Submitted:
04 January 2024
Posted:
05 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Nutrient Utilization, Metabolism, Growth, and Carcass Composition
3. Antimicrobial Activity of Monoglycerides and Diglycerides
4. Antiviral Activity
5. Effects on Intestinal Morphology, Gut Immunity, and the Microbiome
5.1. Bacterial Patterns with MDG
5.2. Gut Integrity and Function with MDG
5.3. Gut Immunity
5.4. Free Fatty acid Receptors (FFAR)
6. Practical Applications
7. Summary
- Most in vivo responses are observed when the diet contained between 0.05% and 0.5% MDG and inclusion rates as high as 1% showed no adverse effects.
- Nutrient utilization, carcass composition and serum biochemistry results tend to point toward glyceride-dependent reductions in fat deposition with concurrent increases in muscle deposition.
- Antimicrobial activity is seen against many of the problematic organisms found in poultry production and meat processing including C. perfringens, E. coli, Salmonella spp., Campylobacter spp., Mycoplasma spp., and some enveloped viruses.
- There tends to be an increase in the abundance of specific beneficial bacteria (i.e. SCFA producers), and a general increase in intestinal community diversity.
- Increases in overall enteric health and function were commonly reported through a variety of mechanisms including improved tight junction integrity, increased villus height, and reduced inflammation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dohlman, E. USDA Agricultural Projections to 2032. 2023.
- FAO Contribution of Terrestrial Animal Source Food to Healthy Diets for Improved Nutrition and Health Outcomes: An Evidence and Policy Overview on the State of Knowledge and Gaps; FAO: Rome, Italy, 2023; ISBN 978-92-5-137536-5.
- Jackman, J.A.; Lavergne, T.A.; Elrod, C.C. Antimicrobial Monoglycerides for Swine and Poultry Applications. Front. Anim. Sci. 2022, 3. [CrossRef]
- Zhang, Q.; Wu, W.; Zhang, J.; Xia, X. Antimicrobial Lipids in Nano-Carriers for Antibacterial Delivery. J. Drug Target. 2020, 28, 271–281. [CrossRef]
- Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.-J. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int. J. Mol. Sci. 2018, 19, 1114. [CrossRef]
- 21 CFR 184.1505 -- Mono- and Diglycerides. Available online: https://www.ecfr.gov/current/title-21/part-184/section-184.1505 (accessed on 12 December 2023).
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Re-Evaluation of Mono- and Di-Glycerides of Fatty Acids (E 471) as Food Additives. EFSA J. 2017, 15, e05045. [CrossRef]
- Amer, S.A.; A-Nasser, A.; Al-Khalaifah, H.S.; AlSadek, D.M.M.; Abdel fattah, D.M.; Roushdy, E.M.; Sherief, W.R.I.A.; Farag, M.F.M.; Altohamy, D.E.; Abdel-Wareth, A.A.A.; et al. Effect of Dietary Medium-Chain α-Monoglycerides on the Growth Performance, Intestinal Histomorphology, Amino Acid Digestibility, and Broiler Chickens’ Blood Biochemical Parameters. Animals 2021, 11, 57. [CrossRef]
- Bedford, A.; Yu, H.; Hernandez, M.; Squires, E.J.; Leeson, S.; Gong, J. Effects of Fatty Acid Glyceride Product SILOhealth 104 on the Growth Performance and Carcass Composition of Broiler Chickens. Poult. Sci. 2018, 97, 1315–1323. [CrossRef]
- Liu, T.; Ruan, S.; Mo, Q.; Zhao, M.; Wang, J.; Ye, Z.; Chen, L.; Feng, F. Evaluation of Dynamic Effects of Dietary Medium-Chain Monoglycerides on Performance, Intestinal Development and Gut Microbiota of Broilers in Large-Scale Production. Anim. Nutr. 2023, 14, 269–280. [CrossRef]
- Gomez-Osorio, L.-M.; Yepes-Medina, V.; Ballou, A.; Parini, M.; Angel, R. Short and Medium Chain Fatty Acids and Their Derivatives as a Natural Strategy in the Control of Necrotic Enteritis and Microbial Homeostasis in Broiler Chickens. Front. Vet. Sci. 2021, 8. [CrossRef]
- Thormar, H.; Hilmarsson, H.; Bergsson, G. Stable Concentrated Emulsions of the 1-Monoglyceride of Capric Acid (Monocaprin) with Microbicidal Activities against the Food-Borne Bacteria Campylobacter Jejuni, Salmonella Spp., and Escherichia Coli. Appl. Environ. Microbiol. 2006, 72, 522–526. [CrossRef]
- Dobson, D.E.; Kambe, A.; Block, E.; Dion, T.; Lu, H.; Castellot, J.J.; Spiegelman, B.M. 1-Butyryl-Glycerol: A Novel Angiogenesis Factor Secreted by Differentiating Adipocytes. Cell 1990, 61, 223–230. [CrossRef]
- Khan, R.U.; Naz, S.; Raziq, F.; Qudratullah, Q.; Khan, N.A.; Laudadio, V.; Tufarelli, V.; Ragni, M. Prospects of Organic Acids as Safe Alternative to Antibiotics in Broiler Chickens Diet. Environ. Sci. Pollut. Res. 2022, 29, 32594–32604. [CrossRef]
- Haetinger, V.S.; Dalmoro, Y.K.; Godoy, G.L.; Lang, M.B.; de Souza, O.F.; Aristimunha, P.; Stefanello, C. Optimizing Cost, Growth Performance, and Nutrient Absorption with a Bio-Emulsifier Based on Lysophospholipids for Broiler Chickens. Poult. Sci. 2021, 100, 101025. [CrossRef]
- Roy, A.; Haldar, S.; Mondal, S.; Ghosh, T.K. Effects of Supplemental Exogenous Emulsifier on Performance, Nutrient Metabolism, and Serum Lipid Profile in Broiler Chickens. Vet. Med. Int. 2010, 2010, 1–9. [CrossRef]
- Siyal, F.A.; Babazadeh, D.; Wang, C.; Arain, M.A.; Saeed, M.; Ayasan, T.; Zhang, L.; Wang, T. Emulsifiers in the Poultry Industry. Worlds Poult. Sci. J. 2017, 73, 611–620. [CrossRef]
- Hu, X.Q.; Wang, W.B.; Liu, L.; Wang, C.; Feng, W.; Luo, Q.P.; Han, R.; Wang, X.D. Effects of Fat Type and Emulsifier in Feed on Growth Performance, Slaughter Traits, and Lipid Metabolism of Cherry Valley Ducks. Poult. Sci. 2019, 98, 5759–5766. [CrossRef]
- Feye, K.M.; Dittoe, D.K.; Jendza, J.A.; Caldas-Cueva, J.P.; Mallmann, B.A.; Booher, B.; Tellez-Isaias, G.; Owens, C.M.; Kidd, M.T.; Ricke, S.C. A Comparison of Formic Acid or Monoglycerides to Formaldehyde on Production Efficiency, Nutrient Absorption, and Meat Yield and Quality of Cobb 700 Broilers. Poult. Sci. 2021, 100, 101476. [CrossRef]
- Liu, T.; Mo, Q.; Wei, J.; Zhao, M.; Tang, J.; Feng, F. Mass Spectrometry-Based Metabolomics to Reveal Chicken Meat Improvements by Medium-Chain Monoglycerides Supplementation: Taste, Fresh Meat Quality, and Composition. Food Chem. 2021, 365, 130303. [CrossRef]
- Leeson, S.; Namkung, H.; Antongiovanni, M.; Lee, E.H. Effect of Butyric Acid on the Performance and Carcass Yield of Broiler Chickens. Poult. Sci. 2005, 84, 1418–1422. [CrossRef]
- Antongiovanni, M.; Buccioni, A.; Petacchi, F.; Leeson, S.; Minieri, S.; Martini, A.; Cecchi, R. Butyric Acid Glycerides in the Diet of Broiler Chickens: Effects on Gut Histology and Carcass Composition. Ital. J. Anim. Sci. 2007, 6, 19–25. [CrossRef]
- Yin, F.; Yu, H.; Lepp, D.; Shi, X.; Yang, X.; Hu, J.; Leeson, S.; Yang, C.; Nie, S.; Hou, Y.; et al. Transcriptome Analysis Reveals Regulation of Gene Expression for Lipid Catabolism in Young Broilers by Butyrate Glycerides. PLOS ONE 2016, 11, e0160751. [CrossRef]
- Bedford, A.; Yu, H.; Squires, E.J.; Leeson, S.; Gong, J. Effects of Supplementation Level and Feeding Schedule of Butyrate Glycerides on the Growth Performance and Carcass Composition of Broiler Chickens. Poult. Sci. 2017, 96, 3221–3228. [CrossRef]
- Jackman, J.A.; Yoon, B.K.; Li, D.; Cho, N.-J. Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides. Mol. Basel Switz. 2016, 21, 305. [CrossRef]
- Batovska, D.I.; Todorova, I.T.; Tsvetkova, I.V.; Najdenski, H.M. Antibacterial Study of the Medium Chain Fatty Acids and Their 1-Monoglycerides: Individual Effects and Synergistic Relationships. Pol. J. Microbiol. 2009, 58, 43–47.
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. MMBR 2010, 74, 417–433. [CrossRef]
- Kabara, J.J.; Vrable, R.; Lie Ken Jie, M.S.F. Antimicrobial Lipids: Natural and Synthetic Fatty Acids and Monoglycerides. Lipids 1977, 12, 753–759. [CrossRef]
- Iqbal, J.; Hussain, M.M. Intestinal Lipid Absorption. Am. J. Physiol.-Endocrinol. Metab. 2009, 296, E1183–E1194. [CrossRef]
- Projan, S.J.; Brown-Skrobot, S.; Schlievert, P.M.; Vandenesch, F.; Novick, R.P. Glycerol Monolaurate Inhibits the Production of Beta-Lactamase, Toxic Shock Toxin-1, and Other Staphylococcal Exoproteins by Interfering with Signal Transduction. J. Bacteriol. 1994, 176, 4204. [CrossRef]
- Schlievert, P.M.; Peterson, M.L. Glycerol Monolaurate Antibacterial Activity in Broth and Biofilm Cultures. PloS One 2012, 7, e40350. [CrossRef]
- Schlievert, P.M.; Deringer, J.R.; Kim, M.H.; Projan, S.J.; Novick, R.P. Effect of Glycerol Monolaurate on Bacterial Growth and Toxin Production. Antimicrob. Agents Chemother. 1992, 36, 626–631. [CrossRef]
- Fierer, J.; Guiney, D.G. Diverse Virulence Traits Underlying Different Clinical Outcomes of Salmonella Infection. J. Clin. Invest. 2001, 107, 775–780. [CrossRef]
- Vetter, S.M.; Schlievert, P.M. Glycerol Monolaurate Inhibits Virulence Factor Production in Bacillus Anthracis. Antimicrob. Agents Chemother. 2005, 49, 1302–1305. [CrossRef]
- Wang, W.; Wang, R.; Zhang, G.; Chen, F.; Xu, B. In Vitro Antibacterial Activities and Mechanisms of Action of Fatty Acid Monoglycerides Against Four Foodborne Bacteria. J. Food Prot. 2020, 83, 331–337. [CrossRef]
- Ma, M.; Zhao, J.; Zeng, Z.; Wan, D.; Yu, P.; Cheng, D.; Gong, D.; Deng, S. Antibacterial Activity and Membrane-Disrupting Mechanism of Monocaprin against Escherichia Coli and Its Application in Apple and Carrot Juices. LWT 2020, 131, 109794. [CrossRef]
- Yoon, B.K.; Jackman, J.A.; Kim, M.C.; Sut, T.N.; Cho, N.-J. Correlating Membrane Morphological Responses with Micellar Aggregation Behavior of Capric Acid and Monocaprin. Langmuir 2017, 33, 2750–2759. [CrossRef]
- Namkung, H.; Yu, H.; Gong, J.; Leeson, S. Antimicrobial Activity of Butyrate Glycerides toward Salmonella Typhimurium and Clostridium Perfringens. Poult. Sci. 2011, 90, 2217–2222. [CrossRef]
- Kovanda, L.L.; Hejna, M.; Liu, Y. 124 Butyric Acid and Derivatives: In Vitro Effects on Barrier Integrity of Porcine Intestinal Epithelial Cells Quantified by Transepithelial Electrical Resistance. J. Anim. Sci. 2020, 98, 109–110. [CrossRef]
- Asadullah, K.; Sterry, W.; Volk, H.D. Interleukin-10 Therapy--Review of a New Approach. Pharmacol. Rev. 2003, 55, 241–269. [CrossRef]
- Wang, H.; Chen, H.; Lin, Y.; Wang, G.; Luo, Y.; Li, X.; Wang, M.; Huai, M.; Li, L.; Barri, A. Butyrate Glycerides Protect against Intestinal Inflammation and Barrier Dysfunction in Mice. Nutrients 2022, 14, 3991. [CrossRef]
- Nguyen, T.D.; Prykhodko, O.; Hållenius, F.F.; Nyman, M. Monobutyrin Reduces Liver Cholesterol and Improves Intestinal Barrier Function in Rats Fed High-Fat Diets. Nutrients 2019, 11, 308. [CrossRef]
- Kabara, J.J. Lipids as Host-Resistance Factors of Human Milk. Nutr. Rev. 1980, 38, 65–73. [CrossRef]
- Kabara, J.J. Symposium on the Pharmacological Effect of Lipids; The American Oil Chemists Society, 1978; ISBN 978-99918-1-769-9.
- Isaacs, C.E. Human Milk Inactivates Pathogens Individually, Additively, and Synergistically. J. Nutr. 2005, 135, 1286–1288. [CrossRef]
- Anacarso, I.; Quartieri, A.; De Leo, R.; Pulvirenti, A. Evaluation of the Antimicrobial Activity of a Blend of Monoglycerides against Escherichia Coli and Enterococci with Multiple Drug Resistance. Arch. Microbiol. 2018, 200, 85–89. [CrossRef]
- Xu, E.; Chen, C.; Fu, J.; Zhu, L.; Shu, J.; Jin, M.; Wang, Y.; Zong, X. Dietary Fatty Acids in Gut Health: Absorption, Metabolism and Function. Anim. Nutr. 2021, 7, 1337–1344. [CrossRef]
- Welsh, J.K.; Arsenakis, M.; Coelen, R.J.; May, J.T. Effect of Antiviral Lipids, Heat, and Freezing on the Activity of Viruses in Human Milk. J. Infect. Dis. 1979, 140, 322–328. [CrossRef]
- Welsh, J.K.; Skurrie, I.J.; May, J.T. Use of Semliki Forest Virus to Identify Lipid-Mediated Antiviral Activity and Anti-Alphavirus Immunoglobulin A in Human Milk. Infect. Immun. 1978, 19, 395–401. [CrossRef]
- Thormar, H.; Isaacs, C.E.; Brown, H.R.; Barshatzky, M.R.; Pessolano, T. Inactivation of Enveloped Viruses and Killing of Cells by Fatty Acids and Monoglycerides. Antimicrob. Agents Chemother. 1987, 31, 27–31. [CrossRef]
- Thormar, H.; Isaacs, C.E.; Soo Kim, K.; Brown, H.R. Inactivation of Visna Virus and Other Enveloped Viruses by Free Fatty Acids and Monoglycerides. Ann. N. Y. Acad. Sci. 1994, 724, 465–471. [CrossRef]
- Jackman, J.A.; Hakobyan, A.; Zakaryan, H.; Elrod, C.C. Inhibition of African Swine Fever Virus in Liquid and Feed by Medium-Chain Fatty Acids and Glycerol Monolaurate. J. Anim. Sci. Biotechnol. 2020, 11, 114. [CrossRef]
- Phillips, F.C.; Rubach, J.K.; Poss, M.J.; Anam, S.; Goyal, S.M.; Dee, S.A. Monoglyceride Reduces Viability of Porcine Epidemic Diarrhoea Virus in Feed and Prevents Disease Transmission to Post-Weaned Piglets. Transbound. Emerg. Dis. 2022, 69, 121–127. [CrossRef]
- Jackman, J.A.; Boyd, R.D.; Elrod, C.C. Medium-Chain Fatty Acids and Monoglycerides as Feed Additives for Pig Production: Towards Gut Health Improvement and Feed Pathogen Mitigation. J. Anim. Sci. Biotechnol. 2020, 11, 44. [CrossRef]
- Hariastuti, N.I. Avian Influenza Virus Inactivation by Caprylic Acid, Sodium Caprylate, and Monocaprylin. Health Sci. J. Indones. 2012, 2, 41–45.
- A Mellouk; Goossens, T; Quinteiro-Filho, W.; Michel, V.; Vieco, N.; Lemâle, O.; Yakout, H.; Consuegra, J Glycerides of Lauric Acid Supplementation in the Chicken Diet Enhances the Humoral and Cellular Immune Response to Infectious Bronchitis Virus. In Proceedings of the Poult. Sci.; 2023; Vol. 102 (E-Supplement 1), p. 84.
- Zhang, J.; Feng, F.; Zhao, M. Glycerol Monocaprylate Modulates Gut Microbiota and Increases Short-Chain Fatty Acids Production without Adverse Effects on Metabolism and Inflammation. Nutrients 2021, 13, 1427. [CrossRef]
- Liu, T.; Guo, L.; Zhangying, Y.; Ruan, S.; Liu, W.; Zhang, X.; Feng, F. Dietary Medium-Chain 1-Monoglycerides Modulates the Community and Function of Cecal Microbiota of Broilers. J. Sci. Food Agric. 2022, 102, 2242–2252. [CrossRef]
- Liu, T.; Tang, J.; Feng, F. Medium-Chain α-Monoglycerides Improves Productive Performance and Egg Quality in Aged Hens Associated with Gut Microbiota Modulation. Poult. Sci. 2020, 99, 7122–7132. [CrossRef]
- Zhao, M.; Jiang, Z.; Cai, H.; Li, Y.; Mo, Q.; Deng, L.; Zhong, H.; Liu, T.; Zhang, H.; Kang, J.X.; et al. Modulation of the Gut Microbiota during High-Dose Glycerol Monolaurate-Mediated Amelioration of Obesity in Mice Fed a High-Fat Diet. mBio 2020, 11, 10.1128/mbio.00190-20. [CrossRef]
- Kong, L.; Wang, Z.; Xiao, C.; Zhu, Q.; Song, Z. Glycerol Monolaurate Ameliorated Intestinal Barrier and Immunity in Broilers by Regulating Intestinal Inflammation, Antioxidant Balance, and Intestinal Microbiota. Front. Immunol. 2021, 12. [CrossRef]
- Sacakli, P.; Çınar, Ö.Ö.; Ceylan, A.; Ramay, M.S.; Harijaona, J.A.; Bayraktaroglu, A.G.; Shastak, Y.; Calik, A. Performance and Gut Health Status of Broilers Fed Diets Supplemented with Two Graded Levels of a Monoglyceride Blend. Poult. Sci. 2023, 102, 102359. [CrossRef]
- Kong, L.; Wang, Z.; Xiao, C.; Zhu, Q.; Song, Z. Glycerol Monolaurate Attenuated Immunological Stress and Intestinal Mucosal Injury by Regulating the Gut Microbiota and Activating AMPK/Nrf2 Signaling Pathway in Lipopolysaccharide-Challenged Broilers. Anim. Nutr. 2022, 10, 347–359. [CrossRef]
- Grochowska, M.; Laskus, T.; Paciorek, M.; Pollak, A.; Lechowicz, U.; Makowiecki, M.; Horban, A.; Radkowski, M.; Perlejewski, K. Patients with Infections of The Central Nervous System Have Lowered Gut Microbiota Alpha Diversity. Curr. Issues Mol. Biol. 2022, 44, 2903–2914. [CrossRef]
- Zhong, X.; Harrington, J.M.; Millar, S.R.; Perry, I.J.; O’Toole, P.W.; Phillips, C.M. Gut Microbiota Associations with Metabolic Health and Obesity Status in Older Adults. Nutrients 2020, 12, 2364. [CrossRef]
- Hagerty, S.L.; Hutchison, K.E.; Lowry, C.A.; Bryan, A.D. An Empirically Derived Method for Measuring Human Gut Microbiome Alpha Diversity: Demonstrated Utility in Predicting Health-Related Outcomes among a Human Clinical Sample. PLOS ONE 2020, 15, e0229204. [CrossRef]
- Li, Z.; Zhou, J.; Liang, H.; Ye, L.; Lan, L.; Lu, F.; Wang, Q.; Lei, T.; Yang, X.; Cui, P.; et al. Differences in Alpha Diversity of Gut Microbiota in Neurological Diseases. Front. Neurosci. 2022, 16. [CrossRef]
- Kumar, A.; Kheravii, S.K.; Li, L.; Wu, S.-B. Monoglyceride Blend Reduces Mortality, Improves Nutrient Digestibility, and Intestinal Health in Broilers Subjected to Clinical Necrotic Enteritis Challenge. Animals 2021, 11, 1432. [CrossRef]
- Meslin, C.; Desert, C.; Callebaut, I.; Djari, A.; Klopp, C.; Pitel, F.; Leroux, S.; Martin, P.; Froment, P.; Guilbert, E.; et al. Expanding Duplication of Free Fatty Acid Receptor-2 (GPR43) Genes in the Chicken Genome. Genome Biol. Evol. 2015, 7, 1332–1348. [CrossRef]
- Mielenz, M. Invited Review: Nutrient-Sensing Receptors for Free Fatty Acids and Hydroxycarboxylic Acids in Farm Animals. Animal 2017, 11, 1008–1016. [CrossRef]
- Suh, H.N.; Huong, H.T.; Song, C.H.; Lee, J.H.; Han, H.J. Linoleic Acid Stimulates Gluconeogenesis via Ca2+/PLC, cPLA2, and PPAR Pathways through GPR40 in Primary Cultured Chicken Hepatocytes. Am. J. Physiol.-Cell Physiol. 2008, 295, C1518–C1527. [CrossRef]
- Cordero, P.; Díaz-Avilés, F.; Torres, P.; Guzmán, M.; Niknafs, S.; Roura, E.; Guzmán-Pino, S.A. The Expression of Amino Acid and Fatty Acid Receptors Show an Age-Dependent Pattern Involving Oral Cavity, Jejunum and Lower Gut Sensing in Broiler Chickens. Animals 2023, 13, 3120. [CrossRef]
- Lee, I.K.; Gu, M.J.; Ko, K.H.; Bae, S.; Kim, G.; Jin, G.-D.; Kim, E.B.; Kong, Y.-Y.; Park, T.S.; Park, B.-C.; et al. Regulation of CD4+CD8−CD25+ and CD4+CD8+CD25+ T Cells by Gut Microbiota in Chicken. Sci. Rep. 2018, 8, 8627. [CrossRef]
- Jadhav, V.V.; Han, J.; Fasina, Y.; Harrison, S.H. Connecting Gut Microbiomes and Short Chain Fatty Acids with the Serotonergic System and Behavior in Gallus Gallus and Other Avian Species. Front. Physiol. 2022, 13. [CrossRef]
- Kaemmerer, E.; Plum, P.; Klaus, C.; Weiskirchen, R.; Liedtke, C.; Adolf, M.; Schippers, A.; Wagner, N.; Reinartz, A.; Gassler, N. Fatty Acid Binding Receptors in Intestinal Physiology and Pathophysiology. World J. Gastrointest. Pathophysiol. 2010, 1, 147–153. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).