Submitted:
02 January 2024
Posted:
03 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Analytical and Computational Approaches to Opinion Spreading
3. Rumors and Lobbies in Galam’s Model
3.1. The Model without Lobby
- individuals are randomly distributed on the available seats;
- individuals change their opinion according to a local or table majority rule, i.e., at each table if then all the individuals sitting at that table will change to opinion ; vice versa, if then all the individuals sitting at that table will change to opinion .
3.2. The Model with Lobby
- lobbyists sit at the tables, occupying half of the seats available at each table (if s is an even number), or (if the seats are an odd number);
- non-lobbyist individuals are randomly distributed on the remaining seats;
- the table majority rule is applied and opinions are updated.
3.3. Simulation Model
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- NumAgents ;
- LobbySize ;
- NumberSimulations .
| Algorithm A1 Compute transition frequencies with no lobby |
|
| Algorithm A2 Compute transition frequencies with lobby |
|
References
- Dominus, S. When the Revolution Came for Amy Cuddy. The New York Times, 18 October 2017. [Google Scholar]
- Jack, A.; Hill, A. Harvard fraud claims fuel doubts over science of behaviour. Financial Times, 30 June 2023. [Google Scholar]
- Open Science Collaboration. Estimating the reproducibility of psychological science. Science 2015, 349, aac4716. [Google Scholar] [CrossRef] [PubMed]
- Cialdini, R.B.; Goldstein, N.J. SOCIAL INFLUENCE: Compliance and Conformity. Annual Review of Psychology 2004, 55, 591–621. [Google Scholar] [CrossRef] [PubMed]
- Sunstein, C.R. What’s Available - Social Influences and Behavioral Economics Empirical Legal Realism: A New Social Scientific Assessment of Law and Human Behavior. Northwestern University Law Review 2002, 97, 1295–1314. [Google Scholar]
- Asch, S.E. Studies of independence and conformity: I. A minority of one against a unanimous majority. Psychological monographs: General and applied 1956, 70, 1–70. [Google Scholar] [CrossRef]
- Wood, W.; Lundgren, S.; Ouellette, J.A.; Busceme, S.; Blackstone, T. Minority influence: a meta-analytic review of social influence processes. Psychological bulletin 1994, 115, 323–345. [Google Scholar] [CrossRef]
- Paichler, G. Norms and attitude change I: Polarization and styles of behaviour. European Journal of Social Psychology 1976, 6, 405–427. [Google Scholar] [CrossRef]
- Moscovici, S.; Personnaz, B. Studies in social influence. Journal of Experimental Social Psychology 1980, 16, 270–282. [Google Scholar] [CrossRef]
- Moscovici, S.; Lage, E.; Naffrechoux, M. Influence of a consistent minority on the responses of a majority in a color perception task. Sociometry 1969, 32, 365–380. [Google Scholar] [CrossRef]
- Mugny, G.; Papastamou, S. When rigidity does not fail: Individualization and psychologization as resistances to the diffusion of minority innovations. European Journal of Social Psychology 1980, 10, 43–61. [Google Scholar] [CrossRef]
- Crano, W.D.; Seyranian, V. Majority and minority influence. Social and Personality Psychology Compass 2007, 1, 572–589. [Google Scholar] [CrossRef]
- Maass, A.; Clark, R.D. Hidden impact of minorities: Fifteen years of minority influence research. Psychological Bulletin 1984, 95, 428–450. [Google Scholar] [CrossRef]
- Butera, F.; Mugny, G.; Legrenzi, P.; Perez, J.a. Majority and minority influence, task representation and inductive reasoning. British Journal of Social Psychology 1996, 35, 123–136. [Google Scholar] [CrossRef]
- Mugny, G. Negotiations, image of the other and the process of minority influence. European Journal of Social Psychology 1975, 5, 209–228. [Google Scholar] [CrossRef]
- Heft, A.; Buehling, K. Measuring the diffusion of conspiracy theories in digital information ecologies. Convergence 2022, 28, 940–961. [Google Scholar] [CrossRef]
- Dentith, M.R.X. Conspiracies and Conspiracy Theories. In The Philosophy of Conspiracy Theories; Palgrave Macmillan UK: London, 2014; pp. 23–38. [Google Scholar] [CrossRef]
- Furini, M. Identifying the features of ProVax and NoVax groups from social media conversations. Computers in Human Behavior 2021, 120, 106751. [Google Scholar] [CrossRef]
- Rutjens, B.T.; Većkalov, B. Conspiracy beliefs and science rejection. Current Opinion in Psychology 2022, 46, 101392. [Google Scholar] [CrossRef] [PubMed]
- Albarracín, D. Processes of persuasion and social influence in conspiracy beliefs. Current Opinion in Psychology 2022, 48, 101463. [Google Scholar] [CrossRef] [PubMed]
- Galam, S. Modelling rumors: the no plane Pentagon French hoax case. Physica A: Statistical Mechanics and Its Applications 2003, 320, 571–580. [Google Scholar] [CrossRef]
- Galam, S. Sociophysics, A Physicist’s Modeling of Psycho-political Phenomena. Understanding Complex Systems, Springer, 2012. [Google Scholar]
- Galam, S.; Moscovici, S. Towards a theory of collective phenomena: Consensus and attitude changes in groups. European Journal of Social Psychology 1991, 21, 49–74. [Google Scholar] [CrossRef]
- Berger, L.R. A necessary and sufficient condition for reaching a consensus using DeGroot’s method. Journal of the American Statistical Association 1981, 76, 415–418. [Google Scholar] [CrossRef]
- DeGroot, M.H. Reaching a Consensus. Journal of the American Statistical Association 1974, 69, 118–121. [Google Scholar] [CrossRef]
- Potters, J.; van Winden, F. Lobbying and Asymmetric Information. Public choice 1992, 74, 269–292. [Google Scholar] [CrossRef]
- Nyczka, P.; Sznajd-Weron, K. Anticonformity or Independence?–Insights from Statistical Physics. Journal of Statistical Physics 2013, 151, 174–202. [Google Scholar] [CrossRef]
- Rouchier, J.; Thoyer, S. Modelling a European Decision Making Process with Heterogeneous Public Opinion and Lobbying: The Case of the Authorization Procedure for Placing Genetically Modified Organisms on the Market. In Proceedings of the Multi-Agent-Based Simulation III; Hales, D., Edmonds, B., Norling, E., Rouchier, J., Eds.; Berlin, Heidelberg, 2003; pp. 149–166. [Google Scholar]
- Jackson, J.C.; Rand, D.; Lewis, K.; Norton, M.I.; Gray, K. Agent-Based Modeling: A Guide for Social Psychologists. Social Psychological and Personality Science 2017, 8, 387–395. [Google Scholar] [CrossRef]
- Smith, E.R.; Conrey, F.R. Agent-Based Modeling: A New Approach for Theory Building in Social Psychology. Personality and social psychology review 2007, 11, 87–104. [Google Scholar] [CrossRef]
- Rodgers, J.L. The Epistemology of Mathematical and Statistical Modeling: A Quiet Methodological Revolution. The American psychologist 2010, 65, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Galam, S.; Gefen, Y.; Shapir, Y. Sociophysics: A new approach of sociological collective behaviour. 1. Mean-behaviour description of a strike. The Journal of Mathematical Sociology 1982, 9, 1–13. [Google Scholar] [CrossRef]
- Stauffer, D. A biased review of sociophysics. Journal of Statistical Physics 2012, 151, 9–20. [Google Scholar] [CrossRef]
- Merlone, U.; Radi, D. Reaching consensus on rumors. Physica A: Statistical Mechanics and its Applications 2014, 406, 260–271. [Google Scholar] [CrossRef]
- Ellero, A.; Fasano, G.; Sorato, A. Stochastic model of agent interaction with opinion leaders. Physical Review E 2013, 87, 042806. [Google Scholar] [CrossRef]
- Hare, I.P.; Bales, R.F. Seating position and small group interaction. Sociometry 1963, 26, 480–486. [Google Scholar] [CrossRef]
- Sommer, R. Leadership and group geography. Sociometry 1961, 24, 99–110. [Google Scholar] [CrossRef]
- Strodtbeck, F.L.; Hook, L.H. The social dimensions of a twelve man jury table. Sociometry 1961, 24, 397–415. [Google Scholar] [CrossRef]
- Oestereich, A.L.; Pires, M.A.; Queiròs, S.M.D.; Crokidakis, N. Phase Transition in the Galam’s Majority-Rule Model with Information-Mediated Independence. Phisics 2023, 911–922. [Google Scholar] [CrossRef]
- Newmark, A.; Nownes, A.J. All of the Above: Lobbying Allied, Undecided, and Opposing Lawmakers in Committee and on the Floor. Political Research Quarterly 2022, 76, 578–592. [Google Scholar] [CrossRef]
- Kemeny, J.G.; Laurie, S.J. Finite markov chains; Springer Verlag: New York, NY, USA, 1968. [Google Scholar]
- Feller, W. An introduction to probability theory and its applications, third ed.; John Wiley & Sons: New York, NY, USA, 1968; Vol. 1. [Google Scholar]
- OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2023. Published electronically at. Available online: http://oeis.org.
- Bouvier, J.B.; Xu, K.; Ornik, M. Quantitative Resilience of Linear Driftless Systems. In Proceedings of the SIAM Conference on Control and Its Applications; 2021; pp. 32–39. [Google Scholar]
- Cinelli, M.; De Francisci Morales, G.; Galeazzi, A.; Quattrociocchi, W.; Starnini, M. The echo chamber effect on social media. Proceedings of the National Academy of Sciences of the United States of America 118. [CrossRef]
- Macy, M.; Deri, S.; Ruch, A.; Tong, N. Opinion cascades and the unpredictability of partisan polarization. Science Advances 2019, 5, eaax0754. [Google Scholar] [CrossRef]
- Daniel, K.; Olivier, S.; Cass R., S. Noise: A Flaw in Human Judgment; Hachette Book Group: New York, NY, USA, 2021. [Google Scholar]
- Thorngate, W. “In General” vs. “It Depends”: Some Comments of the Gergen-Schlenker Debate. Personality and Social Psychology Bulletin 1976, 2, 404–410. [Google Scholar] [CrossRef]
- Galam, S. The Question: Do Humans Behave like Atoms? In Sociophysics: A Physicist’s Modeling of Psycho-political Phenomena; Springer US: Boston, MA, USA, 2012; pp. 21–39. [Google Scholar] [CrossRef]
- Merlone, U.; Radi, D.; Romano, A. Opinion dynamics on networks. In Complex Networks and Nonlinear Dynamics: Social and Economic Interactions; Commendatore, P., Matilla-Garcìa, M., Varela, L.M., Cánovas, J., Eds.; Springer Verlag, 2016; Vol. 683, pp. 49–63. [Google Scholar]
| 1 | The case , i.e. all table of dimension 1, is trivial and therefore will not be considered. |
| 2 | The R code and the libraries for replicating our results are available from the authors upon request. |








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
