Submitted:
12 January 2024
Posted:
12 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.2. Statistical Analysis
3. Results
3.1. Drought years identification
3.1. Norway spruce series
3.1. The effect of provenance and year on radial width and latewood percentage
3.1. Genetic variation in drought response
3.1. Phenotypic correlations
| LW | LWP | RW | Latitude | Longitude | Elevation | ||
|---|---|---|---|---|---|---|---|
| Dorna Candrenilor | EW | 0.309*** | -0.445*** | 0.922*** | -0.185** | -0.043 | 0.179*** |
| LW | 0.625*** | 0.653*** | -0.159* | -0.162* | 0.220** | ||
| LWP | -0.099 | -0.005 | -0.135* | 0.034 | |||
| RW | -0.212* | -0.100 | 0.232* | ||||
| Zarnesti | EW | 0.452*** | -0.468*** | 0.963*** | 0.048 | -0.010 | -0.065 |
| LW | 0.502*** | 0.676*** | -0.048 | -0.042 | -0.016 | ||
| LWP | -0.235** | -0.131* | -0.020 | 0.057 | |||
| RW | 0.025 | -0.021 | -0.059 | ||||
| Turda | EW | 0.753*** | -0.468*** | 0.983*** | -0.068 | -0.130* | 0.010 |
| LW | 0.134* | 0.861*** | -0.036 | -0.058 | 0.065 | ||
| LWP | -0.324*** | 0.070 | 0.155* | 0.029 | |||
| RW | -0.062 | -0.117 | 0.026 |
3.1. Moving window correlations


3.1. Growth response functions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ‘AR6 Synthesis Report: Climate Change 2023’. Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 4 January 2024).
- C. D. Allen et al., ‘A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests’, Forest Ecology and Management, vol. 259, no. 4, pp. 660–684, Feb. 2010. [CrossRef]
- W. R. L. Anderegg et al., ‘Climate-driven risks to the climate mitigation potential of forests’, Science, vol. 368, no. 6497, p. eaaz7005, Jun. 2020. [CrossRef]
- Ph. Ciais et al., ‘Europe-wide reduction in primary productivity caused by the heat and drought in 2003’, Nature, vol. 437, no. 7058, pp. 529–533, Sep. 2005. [CrossRef]
- F. Lloret, A. Escudero, J. M. Iriondo, J. Martínez-Vilalta, and F. Valladares, ‘Extreme climatic events and vegetation: the role of stabilizing processes’, Global Change Biology, vol. 18, no. 3, pp. 797–805, 2012. [CrossRef]
- M. Reichstein et al., ‘Climate extremes and the carbon cycle’, Nature, vol. 500, no. 7462, Art. no. 7462, Aug. 2013. [CrossRef]
- M. Onderka and J. Pecho, ‘On how precipitation-temperature coupling affects drought severity in the western Carpathians and the adjacent northern part of the Pannonian Plain’, Theor Appl Climatol, Feb. 2023. [CrossRef]
- J. Spinoni, J. V. Vogt, G. Naumann, P. Barbosa, and A. Dosio, ‘Will drought events become more frequent and severe in Europe?’, International Journal of Climatology, vol. 38, no. 4, pp. 1718–1736, 2018. [CrossRef]
- C. Senf, A. Buras, C. S. Zang, A. Rammig, and R. Seidl, ‘Excess forest mortality is consistently linked to drought across Europe’, Nat Commun, vol. 11, no. 1, Art. no. 1, Dec. 2020. [CrossRef]
- E. Mateescu, M. Smarandache, N. Jeler, and V. Apostol, ‘Drought conditions and management strategies in Romania’, Initiative on “Capacity Development to Support. National Drought Management Policy”(WMO, UNCCD, FAO and UNW-DPC), vol. 600, 2013.
- A. Busuioc and H. von Storch, Changes in the Winter Precipitation in Romania and Its Relation to the Large Scale Circulation. Max-Planck-Institut für Meteorologie, 1995. [CrossRef]
- A. Dumitrescu, V.-A. Amihaesei, and S. Cheval, ‘RoCliB– bias-corrected CORDEX RCMdataset over Romania’, Geoscience Data Journal, vol. n/a, no. n/a, Apr. 2022. [CrossRef]
- M. Lévesque et al., ‘Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch’, Global Change Biology, vol. 19, no. 10, pp. 3184–3199, 2013. [CrossRef]
- C. Zang, H. Pretzsch, and A. Rothe, ‘Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak’, Trees, vol. 26, no. 2, pp. 557–569, Apr. 2012. [CrossRef]
- O. Bouriaud and I. Popa, ‘Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains’, Trees, vol. 23, no. 1, pp. 95–106, Feb. 2009. [CrossRef]
- H. Cochard, ‘Vulnerability of several conifers to air embolism’, Tree Physiology, vol. 11, no. 1, pp. 73–83, Jul. 1992. [CrossRef]
- B. Schuldt et al., ‘A first assessment of the impact of the extreme 2018 summer drought on Central European forests’, Basic and Applied Ecology, vol. 45, pp. 86–103, Jun. 2020. [CrossRef]
- L. Marini et al., ‘Climate drivers of bark beetle outbreak dynamics in Norway spruce forests’, Ecography, vol. 40, no. 12, pp. 1426–1435, 2017. [CrossRef]
- K. J. Liepe, E. van der Maaten, M. van der Maaten-Theunissen, and M. Liesebach, ‘High Phenotypic Plasticity, but Low Signals of Local Adaptation to Climate in a Large-Scale Transplant Experiment of Picea abies (L.) Karst. in Europe’, Frontiers in Forests and Global Change, vol. 5, 2022. Available online: https://www.frontiersin.org/article/10.3389/ffgc.2022.804857 (accessed on 30 June 2022).
- A. Buras and A. Menzel, ‘Projecting Tree Species Composition Changes of European Forests for 2061–2090 Under RCP 4.5 and RCP 8.5 Scenarios’, Frontiers in Plant Science, vol. 9, 2019. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2018.01986 (accessed on 20 February 2023).
- G. Mihai et al., ‘Impact of Climate Change and Adaptive Genetic Potential of Norway Spruce at the South–eastern Range of Species Distribution’, Agricultural and Forest Meteorology, vol. 291, p. 108040, Sep. 2020. [CrossRef]
- G. Mihai, A.-M. Alexandru, I.-A. Nita, and M.-V. Birsan, ‘Climate Change in the Provenance Regions of Romania over the Last 70 Years: Implications for Forest Management’, Forests, vol. 13, no. 8, Art. no. 8, Aug. 2022. [CrossRef]
- G. E. Rehfeldt et al., ‘Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: Clines in growth potential’, Forest Ecology and Management, vol. 324, pp. 138–146, Jul. 2014. [CrossRef]
- M. Arend, T. Kuster, M. S. Günthardt-Goerg, and M. Dobbertin, ‘Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens)’, Tree Physiol, vol. 31, no. 3, pp. 287–297, Mar. 2011. [CrossRef]
- J. Burczyk and M. Giertych, ‘Response of Norway spruce (Picea abies [L.] Karst.) annual increments to drought for various provenances and locations’, Silvae Genetica, vol. 40, no. 3–4, pp. 146–152, 1991.
- J.-P. George et al., ‘Intra-specific variation in growth and wood density traits under water-limited conditions: Long-term-, short-term-, and sudden responses of four conifer tree species’, Sci Total Environ, vol. 660, pp. 631–643, Apr. 2019. [CrossRef]
- G. Mihai, A. M. Alexandru, E. Stoica, and M. V. Birsan, ‘Intraspecific Growth Response to Drought of Abies alba in the Southeastern Carpathians’, Forests, vol. 12, no. 4, Art. no. 4, Apr. 2021. [CrossRef]
- C. Trujillo-Moya et al., ‘Drought Sensitivity of Norway Spruce at the Species’ Warmest Fringe: Quantitative and Molecular Analysis Reveals High Genetic Variation Among and Within Provenances’, G3 (Bethesda), vol. 8, no. 4, pp. 1225–1245, Feb. 2018. [CrossRef]
- N. Atzmon, Y. Moshe, and G. Schiller, ‘Ecophysiological response to severe drought in Pinus halepensis Mill. trees of two provenances’, Plant Ecology, vol. 171, no. 1, pp. 15–22, Mar. 2004. [CrossRef]
- L. Badea, Geografia României. Editura Academiei Republicii Socialiste România, 1983.
- C. Nițu et al., ‘Aspecte privind variabilitatea genetică a unor proveniențe de molid.’, Anale Institutul de Cercetari si Amenajari Silvice, pp. 49–58, 1974.
- ‘Cybis.se: Technical writing, software development, dendrochronology’. Available online: https://www.cybis.se/ (accessed on 30 May 2023).
- F. Campelo, ‘detrendeR: A Graphical User Interface (GUI) to Visualize and Analyze Dendrochronological Data’. Apr. 16, 2022. Available online: https://CRAN.R-project.org/package=detrendeR (accessed on 23 June 2022).
- A. Bunn et al., ‘dplR: Dendrochronology Program Library in R’. Jun. 10, 2022. Available online: https://CRAN.R-project.org/package=dplR (accessed on 23 June 2022).
- R core team, ‘R: A language and environment for statistical computing’. R Foundation for Statistical Computing, Vienna, Austria, 2020. Available online: https://www.R-project.org/.
- G. Bucci, ‘ClimateDT - Climate Downscaling Tool’, ClimateDT - Climate Downscaling Tool. Available online: https://www.ibbr.cnr.it/climate-dt/.
- I. Harris, T. J. Osborn, P. Jones, and D. Lister, ‘Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset’, Sci Data, vol. 7, no. 1, Art. no. 1, Apr. 2020. [CrossRef]
- J. Lowe et al., ‘UKCP 18 Science Overview Report November 2018 ( Updated March 2019 )’, 2019. Available online: https://www.semanticscholar.org/paper/UKCP-18-Science-Overview-Report-November-2018-(-)-Lowe-Bernie/54488c065cea5439195e2d901120670808fb6e9b#paper-header (accessed on 17 May 2023).
- S. M. Vicente-Serrano, S. Beguería, and J. I. López-Moreno, ‘A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index’, Journal of Climate, vol. 23, no. 7, pp. 1696–1718, Apr. 2010. [CrossRef]
- S. Beguería and S. M. Vicente-Serrano, ‘SPEI: Calculation of the Standardised Precipitation-Evapotranspiration Index’. Jun. 07, 2017. Available online: https://CRAN.R-project.org/package=SPEI (accessed on 9 May 2022).
- C. W. Thornthwaite, ‘An Approach toward a Rational Classification of Climate’, Geographical Review, vol. 38, no. 1, pp. 55–94, 1948. [CrossRef]
- F. Lloret, E. G. Keeling, and A. Sala, ‘Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests’, Oikos, vol. 120, no. 12, pp. 1909–1920, 2011. [CrossRef]
- C. Zang and F. Biondi, ‘treeclim: an R package for the numerical calibration of proxy-climate relationships’, Ecography, vol. 38, no. 4, pp. 431–436, 2015. [CrossRef]
- C. P. Bueno de Mesquita, C. T. White, E. C. Farrer, L. M. Hallett, and K. N. Suding, ‘Taking climate change into account: Non-stationarity in climate drivers of ecological response’, Journal of Ecology, vol. 109, no. 3, pp. 1491–1500, 2021. [CrossRef]
- M. Kuhn [aut et al., ‘caret: Classification and Regression Training’. Aug. 09, 2022. Available online: https://CRAN.R-project.org/package=caret (accessed on 17 May 2022).
- T. Wang, G. A. O’Neill, and S. N. Aitken, ‘Integrating environmental and genetic effects to predict responses of tree populations to climate’, Ecological Applications, vol. 20, no. 1, pp. 153–163, 2010. [CrossRef]
- C. Andalo, J. Beaulieu, and J. Bousquet, ‘The impact of climate change on growth of local white spruce populations in Québec, Canada’, Forest Ecology and Management, vol. 205, no. 1, pp. 169–182, Feb. 2005. [CrossRef]
- G. E. Rehfeldt, C. C. Ying, D. L. Spittlehouse, and D. A. Hamilton Jr., ‘Genetic responses to climate in Pinus contorta: Niche breadth, climate change, and reforestation’, Ecological Monographs, vol. 69, no. 3, pp. 375–407, 1999. [CrossRef]
- X. Wu et al., ‘Timing and Order of Extreme Drought and Wetness Determine Bioclimatic Sensitivity of Tree Growth’, Earth’s Future, vol. 10, no. 7, p. e2021EF002530, 2022. [CrossRef]
- A. Kuznetsova, P. B. Brockhoff, R. H. B. Christensen, and S. P. Jensen, ‘lmerTest: Tests in Linear Mixed Effects Models’. Oct. 23, 2020. Available online: https://CRAN.R-project.org/package=lmerTest (accessed on 8 December 2022).
- A. Nanson, Génétique et amélioration des arbres forestiers. Presses Agronomiques de Gembloux, 2004.
- V. Stănescu, N. Şofletea, and O. C. Popescu, Flora forestiera lemnoasa a Romaniei. Bucuresti: Ceres, 1997.
- X. Wu et al., ‘Uneven winter snow influence on tree growth across temperate China’, Global Change Biology, vol. 25, no. 1, pp. 144–154, 2019. [CrossRef]
- A. B. Reinmann, J. R. Susser, E. M. C. Demaria, and P. H. Templer, ‘Declines in northern forest tree growth following snowpack decline and soil freezing’, Global Change Biology, vol. 25, no. 2, pp. 420–430, 2019. [CrossRef]
- J. Kreyling, ‘Winter climate change: a critical factor for temperate vegetation performance’, Ecology, vol. 91, no. 7, pp. 1939–1948, 2010. [CrossRef]
- J. Hu, D. J. P. Moore, S. P. Burns, and R. K. Monson, ‘Longer growing seasons lead to less carbon sequestration by a subalpine forest’, Global Change Biology, vol. 16, no. 2, pp. 771–783, 2010. [CrossRef]
- R. Weigel et al., ‘Winter matters: Sensitivity to winter climate and cold events increases towards the cold distribution margin of European beech (Fagus sylvatica L.)’, Journal of Biogeography, vol. 45, no. 12, pp. 2779–2790, 2018. [CrossRef]
- R. Weigel et al., ‘Ecosystem processes show uniform sensitivity to winter soil temperature change across a gradient from central to cold marginal stands of a major temperate forest tree’, Ecosystems, vol. 24, no. 6, pp. 1545–1560, 2021. [CrossRef]
- L. Gómez-Aparicio, R. García-Valdés, P. Ruíz-Benito, and M. A. Zavala, ‘Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change’, Global Change Biology, vol. 17, no. 7, pp. 2400–2414, Jul. 2011. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2011.02421.x (accessed on 11 December 2023).
- P. Čermák, T. Kolar, T. Žid, M. Trnka, and M. Rybníček, ‘Norway spruce responses to drought forcing in area affected by forest decline’, Forest Systems, vol. 28, p. e016 (13 pages), Oct. 2019. [CrossRef]
- A. Augustaitis et al., ‘Tree-ring formation as an indicator of forest capacity to adapt to the main threats of environmental changes in Lithuania’, Science of The Total Environment, vol. 615, pp. 1247–1261, Feb. 2018. [CrossRef]
- E. Linkevičius, A. Kliučius, G. Šidlauskas, and A. Augustaitis, ‘Variability in Growth Patterns and Tree-Ring Formation of East European Scots Pine (Pinus sylvestris L.) Provenances to Changing Climatic Conditions in Lithuania’, Forests, vol. 13, no. 5, Art. no. 5, May 2022. [CrossRef]
- C.-C. Roibu et al., ‘The Climatic Response of Tree Ring Width Components of Ash (Fraxinus excelsior L.) and Common Oak (Quercus robur L.) from Eastern Europe’, Forests, vol. 11, no. 5, Art. no. 5, May 2020. [CrossRef]
- F. Knutzen et al., ‘Impacts and damages of the European multi-year drought and heat event 2018–2022 on forests, a review’, EGUsphere, pp. 1–56, Jul. 2023. [CrossRef]






| Year | Months with extreme drought event | ||
|---|---|---|---|
| Dorna Candrenilor | Turda | Zarnesti | |
| 1974 | April | April | - |
| 2000 | June, December | June, December | December |
| 2003 | June | June | June, July |
| 2007 | - | - | July |
| 2018 | October | - | October |
| 2020 | January | - | - |
| rbar | provenance rbar min | provenance rbar max | Mean RW (mm) | Min RW (mm) |
Max RW (mm) |
|
|---|---|---|---|---|---|---|
| Dorna Candrenilor | 0.908 | 0.802, prov 90 | 0.961, prov 54 | 2.73 | 2.15, prov 83 | 3.11, prov 25 |
| Turda | 0.876 | 0.729, prov 67 | 0.941, prov 75 | 2.81 | 2.31, prov 83 | 3.92, prov 10 |
| Zarnesti | 0.876 | 0.705, prov 18 | 0.942, prov 42 | 2.55 | 2.13, prov 94 | 3.18, prov 55 |
| Trait | LRTp | LRT year x prov | Vp | V year x prov | Vr | MS B | MS Year | Mean ± SD | |
|---|---|---|---|---|---|---|---|---|---|
| Zarnesti | RW | 711.55*** | 66.98*** | 0.027 | 0.0155 | 0.6887 | 91.56*** | 1116.66*** | 2.73 ± 0.18 |
| EW | 677.85*** | 84.63*** | 0.0208 | 0.014 | 0.5416 | 38.94*** | 739.12*** | 2.08 ± 0.14 | |
| LW | 376.41*** | 0.00 | 0.0019 | 0.00 | 0.1146 | 11.12*** | 46.88*** | 0.66 ± 0.07 | |
| LWP | 510.66*** | 0.00 | 2.462 | 0.00 | 110.742 | 4583.1*** | 13944.9*** | 27.06 ± 1.54 | |
| Dorna Candrenilor | RW | 712.85*** | 12.42*** | 0.027 | 0.0072 | 0.7982 | 47.88*** | 1996.86*** | 2.55 ± 0.19 |
| EW | 579.62*** | 30.60*** | 0.0182 | 0.0092 | 0.6241 | 12.07*** | 1310.91*** | 1.90 ± 0.17 | |
| LW | 639.68*** | 1.29ns | 0.0027 | 0.0003 | 0.0933 | 16.981*** | 65.855*** | 0.65 ± 0.05 | |
| LWP | 491.92*** | 26.37*** | 1.696 | 0.900 | 69.428 | 3207.5*** | 20586.8*** | 27.78 ± 1.65 | |
| Turda | RW | 1259.9*** | 0.00 | 0.0644 | 0.00 | 1.0744 | 2.09 | 1315.16*** | 2.81 ± 0.29 |
| EW | 1003.0*** | 0.00 | 0.038 | 0.00 | 0.7551 | 2.28* | 835.49*** | 2.03 ± 0.22 | |
| LW | 996.03*** | 0.00 | 0.0053 | 0.00 | 0.1197 | 0.66** | 56.16*** | 0.78 ± 0.08 | |
| LWP | 326.7*** | 0.00 | 1.766 | 0.00 | 99.852 | 1389.3*** | 15916*** | 30.76 ± 1.62 |
| Recovery | Resilience | Rel. resilience | Latitude | Longi- tude | Elevation | ||
|---|---|---|---|---|---|---|---|
| Dorna Candrenilor | Resistance | -0.610*** | 0.605*** | -0.506*** | -0.037 | -0.114 | 0.128* |
| Recovery | 0.215*** | 0.941*** | 0.131* | 0.038 | -0.132* | ||
| Resilience | 0.381*** | 0.074 | -0.099 | 0.043 | |||
| Rel. resilience | 0.123 | 0.025 | -0.103 | ||||
| Zarnesti | Resistance | -0.689*** | -0.008 | -0.688*** | 0.215*** | 0.120 | -0.121 |
| Recovery | 0.493*** | 0.967*** | -0.236*** | -0.317*** | 0.111 | ||
| Resilience | 0.520*** | -0.223*** | -0.277*** | 0.124 | |||
| Rel. resilience | -0.239*** | -0.312*** | 0.117 | ||||
| Turda | Resistance | -0.689*** | 0.336*** | -0.749*** | 0.103 | 0.167** | 0.047 |
| Recovery | 0.303*** | 0.892*** | -0.099 | -0.151* | 0.048 | ||
| Resilience | 0.372*** | 0.078 | 0.019 | 0.049 | |||
| Rel. resilience | -0.047 | -0.152* | -0.012 |
| Resistance | Recovery | Resilience | Rel. resilience | ||
|---|---|---|---|---|---|
| Dorna Candrenilor | EW | -0.255*** | 0.153* | -0.175** | 0.106 |
| LW | 0.108 | -0.097 | 0.018 | -0.106 | |
| LWP | 0.289*** | -0.207** | 0.150* | -0.173** | |
| RW | -0.159* | 0.082 | -0.132* | 0.042 | |
| Zarnesti | EW | -0.007 | 0.063 | -0.043 | 0.077 |
| LW | -0.035 | 0.137* | 0.084 | 0.141* | |
| LWP | -0.035 | 0.052 | 0.089 | 0.034 | |
| RW | -0.016 | 0.094 | -0.011 | 0.106 | |
| Turda | EW | -0.370*** | 0.347*** | -0.050 | 0.330*** |
| LW | -0.267*** | 0.277*** | -0.004 | 0.260*** | |
| LWP | 0.192** | -0.065 | 0.141* | -0.090 | |
| RW | -0.360*** | 0.345*** | -0.039 | 0.327*** |
| Trial | Response Model | adj. R2 | Partial R2 | |
|---|---|---|---|---|
| Factor 1 | Factor 2 | |||
| Zarnesti | 11.0156 - 0.0315 MTWaQ2 - 0.0101 prc03 | 0.561*** | 0.545 | 0.065 |
| Zarnesti | 18.5318 - 0.7295 MTWaQ - 0.0001 NFFD2 | 0.591*** | 0.298 | 0.125 |
| Dorna Candrenilor | 15.9955 - 0.0421 MTWaQ2 - 0.0039 AP | 0.577*** | 0.576 | 0.125 |
| Turda | 13.2377 - 0.0382 MTWaQ2 - 0.0078 PWeQ | 0.485*** | 0.471 | 0.157 |
| Trial | Response Model | adj. R2 | Partial R2 | |
|---|---|---|---|---|
| Factor 1 | Factor 2 | |||
| Zarnesti | -20.0393 + 2.0099 MTWaQ + 0.0004 NFFD2 | 0.163*** | 0.046 | 0.025 |
| Zarnesti | 3.3077 + 0.0906 MTWaQ 2 + 0.0163 prc09 | 0.143*** | 0.131 | 0.005 |
| Dorna Candrenilor | -4.7941 + 0.346*10-5 GDD02 + 0.0580 PWem | 0.247*** | 0.222 | 0.086 |
| Turda | 2.0515 + 0.0270 GDD5 - 0.0027 SHM2 | 0.222*** | 0.222 | 0.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
