Submitted:
21 December 2023
Posted:
21 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Subjects and data collection
2.2. Bioelectrical impedance analysis
2.3. Biochemical tests
2.4. Physical activity (PA) measured by accelerometer
- moderate PA (MPA): 1952–5724 counts/min,
- vigorous PA (VPA): ≥ 5725 counts/min,
- moderate + vigorous PA (MVPA) ≥ 1952 counts/min.
2.5. Sleep duration measured by accelerometer
2.6. Nutritional value of daily food consumption
2.7. SCFAs
2.7.1. Chemicals
2.7.2. Sample preparation
2.7.3. Analyzes
2.8. Statistical analyzes
3. Results
3.1. Correlation of lifestyle factors and SCFAs
3.2. Fecal SCFAs profile: percentage of SCFAs depending on various fiber intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolters, M.; Ahrens, J.; Romaní-Pérez, M.; Watkins, C.; Sanz, Y.;Benítez-Páez, A.;Stanton, C.; Günther, K. Dietary fat, the gut microbiota, and metabolic health – a systematic review conducted within the MyNewGut project. Clinical nutrition 2019, 38(6), 2504–2520. [CrossRef]
- Asnicar, F.; Berry, S. E.; Valdes, A. M.; Nguyen, L. H.,;Piccinno, G.; Drew, D. A.; Leeming, E.; Gibson, R.; Le Roy, C.; Khatib, H. A.; Francis, L.; Mazidi, M.; Mompeo, O.; Valles-Colomer, M.; Tett, A.; Beghini, F.; Dubois, L.; Bazzani, D.; Thomas, A. M.; Mirzayi, C.; Segata, N. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nature medicine 2021, 27(2), 321–332. [CrossRef]
- Bolte, L. A.; Vich Vila, A.; Imhann, F.; Collij, V.; Gacesa, R.; Peters, V.; Wijmenga, C.; Kurilshikov, A.; Campmans-Kuijpers, M. J. E.; Fu, J.; Dijkstra, G.; Zhernakova, A.; Weersma, R. K. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut, 2021, 70(7), 1287–1298. [CrossRef]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; Suez, J.; Mahdi, J. A.; Matot, E.; Malka, G.; Kosower, N.; Rein, M.; Zilberman-Schapira, G.; Dohnalová, L.; Pevsner-Fischer, M.; Bikovsky, R.; Segal, E. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163(5), 1079–1094. [CrossRef]
- Vancamelbeke, M.; Vermeire, S. The intestinal barrier: a fundamental role in health and disease. Expert review of gastroenterology & hepatology, 2017, 11(9), 821–834. [CrossRef]
- Makki, K.; Deehan, E. C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell host & microbe 2018, 23(6), 705–715. [CrossRef]
- Evans, J. M.; Morris, L. S.; Marchesi, J. R. The gut microbiome: the role of a virtual organ in the endocrinology of the host. The Journal of endocrinology 2013, 218(3), R37–R47. [CrossRef]
- Blaak, E. E.; Canfora, E. E.; Theis, S.; Frost, G.; Groen, A. K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; van Harsselaar, J.; van Tol, R.; Vaughan, E. E.; Verbeke, K. Short chain fatty acids in human gut and metabolic health. Beneficial microbes 2020, 11(5), 411–455. [CrossRef]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y. Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; Yu, L.; Xu, C.; Ren, Z.; Xu, Y.; Xu, S.; Shen, H.; Zhu, X.; Shi, Y., Shen, Q.; Dong, W.; Zhang, C. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018, 359(6380), 1151–1156. [CrossRef]
- François, I. E.; Lescroart, O.; Veraverbeke, W. S.; Marzorati, M.; Possemiers, S.; Evenepoel, P.; Hamer, H.; Houben, E.; Windey, K.; Welling, G. W.; Delcour, J. A.; Courtin, C. M.; Verbeke, K.; Broekaert, W. F. Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. The British journal of nutrition 2012, 108(12), 2229–2242. [CrossRef]
- O'Keefe, S. J.; Li, J. V.; Lahti, L.; Ou, J.; Carbonero, F.; Mohammed, K.; Posma, J. M.; Kinross, J.; Wahl, E.; Ruder, E.; Vipperla, K.; Naidoo, V.; Mtshali, L.; Tims, S.; Puylaert, P. G.; DeLany, J.; Krasinskas, A.; Benefiel, A. C.; Kaseb, H. O.; Newton, K.; Zoetendal, E. G. Fat, fibre and cancer risk in African Americans and rural Africans. Nature communications 2015, 6, 6342. [CrossRef]
- Swanson, K. S.; de Vos, W. M.; Martens, E. C.;Gilbert, J. A.; Menon, R. S.; Soto-Vaca, A.; Hautvast, J.; Meyer, P. D.; Borewicz, K.; Vaughan, E. E.; Slavin, J. L. Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review. Beneficial microbes 2020, 11(2), 101–129. [CrossRef]
- de la Cuesta-Zuluaga, J.; Mueller, N. T.; Álvarez-Quintero, R.; Velásquez-Mejía, E. P.; Sierra, J. A.; Corrales-Agudelo, V.; Carmona, J. A.; Abad, J. M.; Escobar, J. S. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients 2018, 11(1), 51. [CrossRef]
- Lochs, H.; Allison, S. P.; Meier, R.; Pirlich, M.; Kondrup, J.; Schneider, S.; van den Berghe, G.; Pichard, C. Introductory to the ESPEN Guidelines on Enteral Nutrition: Terminology, definitions and general topics. Clinical nutrition (Edinburgh, Scotland) 2006, 25(2), 180–186. [CrossRef]
- Freedson, P. S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Medicine and science in sports and exercise 1998, 30(5), 777–781. [CrossRef]
- Cole, R. J.; Kripke, D. F.; Gruen, W.; Mullaney, D. J.; Gillin, J. C. Automatic sleep/wake identification from wrist activity. Sleep 1992, 15(5), 461–469. [CrossRef]
- Wong, J. M.; de Souza, R.; Kendall, C. W.; Emam, A.; Jenkins, D. J. Colonic health: fermentation and short chain fatty acids. Journal of clinical gastroenterology 2006, 40(3), 235–243. [CrossRef]
- Ang, Z.; Ding, J. L. GPR41 and GPR43 in Obesity and Inflammation - Protective or Causative?. Frontiers in immunology 2016, 7, 28. [CrossRef]
- Shimizu, H.; Masujima, Y.; Ushiroda, C.; Mizushima, R.; Taira, S.; Ohue-Kitano, R.; Kimura, I. Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Scientific reports 2019, 9(1), 16574. [CrossRef]
- Larraufie, P.; Martin-Gallausiaux, C.; Lapaque, N.; Dore, J.; Gribble, F.M.; Reimann, F.; Blottiere, H.M. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep 2018 8, 74. [CrossRef]
- Hernández, M. A. G.; Canfora, E. E.; Jocken, J. W. E.; Blaak, E. E. The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients 2019, 11(8), 1943. [CrossRef]
- den Besten, G.; van Eunen, K.; Groen, A. K.; Venema, K.; Reijngoud, D. J.; Bakker, B. M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research 2013, 54(9), 2325–2340. [CrossRef]
- Murugesan, S.; Ulloa-Martínez, M.; Martínez-Rojano, H.; Galván-Rodríguez, F. M.; Miranda-Brito, C.; Romano, M. C., Piña-Escobedo, A.; Pizano-Zárate, M. L.; Hoyo-Vadillo, C.; García-Mena, J. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 2015, 34(7), 1337–1346. [CrossRef]
- Łoniewski, I.; Szulińska, M.; Kaczmarczyk, M.; Podsiadło, K.; Styburski, D.; Skonieczna-Żydecka, K.; Bogdański, P. Analysis of correlations between gut microbiota, stool short chain fatty acids, calprotectin and cardiometabolic risk factors in postmenopausal women with obesity: a cross-sectional study. Journal of translational medicine 2022, 20(1), 585. [CrossRef]
- Lu, Y.; Fan, C.; Li, P.; Lu, Y.; Chang, X.; Qi, K. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Scientific reports 2016, 6, 37589. [CrossRef]
- Xiong, R. G.; Zhou, D. D.; Wu, S. X.; Huang, S. Y.; Saimaiti, A.; Yang, Z. J.; Shang, A.; Zhao, C. N.; Gan, R. Y.; Li, H. B. Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods (Basel, Switzerland) 2022, 11(18), 2863. [CrossRef]
- Turnbaugh, P. J.; Ley, R. E.; Mahowald, M. A.; Magrini, V.; Mardis, E. R.; Gordon, J. I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444(7122), 1027–1031. [CrossRef]
- Teixeira, T. F.; Grześkowiak, Ł.; Franceschini, S. C.; Bressan, J.; Ferreira, C. L.; Peluzio, M. C. Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors. The British journal of nutrition 2013, 109(5), 914–919. [CrossRef]
- Rahat-Rozenbloom, S.; Fernandes, J.; Gloor, G. B.; Wolever, T. M. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. International journal of obesity 2014, 38(12), 1525–1531. [CrossRef]
- Weitkunat, K.; Schumann, S.; Nickel, D.; Kappo, K.A.; Petzke, K.J.; Kipp, A.P.; Blaut, M.; Klaus, S. Importance of propionate for the repression of hepatic lipogenesis and improvement of insulin sensitivity in high-fat diet-induced obesity. Mol. Nutr. Food Res. 2016, 60, 2611–2621. [CrossRef]
- Granado-Serrano, A. B.; Martín-Garí, M.; Sánchez, V.; Riart Solans, M.; Berdún, R.; Ludwig, I. A.; Rubió, L.; Vilaprinyó, E.; Portero-Otín, M.; Serrano, J. C. E. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Scientific reports 2019, 9(1), 1772. [CrossRef]
- Mezhal, F.; Oulhaj, A.; Abdulle, A.; AlJunaibi, A.; Alnaeemi, A.; Ahmad, A.; Leinberger-Jabari, A.; Al Dhaheri, A. S.; AlZaabi, E.; Al-Maskari, F.; Alanouti, F.; Alameri, F.; Alsafar, H.; Alblooshi, H.; Alkaabi, J.; Wareth, L. A.; Aljaber, M.; Kazim, M.; Weitzman, M.; Al-Houqani, M.; Ali, R. High prevalence of cardiometabolic risk factors amongst young adults in the United Arab Emirates: the UAE Healthy Future Study. BMC cardiovascular disorders 2023, 23(1), 137. [CrossRef]
- Strack, C.; Behrens, G.; Sag, S.; Mohr, M.; Zeller, J.; Lahmann, C.; Hubauer, U.; Loew, T.; Maier, L.; Fischer, M.; Baessler, A. Gender differences in cardiometabolic health and disease in a cross-sectional observational obesity study. Biology of sex differences 2022, 13(1), 8. [CrossRef]
- Yi, S. W.; Yi, J. J.; Ohrr, H. Total cholesterol and all-cause mortality by sex and age: a prospective cohort study among 12.8 million adults. Scientific reports 2019, 9(1), 1596. [CrossRef]
- Silva, Y. P.; Bernardi, A.; Frozza, R. L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Frontiers in endocrinology 2020, 11, 25. [CrossRef]
- Yu, L.; Han, X.; Cen, S.; Duan, H.; Feng, S.; Xue, Y.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiological research 2020, 233, 126409. [CrossRef]
- Szentirmai, É.; Millican, N.S.; Massie, A.R.; Kapás, L. Butyrate, a metabolite of intestinal bacteria, enhances sleep. Sci Rep 2019 9, 7035. [CrossRef]
- Heath, A. M.; Haszard, J. J.; Galland, B. C.; Lawley, B.; Rehrer, N. J.; Drummond, L. N.; Sims, I. M.; Taylor, R. W.; Otal, A.; Taylor, B.; Tannock, G. W. Association between the faecal short-chain fatty acid propionate and infant sleep. European journal of clinical nutrition 2020, 74(9), 1362–1365. [CrossRef]
- Hughes R. L. A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Frontiers in nutrition 2020, 6, 191. [CrossRef]
- Carey, R. A.; Montag, D. Exploring the relationship between gut microbiota and exercise: short-chain fatty acids and their role in metabolism. BMJ open sport & exercise medicine 2021, 7(2), e000930. [CrossRef]
- Tzemah Shahar, R.; Koren, O.; Matarasso, S.; Shochat, T.; Magzal, F.; Agmon, M. Attributes of Physical Activity and Gut Microbiome in Adults: A Systematic Review. International journal of sports medicine 2020, 41(12), 801–814. [CrossRef]
- Estaki, M.; Pither, J.; Baumeister, P.; Little, J. P.; Gill, S. K.; Ghosh, S.; Ahmadi-Vand, Z.; Marsden, K. R.; Gibson, D. L. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 2016, 4(1), 42. [CrossRef]
- Allen, J. M.; Mailing, L. J.; Niemiro, G. M.; Moore, R.; Cook, M. D.; White, B. A.; Holscher, H. D.; Woods, J. A. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Medicine and science in sports and exercise 2018, 50(4), 747–757. [CrossRef]
- Barton, W.; Penney, N. C.; Cronin, O.; Garcia-Perez, I.; Molloy, M. G.; Holmes, E.; Shanahan, F.; Cotter, P. D.; O'Sullivan, O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 2018, 67(4), 625–633. [CrossRef]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I. B.; La Storia, A.; Laghi, L.; Serrazanetti, D. I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; Turroni, S.; Cocolin, L.; Brigidi, P.; Neviani, E.; Gobbetti, M.; O'Toole, P. W.; Ercolini, D. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016, 65(11), 1812–1821. [CrossRef]
- Bishehsari, F.; Engen, P. A.; Preite, N. Z.; Tuncil, Y. E.; Naqib, A.; Shaikh, M.; Rossi, M.; Wilber, S.; Green, S. J.; Hamaker, B. R.; Khazaie, K.; Voigt, R. M.; Forsyth, C. B.; Keshavarzian, A. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes 2018, 9(2), 102. [CrossRef]
- Sasaki, D.; Sasaki, K.; Ikuta, N.; Yasuda, T.; Fukuda, I.; Kondo, A.; Osawa, R. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci. Rep. 2018, 8, 435. [CrossRef]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J. M.; Kennedy, S.; Leonard, P.; Li, J.; Burgdorf, K.; Grarup, N.; Jørgensen, T.; Brandslund, I.; Nielsen, H. B.; Juncker, A. S.; Bertalan, M.; Levenez, F.; Pedersen, O. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500(7464), 541–546. [CrossRef]
- Wan, Y.; Wang, F.; Yuan, J.; Li, J.; Jiang, D.; Zhang, J.; Li, H.; Wang, R.; Tang, J.; Huang, T.; Zheng, J.; Sinclair, A. J.; Mann, J.; Li, D. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 2019, 68(8), 1417–1429. [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165(6), 1332–1345. [CrossRef]
- Bishehsari, F.; Engen, P. A.; Preite, N. Z.; Tuncil, Y. E.; Naqib, A.; Shaikh, M.; Rossi, M.; Wilber, S.; Green, S. J.; Hamaker, B. R.; Khazaie, K.; Voigt, R. M.; Forsyth, C. B.; Keshavarzian, A. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes 2018, 9(2), 102. [CrossRef]
| Total n = 77 |
Females n = 46 |
Males n = 31 |
|||||
|---|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | Mean | SD | p-value | |
| Basic parameters | |||||||
| Age (years) | 36.75 | 4.69 | 36.26 | 4.46 | 37.48 | 5.00 | 0.354 |
| Body weight (kg) | 72.07 | 14.42 | 62.99 | 8.25 | 85.55 | 10.51 | <0.001 |
| Height (cm) | 172.75 | 9.69 | 166.72 | 6.51 | 181.69 | 6.01 | <0.001 |
| BMI (kg/m²) | 23.96 | 3.12 | 22.64 | 2.52 | 25.91 | 2.93 | <0.001 |
| WC (cm) | 83.86 | 11.61 | 77.60 | 8.16 | 93.16 | 9.60 | <0.001 |
| Body composition parameters | |||||||
| VAT (cm²) | 118.21 | 82.94 | 84.02 | 51.25 | 168.94 | 95.05 | <0.001 |
| SAT (cm²) | 97.73 | 35.41 | 88.59 | 32.90 | 111.29 | 35.14 | 0.006 |
| VAT/SAT | 1.15 | 0.58 | 0.93 | 0.31 | 1.49 | 0.72 | <0.001 |
| FFM (kg) | 51.98 | 10.40 | 44.39 | 3.71 | 63.25 | 5.80 | <0.001 |
| FFM (%) | 72.27 | 5.62 | 71.05 | 5.63 | 74.10 | 5.18 | 0.022 |
| FM (kg) | 20.34 | 6.52 | 18.69 | 5.65 | 22.78 | 7.03 | 0.011 |
| FM (%) | 27.74 | 5.54 | 29.04 | 5.46 | 25.81 | 5.17 | 0.016 |
| TBW (Lt) | 36.98 | 7.86 | 31.24 | 3.00 | 45.50 | 4.19 | <0.001 |
| TBW (%) | 51.28 | 3.62 | 49.93 | 3.14 | 53.28 | 3.40 | <0.001 |
| Biochemical parameters | |||||||
| TC (mg/dl) | 199.32 | 29.80 | 199.19 | 26.60 | 199.53 | 34.46 | 0.775 |
| HDL-C (mg/dl) | 61.46 | 14.55 | 67.22 | 14.57 | 52.90 | 9.53 | <0.001 |
| LDL-C (mg/dl) | 120.35 | 23.88 | 116.37 | 21.42 | 126.26 | 26.38 | 0.162 |
| TG (mg/dl) | 94.87 | 47.72 | 78.35 | 26.63 | 119.38 | 60.55 | <0.001 |
| CRP (mg/l) | 1.54 | 2.85 | 1.20 | 1.21 | 2.05 | 4.23 | 0.270 |
| Fasting blood glucose (mg/dl) | 97.55 | 7.33 | 96.57 | 5.79 | 99.00 | 9.06 | 0.192 |
| Fasting insulin (μU/ml) | 8.18 | 4.64 | 7.12 | 2.88 | 9.77 | 6.14 | 0.153 |
| HOMA-IR | 2.00 | 1.24 | 1.71 | 0.74 | 2.44 | 1.65 | 0.111 |
| Physical activity and sleep parameters | |||||||
| MPA (min/day) | 61.69 | 31.34 | 52.53 | 16.89 | 75.29 | 41.71 | 0.034 |
| VPA (min/day) | 9.00 | 15.32 | 5.06 | 7.55 | 14.85 | 21.21 | 0.039 |
| MVPA (min/day) | 70.48 | 43.72 | 57.39 | 19.51 | 89.92 | 60.15 | 0.037 |
| TST [hr/night) | 7.27 | 1.27 | 7.45 | 1.41 | 7.01 | 0.98 | 0.136 |
| Short - chain fatty acids in stool | |||||||
| C 2:0 (AA) [%] | 60.80 | 6.02 | 61.62 | 5.83 | 59.57 | 6.19 | 0.122 |
| C 3:0 (PA) [%] | 15.67 | 3.49 | 15.62 | 2.97 | 15.74 | 4.20 | 0.640 |
| C4:0 i (IBA) [%] | 2.49 | 1.31 | 2.61 | 1.33 | 2.30 | 1.27 | 0.383 |
| C4:0 n (BA) [%] | 14.81 | 6.08 | 13.99 | 5.92 | 16.02 | 6.20 | 0.161 |
| C5:0 i (IVA) [%] | 2.25 | 1.35 | 2.39 | 1.42 | 2.06 | 1.25 | 0.345 |
| C5:0 n (VA) [%] | 2.73 | 0.94 | 2.65 | 1.02 | 2.85 | 0.82 | 0.406 |
| C6:0 i (ICA) [%] | 0.04 | 0.04 | 0.04 | 0.03 | 0.04 | 0.04 | 0.934 |
| C6:0 n (CA) [%] | 1.22 | 1.36 | 1.08 | 0.97 | 1.42 | 1.79 | 0.771 |
| Diet parameters | |||||||
| Energy [kcal/d] | 2040.59 | 448.92 | 1803.27 | 263.01 | 2413.53 | 428.68 | <0.001 |
| Protein [g/d] | 85.35 | 23.90 | 73.37 | 16.53 | 104.18 | 21.57 | <0.001 |
| Fats [g/d] | 77.83 | 21.02 | 70.50 | 14.85 | 89.34 | 24.21 | <0.001 |
| Carbohydrates [g/d] | 242.06 | 63.76 | 220.98 | 39.35 | 275.20 | 79.75 | 0.001 |
| Fiber [g/d] | 25.12 | 9.09 | 23.28 | 8.84 | 28.02 | 8.87 | 0.027 |
|
C 2:0 (AA) |
C 3:0 (PA) |
C4:0 i (IBA) |
C4:0 n (BA) |
C5:0 i (IVA) |
C5:0 n (VA) |
C6:0 i (ICA) |
C6:0 n (CA) |
Total |
|
|---|---|---|---|---|---|---|---|---|---|
| Age (yr) | -0.04 | -0.06 | 0.16 | -0.01 | 0.15 | 0.09 | 0.07 | 0.16 | -0.03 |
| BMI (kg/m²) | -0.14* | -0.10 | -0.34* | -0.15* | -0.33 | -0.29 | 0.04 | -0.18 | -0.15 |
| WC (cm) | -0.27 | -0.17 | -0.26 | -0.23 | -0.22 | -0.31* | -0.06 | -0.12 | -0.27 |
| VAT/SAT | -0.36* | -0.30 | -0.07* | -0.39** | 0.01 | -0.18 | -0.11 | 0.00 | -0.36* |
| FFM (%) | 0.11 | 0.07 | 0.39** | 0.14 | 0.39** | 0.32* | 0.00 | 0.17 | 0.14 |
| FM (%) | -0.11 | -0.07 | -0.39** | -0.13 | -0.39** | -0.32* | 0.01 | -0.17 | -0.13 |
| TBW (%) | 0.09 | 0.08 | 0.33* | 0.11 | 0.33* | 0.22 | 0.02 | 0.04 | 0.11 |
| TC (mg/dl) | -0.21 | -0.15 | -0.18 | -0.07 | -0.15 | -0.16 | -0.29 | -0.05 | -0.18 |
| HDL-C (mg/dl) | 0.02 | -0.02 | -0.14 | 0.19 | -0.07 | -0.03 | -0.16 | 0.17 | 0.05 |
| LDL-C (mg/dl) | -0.26 | -0.18 | -0.12 | -0.24 | -0.12 | -0.16 | -0.23 | -0.14 | -0.25 |
| TG (mg/dl) | 0.01 | 0.03 | 0.00 | 0.03 | -0.03 | -0.05 | 0.08 | -0.13 | 0.00 |
| CRP (mg/l) | -0.15 | -0.08 | -0.02 | -0.02 | -0.02 | 0.07 | 0.06 | 0.18 | -0.14 |
| Fasting blood glucose (mg/dl) | -0.04 | -0.09 | -0.07 | -0.10 | -0.01 | 0.00 | 0.03 | 0.11 | -0.05 |
| Fasting insulin (μU/ml) | -0.13 | 0.02 | 0.02 | -0.24 | 0.03 | 0.02 | 0.03 | -0.03 | -0.13 |
| HOMA-IR | -0.13 | 0.01 | 0.02 | -0.25 | 0.03 | 0.02 | 0.02 | -0.02 | -0.14 |
| MVPA (min/d) | -0.26 | -0.10 | -0.07 | -0.10 | -0.07 | -0.24 | -0.07 | -0.12 | -0.21 |
| TST [hr/night) | 0.34* | 0.33* | -0.09 | 0.23 | -0.12 | 0.12 | 0.32* | -0.01 | 0.33* |
| Energy [kcal/d] | 0.04 | 0.04 | -0.21 | 0.19 | -0.14 | -0.03 | -0.05 | 0.08 | 0.08 |
| Carbohydrates [g/d] | 0.16 | 0.12 | -0.28 | 0.25 | -0.29 | -0.07 | -0.07 | 0.05 | 0.25 |
| Protein [g/d] | 0.08 | 0.04 | 0.03 | 0.16 | 0.07 | 0.10 | -0.07 | 0.12 | 0.12 |
| Fats [g/d] | 0.14 | 0.12 | 0.07 | 0.25 | 0.12 | 0.20 | 0.11 | 0.13 | 0.21 |
| Fiber [g/d] | 0.36* | 0.30* | -0.14 | 0.45** | -0.15 | 0.11 | 0.10 | 0.03 | 0.38* |
|
C 2:0 (AA) |
C 3:0 (PA) |
C4:0 i (IBA) |
C4:0 n (BA) |
C5:0 i (IVA) |
C5:0 n (VA) |
C6:0 i (ICA) |
C6:0 n (CA) |
Total |
|
|---|---|---|---|---|---|---|---|---|---|
| Age (yr) | -0.15 | -0.11 | 0.06 | -0.05 | 0.04 | 0.07 | 0.05 | 0.21 | -0.14 |
| BMI (kg/m²) | -0.10 | -0.23 | -0.12 | -0.21 | -0.16 | -0.11 | -0.03 | 0.21 | -0.17 |
| WC (cm) | -0.19 | -0.36* | -0.07 | -0.38* | -0.10 | -0.15 | -0.12 | 0.07 | -0.32 |
| VAT/SAT | -0.08 | -0.17 | 0.22 | -0.22 | 0.19 | 0.11 | -0.10 | 0.10 | -0.15 |
| FFM (%) | 0.06 | 0.17 | 0.09 | 0.16 | 0.08 | 0.07 | -0.07 | -0.12 | 0.13 |
| FAT (%) | -0.10 | -0.18 | -0.09 | -0.23 | -0.10 | -0.12 | 0.05 | 0.06 | -0.18 |
| TBW (%) | -0.06 | 0.04 | 0.24 | 0.08 | 0.23 | 0.07 | 0.04 | 0.04 | 0.04 |
| TC (mg/dl) | 0.11 | 0.11 | -0.14 | 0.15 | -0.07 | -0.01 | -0.15 | 0.09 | 0.15 |
| HDL-C (mg/dl) | -0.18 | -0.06 | -0.20 | -0.16 | -0.15 | -0.30 | -0.25 | -0.19 | -0.16 |
| LDL-C (mg/dl) | 0.19 | 0.16 | -0.09 | 0.31 | 0.01 | 0.09 | -0.05 | 0.08 | 0.24 |
| TG (mg/dl) | 0.01 | -0.06 | 0.18 | 0.06 | 0.18 | 0.22 | 0.05 | 0.38* | 0.06 |
| CRP (mg/l) | 0.08 | 0.18 | 0.28 | 0.25 | 0.33 | 0.37* | 0.27 | 0.13 | 0.17 |
| Fasting blood glucose (mg/dl) | 0.36* | 0.35 | 0.01 | 0.19 | -0.05 | 0.04 | -0.09 | -0.35 | 0.30 |
| Fasting insulin (μU/ml) | 0.08 | 0.03 | -0.09 | -0.14 | -0.17 | -0.08 | -0.04 | -0.20 | -0.03 |
| HOMA-IR | 0.12 | 0.06 | -0.09 | -0.10 | -0.17 | -0.06 | -0.03 | -0.21 | 0.01 |
| MVPA (min/d) | 0.33 | 0.27 | -0.02 | 0.18 | -0.10 | 0.12 | 0.08 | 0.17 | 0.28 |
| TST [hr/night) | -0.35 | -0.29 | 0.03 | -0.37 | 0.09 | -0.19 | -0.01 | 0.13 | -0.31 |
| Energy [kcal/d] | 0.11 | 0.11 | -0.37* | 0.09 | -0.47* | -0.09 | -0.09 | 0.01 | 0.06 |
| Protein [g/d] | 0.26 | 0.23 | -0.32 | 0.19 | -0.37 | -0.07 | -0.02 | 0.02 | 0.24 |
| Carbohydrates [g/d] | 0.14 | 0.20 | -0.09 | 0.28 | -0.19 | 0.26 | 0.32 | 0.35 | 0.14 |
| Fats [g/d] | 0.11 | -0.16 | -0.55** | -0.05 | -0.58** | -0.49** | -0.56** | -0.24 | -0.02 |
| Fiber [g/d] | 0.61*** | 0.39* | -0.16 | 0.64*** | -0.16 | 0.48** | 0.12 | 0.39* | 0.62*** |
| fiber intake ≥ 25g (n = 17) |
fiber intake < 25g (n = 27) |
||||
|---|---|---|---|---|---|
| SCFA [%] | median | IQR | Median | IQR | p-value* |
| C 2:0 (AA) [%] | 60.31 | 8.46 | 60.35 | 6.11 | 0.376 |
| C 3:0 (PA) [%] | 15.75 | 3.89 | 15.06 | 4.09 | 0.599 |
| C4:0 i (IBA) [%] | 2.02 | 2.54 | 2.87 | 1.59 | 0.157 |
| C4:0 n (BA) [%] | 17.50 | 8.02 | 12.54 | 8.66 | 0.070 |
| C5:0 i (IVA) [%] | 1.66 | 2.37 | 2.66 | 1.82 | 0.179 |
| C5:0 n (VA) [%] | 2.17 | 0.93 | 2.81 | 0.71 | 0.042 |
| C6:0 i (ICA) [%] | 0.03 | 0.03 | 0.03 | 0.03 | 0.703 |
| C6:0 n (CA) [%] | 0.54 | 1.11 | 1.11 | 1.44 | 0.390 |
| fiber intake ≥ 25g (n = 17) |
fiber intake < 25g (n = 11) |
||||
|---|---|---|---|---|---|
| SCFA [%] | median | IQR | Median | IQR | p-value* |
| C 2:0 (AA) [%] | 57,98 | 7,42 | 59,25 | 11,88 | 0,175 |
| C 3:0 (PA) [%] | 13,71 | 4,94 | 14,26 | 8,41 | 0,487 |
| C4:0 i (IBA) [%] | 1,49 | 0,85 | 3,46 | 1,51 | <0,001 |
| C4:0 n (BA) [%] | 19,22 | 5,09 | 11,97 | 9,39 | <0,001 |
| C5:0 i (IVA) [%] | 1,23 | 1,14 | 3,16 | 1,62 | 0,002 |
| C5:0 n (VA) [%] | 2,71 | 1,08 | 2,79 | 1,42 | 0,430 |
| C6:0 i (ICA) [%] | 0,03 | 0,03 | 0,05 | 0,07 | 0,264 |
| C6:0 n (CA) [%] | 1,60 | 1,89 | 0,97 | 1,18 | 0,329 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
