | 0.197 | -0.004 | 0.021 |
| MAU | 0.001 | 0.001 | 0.048 | 0.537 | 0.592 | 0.001 | 0.001 | 0.063 | 0.607 | 0.545 | 0.001 | 0.002 |
| M | 0.305 | 0.369 | 0.081 | 0.828 | 0.410 | 0.470 | 0.391 | 0.124 | 1.200 | 0.233 | -0.308 | 1.247 |
| E | 0.655 | 1.921 | 0.033 | 0.341 | 0.734 | 0.845 | 1.979 | 0.043 | 0.427 | 0.670 | -3.087 | 4.777 |
| S | 0.760 | 0.451 | 0.161 | 1.687 | 0.095 | 0.848 | 0.518 | 0.180 | 1.638 | 0.105 | -0.180 | 1.876 |
| T | -0.041 | 0.249 | -0.016 | -0.163 | 0.871 | -0.070 | 0.291 | -0.027 | -0.240 | 0.811 | -0.648 | 0.508 |
| C | 0.230 | 0.418 | 0.053 | 0.550 | 0.583 | -0.028 | 0.459 | -0.006 | -0.061 | 0.951 | -0.940 | 0.883 |
| LVH | 0.012 | 0.346 | 0.003 | 0.034 | 0.973 | -0.115 | 0.453 | -0.030 | -0.253 | 0.801 | -1.015 | 0.785 |
| PLR | ||||||||||||
| Gender | 4.241 | 12.486 | 0.031 | 0.340 | 0.735 | 6.407 | 1.,524 | 0.046 | 0.441 | 0.660 | -22.442 | 35.256 |
| Age | -0.144 | 0.456 | -0.029 | -0.315 | 0.753 | 0.324 | 0.574 | 0.064 | 0.563 | 0.575 | -0.817 | 1.464 |
| Dyslipidemia | 0.695 | 11.831 | 0.005 | 0.059 | 0.953 | 2.324 | 13,736 | 0.018 | 0.169 | 0.866 | -24.961 | 29.608 |
| Obesity | -12.019 | 13.772 | -0.079 | -0.873 | 0.385 | -11.937 | 17.775 | -0.078 | -0.672 | 0.504 | -47.244 | 23.370 |
| HT | 11.600 | 13.622 | 0.077 | 0.852 | 0.396 | 29.988 | 17.724 | 0.199 | 1.692 | 0.094 | -5.218 | 65.195 |
| DM | -14.860 | 13.750 | -0.097 | -1.081 | 0.282 | -15.847 | 18.245 | -0.104 | -0.869 | 0.387 | -52.088 | 20.394 |
| eGFR | 0.261 | 0.164 | 0.143 | 1.590 | 0.114 | 0.341 | 0.222 | 0.186 | 1.535 | 0.128 | -0.100 | 0.782 |
| MAU | -0.017 | 0.009 | -0.165 | -1.850 | 0.067 | -0.020 | 0.011 | -0.195 | -1.864 | 0.066 | -0.041 | 0.001 |
| M | 7.295 | 12.696 | 0.056 | 0.575 | 0.567 | 10.273 | 13.604 | 0.079 | 0.755 | 0.452 | -16.750 | 37.297 |
| E | -28.315 | 65.985 | 0.041 | -0.429 | 0.669 | -56.341 | 68.790 | -0.082 | -0.819 | 0.415 | -192.983 | 80.302 |
| S | 0.135 | 15.688 | 0.001 | 0.009 | 0.993 | 14.410 | 17.985 | 0.089 | 0.801 | 0.425 | -21.315 | 50.134 |
| T | 1.671 | 8.540 | 0.019 | 0.196 | 0.845 | 12.890 | 10.112 | 0.146 | 1.275 | 0.206 | -7.196 | 32.976 |
| C | 10.334 | 14.354 | 0.069 | 0.720 | 0.473 | 4.195 | 15.947 | 0.028 | 0.263 | 0.793 | -27.481 | 35.871 |
| LVH | -23.245 | 11.713 | -0.178 | -1.985 | 0.049 | -27.749 | 15.746 | -0.213 | -1.762 | 0.081 | -59.026 | 3.528 |
| PLT | ||||||||||||
| Gender | -27.550 | 12.153 | -0.201 | -2.267 | 0.025 | -35.340 | 14.137 | -0.258 | -2.500 | 0.014 | -63.421 | -7.259 |
| Age | -0.639 | 0.449 | -0.128 | -1.422 | 0.157 | -0.318 | 0.559 | -0.063 | -0.568 | 0.571 | -1.428 | 0.793 |
| Dyslipidemia | 10.936 | 11.708 | 0.084 | 0.934 | 0.352 | 14.666 | 13.370 | 0.113 | 1.097 | 0.276 | -11.892 | 41.223 |
| Obesity | -11.645 | 13.680 | -0.077 | -0.851 | 0.396 | 2.471 | 17.301 | 0.016 | 0.143 | 0.887 | -31.896 | 36.838 |
| HT | 10.901 | 13.533 | 0.073 | 0.806 | 0.422 | 35.171 | 17.252 | 0.235 | 2.039 | 0.044 | 0.902 | 69.441 |
| DM | -19.848 | 13.602 | -0.131 | -1.459 | 0.147 | -19.807 | 17.759 | -0.131 | -1.115 | 0.268 | -55.083 | 15.469 |
| eGFR | 0.287 | 0.163 | 0.158 | 1.765 | 0.080 | 0.398 | 0.216 | 0.219 | 1.843 | 0.069 | -0.031 | 0.827 |
| MAU | 0.004 | 0.009 | 0.038 | 0.425 | 0.672 | 0.007 | 0.010 | 0.065 | 0.638 | 0.525 | -0.014 | 0.027 |
| M | 10.929 | 12.584 | 0.084 | 0.869 | 0.387 | 15.123 | 13.242 | 0.117 | 1.142 | 0.256 | -11.180 | 41.427 |
| E | 30.863 | 65.520 | 0.045 | 0.471 | 0.639 | 9.932 | 66.958 | 0.015 | 0.148 | 0.882 | -123.073 | 142.936 |
| S | 13.965 | 15.521 | 0.087 | 0.900 | 0.370 | 18.098 | 17.506 | 0.112 | 1.034 | 0.304 | -16.676 | 52.871 |
| T | -5.094 | 8.469 | -0.058 | -0.601 | 0.549 | 0.813 | 9.843 | 0.009 | 0.083 | 0.934 | -18.738 | 20.364 |
| C | 9.038 | 14.263 | 0.061 | 0.634 | 0.528 | -0.481 | 15.522 | -0.003 | -0.031 | 0.975 | -31.313 | 30.352 |
| LVH | -16.848 | 11.722 | -0.130 | -1.437 | 0.153 | -15.306 | 15.327 | -0.118 | -0.999 | 0.321 | -45.751 | 15.138 |
| Primary, combined endpoints | B | SE | Wald | df | p | Exp(B) | 95,0% CI for Exp(B) Lower | 95,0% CI for Exp(B) Upper |
| PLR | 0.009 | 0.004 | 4.903 | 1 | 0,027 | 1.009 | 1.001 | 1.017 |
| PAR | 0.734 | 0.465 | 2.489 | 1 | 0,115 | 2.084 | 0.837 | 5.188 |
| PLT | -0.019 | 0.013 | 2.048 | 1 | 0,152 | 0.981 | 0.957 | 1.007 |
| Gender | -2.021 | 0.778 | 6.740 | 1 | 0,009 | 0.133 | 0.029 | 0.609 |
| Age | 0.035 | 0.023 | 2.277 | 1 | 0,131 | 1.035 | 0.990 | 1.083 |
| Dyslipidemia | 1.186 | 0.564 | 4.421 | 1 | 0,036 | 3.273 | 1.084 | 9.885 |
| Obesity | 0.523 | 0.507 | 1.067 | 1 | 0,302 | 1.688 | 0.625 | 4.556 |
| HT | -1.262 | 1.171 | 1.162 | 1 | 0,281 | 0.283 | 0.029 | 2.810 |
| DM | -1.354 | 0.589 | 5.280 | 1 | 0,022 | 0.258 | 0.081 | 0.819 |
| eGFR (ml/min(1,73m2) | -0.015 | 0.010 | 2.556 | 1 | 0,110 | 0.985 | 0.966 | 1.003 |
| MAU (mg/L) | 0.001 | 0.001 | 1.567 | 1 | <0,001 | 1.001 | 1.001 | 1.002 |
| M | 0.509 | 0.527 | 0.933 | 1 | 0,334 | 1.663 | 0.593 | 4.668 |
| E | 9.206 | 528.463 | 0.001 | 1 | 0,986 | 9954.897 | 0.001 | 6781.987 |
| S | 0.457 | 0.646 | 0.500 | 1 | 0,479 | 1.579 | 0.445 | 5.604 |
| T | 0.660 | 0.657 | 1.009 | 1 | 0,315 | 1.936 | 0.534 | 7.022 |
| C | -.0.450 | 0.535 | 0.705 | 1 | 0,401 | 0.638 | 0.223 | 1.821 |
| LVH | -0.892 | 0.592 | 2.273 | 1 | 0,132 | 0.410 | 0.129 | 1.307 |
| Secondary renal endpoints | ||||||||
| PLR | 0.003 | 0.006 | 0.269 | 1 | 0,604 | 1.003 | 0.991 | 1.015 |
| PAR | 0.337 | 0.629 | 0.288 | 1 | 0,592 | 1.401 | 0.409 | 4.804 |
| Tct | -0.016 | 0.018 | 0.768 | 1 | 0,381 | 0.984 | 0.951 | 1.020 |
| Gender | 0.140 | 0.675 | 0.043 | 1 | 0,836 | 1.150 | 0.306 | 4.316 |
| Age | -0.008 | 0.027 | 0.079 | 1 | 0,778 | 0.992 | 0.941 | 1.047 |
| Dyslipidemia | 0.277 | 0.676 | 0.167 | 1 | 0,683 | 1.319 | 0.350 | 4.965 |
| Obesity | 0.458 | 0.608 | 0.569 | 1 | 0,451 | 1.581 | 0.481 | 5.204 |
| HT | -2.379 | 1.375 | 2.991 | 1 | 0,084 | 0.093 | 0.006 | 1.373 |
| DM | -0.332 | 0.769 | 0.187 | 1 | 0,666 | 0.717 | 0.159 | 3.236 |
| eGFR (ml/min/1,73m2) | -0.011 | 0.011 | 1.011 | 1 | 0,315 | 0.989 | 0.967 | 1.011 |
| MAU (mg/L) | 0.002 | 0.001 | 15.021 | 1 | 0,001 | 1.002 | 1.001 | 1.003 |
| M | 0.829 | 0.718 | 1.331 | 1 | 0,249 | 2.290 | 0.560 | 9.359 |
| E | 9.946 | 700.758 | 0.001 | 1 | 0,989 | 20870.393 | 0.001 | 12678.798 |
| S | -0.512 | 0.763 | 0.450 | 1 | 0,502 | 0.599 | 0.134 | 2.676 |
| T | -0.145 | 0.839 | 0.030 | 1 | 0,863 | 0.865 | 0.167 | 4.483 |
| C | 0.956 | 0.812 | 1.383 | 1 | 0,240 | 2.600 | 0.529 | 12.778 |
| LVH | -1.880 | 0.896 | 4.401 | 1 | 0,036 | 0.153 | 0.026 | 0.884 |
| Secondary cardiovascular endpoints | ||||||||
| PLR | 0.007 | 0.005 | 1.773 | 1 | 0,183 | 1.007 | 0.997 | 1.018 |
| PAR | 0.485 | 0.808 | 0.360 | 1 | 0,548 | 1.624 | 0.333 | 7.911 |
| PLT | 0.013 | 0.026 | 0.271 | 1 | 0,602 | 1.014 | 0.964 | 1.066 |
| Gender | -3.753 | 1.482 | 6.412 | 1 | 0,011 | 0.023 | 0.001 | 0.428 |
| Age | 0.137 | 0.064 | 4.595 | 1 | 0,032 | 1.147 | 1.012 | 1.300 |
| Dyslipidemia | 1.932 | 1.151 | 2.816 | 1 | 0,093 | 6.902 | 0.723 | 65.888 |
| Obesity | 1.271 | 1.294 | 0.965 | 1 | 0,326 | 3.563 | 0.282 | 44.995 |
| HT | -12.897 | 262.853 | 0.002 | 1 | 0,961 | 0.001 | 0.001 | 0.0001 |
| DM | -2.279 | 1.029 | 4.905 | 1 | 0,027 | 0.102 | 0.014 | 0.769 |
| eGFR (ml/min/1,73m2) | -0.039 | 0.028 | 2.009 | 1 | 0,156 | 0.962 | 0.911 | 1.015 |
| MAU (mg/L) | 0.001 | 0.001 | 0.234 | 1 | 0,629 | 1.000 | 0.999 | 1.002 |
| M | 1.180 | 1.175 | 1.010 | 1 | 0,315 | 3.256 | 0.326 | 32.551 |
| E | 8.193 | 1722.647 | 0.001 | 1 | 0,996 | 3615.569 | 0.001 | 2356.432 |
| S | 3.838 | 2.102 | 3.332 | 1 | 0,068 | 46.413 | 0.754 | 2858.117 |
| T | 1.857 | 1.825 | 1.035 | 1 | 0,309 | 6.407 | 0.179 | 229.266 |
| C | -0.912 | 1.041 | 0.766 | 1 | 0,381 | 0.402 | 0.052 | 3.094 |
| LVH | -1.799 | 1.252 | 2.063 | 1 | 0,151 | 0.165 | 0.014 | 1.926 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
