Submitted:
28 January 2024
Posted:
29 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
Theory
Applying Theory
Hypothesis
Conclusions
References
- Lorentz, H.A. Electromagnetic phenomena in a system moving with any velocity smaller than that of light. In Collected Papers: Volume V; Springer, 1937; pp. 172–197.
- Poincaré, H. La dynamique de l’électron; A. Dumas, 1913.
- Lemaître, G. Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles, A47, p. 49–59 1927, 47, 49–59. [Google Scholar]
- Chown, M. The Oxford Companion to Cosmology by Andrew Liddle and Jon Loveday, and Cosmology by Steven Weinberg| The Oxford Companion to Cosmology, Andrew Liddle and Jon Loveday, Oxford University Press,£ 35, 9780198608585| Cosmology, Steven Weinberg, Oxford University Press,£ 45, 9780198526827, 2008.
- Akpootu, D.O.; Salifu, S.I.; Nnaemeka, O.C.; Adesina, S. Comparative Study on Mass loss by the Sun and Energy Available for Utilization between two Tropical Stations in Nigeria. International Journal of Adv in Sci Res and Eng (ijasre) 2020, 6, 82–91. [Google Scholar] [CrossRef]
- Noerdlinger, P.D. Solar mass loss, the astronomical unit, and the scale of the solar system. arXiv 2008, arXiv:0801.3807. [Google Scholar]
- Jiao, Y.; Hammer, F.; Wang, H.; Wang, J.; Amram, P.; Chemin, L.; Yang, Y. Detection of the Keplerian decline in the Milky Way rotation curve. Astronomy; Astrophysics 2023, 678, A208. [Google Scholar] [CrossRef]
- Shukure, N.T.; Tessema, S.B.; Mengistu, E. Mass-loss varying luminosity and its implication to the solar evolution. Proceedings of the International Astronomical Union 2019, 15, 403–404. [Google Scholar] [CrossRef]
- Ruiz-Lara, T.; Gallart, C.; Bernard, E.J.; Cassisi, S. The recurrent impact of the Sagittarius dwarf on the Milky Way star formation history, 2020, [arXiv:astro-ph.GA/2003.12577]. 2020; arXiv:astro-ph.GA/2003.12577]. [CrossRef]
- Desmond, H.; Sakstein, J.; Jain, B. Five percent measurement of the gravitational constant in the Large Magellanic Cloud. Physical Review D 2021, 103, 024028. [Google Scholar] [CrossRef]
- Hanımeli, E.T.; Tutusaus, I.; Lamine, B.; Blanchard, A. Can dark energy emerge from a varying G and spacetime geometry? Universe 2022, 8, 148. [Google Scholar] [CrossRef]
- Webb, J.K.; Lee, C.C. Convergence properties of fine structure constant measurements using quasar absorption systems. arXiv 2023, arXiv:2401.00887. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
