Preprint Article Version 2 Preserved in Portico This version is not peer-reviewed

Unveiling the Transformative Potential of Semi-lean Flows on Gas Purification Units and Unlocking Energy Utilization: A Comprehensive Analysis of Mdea-Base

Version 1 : Received: 16 December 2023 / Approved: 18 December 2023 / Online: 18 December 2023 (13:39:41 CET)
Version 2 : Received: 22 January 2024 / Approved: 24 January 2024 / Online: 24 January 2024 (07:27:19 CET)

How to cite: JOHNSON, N.; Ibeawuchi,, O.J. Unveiling the Transformative Potential of Semi-lean Flows on Gas Purification Units and Unlocking Energy Utilization: A Comprehensive Analysis of Mdea-Base . Preprints 2023, 2023121298. https://doi.org/10.20944/preprints202312.1298.v2 JOHNSON, N.; Ibeawuchi,, O.J. Unveiling the Transformative Potential of Semi-lean Flows on Gas Purification Units and Unlocking Energy Utilization: A Comprehensive Analysis of Mdea-Base . Preprints 2023, 2023121298. https://doi.org/10.20944/preprints202312.1298.v2

Abstract

The primary objective of this research was to assess the energy consumption of the gas treatment units at Bonny NLNG Refinery, the first Gas Refinery in Rivers State, Nigeria, while utilizing semi-lean amine. To achieve this goal, a simulation of the units was conducted using the advanced software package Aspen Hysys (V.8.3). The simulation was designed to accurately represent the dynamic behavior of the refinery's gas treatment units, allowing for a comprehensive analysis of their energy usage. The research aimed to quantify the energy consumption of the gas treatment units and identify opportunities for energy optimization. By utilizing semi-lean amine, which is known to improve energy efficiency, the study sought to evaluate the potential energy savings that could be achieved in the refinery's operations. The simulation model incorporated the specific design and operational parameters of the gas treatment units at Bonny NLNG Refinery, including the gas flow rate, lean amine concentration, absorber pressure, stripping temperature, amine circulation rate, and acid gas removal efficiency. By considering these parameters, the simulation accurately represented the dynamic behavior of the gas treatment units, enabling a detailed analysis of their energy consumption. Through the simulation, various scenarios and operational conditions were evaluated to determine the optimal set of parameters that minimized energy consumption. The research also examined the trade-offs between energy consumption, acid gas removal efficiency, and other performance indicators, such as amine circulation rate and regeneration efficiency. The findings of this research have significant implications for the energy efficiency and sustainability of gas treatment operations at Bonny NLNG Refinery. By identifying opportunities for energy optimization and providing recommendations for the utilization of semi-lean amine, the study contributes to the development of more efficient and environmentally friendly gas treatment processes. Overall, this research combines advanced simulation techniques with a comprehensive analysis of energy consumption to provide valuable insights into the energy efficiency of gas treatment units at Bonny NLNG Refinery, enabling informed decision-making and potential improvements in energy utilization. By utilizing the percentage-based unit simulation approach, a detailed examination of the energy consumption patterns was obtained. This analysis provides valuable insights into the operational efficiency and determination of potential energy-saving opportunities within the gas treatment units. This study specifically focuses on the integration of an absorption column split stream (stream flow) and a flash unit as a potential means to reduce the energy consumption of gas treatment devices. The integration of these units aims to optimize the overall energy efficiency of the gas treatment process by recovering and utilizing waste heat and reducing energy losses. The absorption column split stream allows for the diversion of a portion of the gas stream to a flash unit before entering the absorber. The flash unit operates at a lower pressure, which facilitates the release of entrained hydrocarbons and reduces the overall energy requirements for gas treatment. By separating and recovering the hydrocarbons in the flash unit, energy losses associated with their absorption and subsequent regeneration are minimized. Through the simulation, the study analyzes the energy consumption patterns of the gas treatment units with and without the integration of the absorption column split stream and flash unit. Comparative assessments are conducted to evaluate the energy savings and overall operational efficiency achieved through this integration. The findings of this research will provide valuable insights into the potential energy-saving opportunities offered by the integration of the absorption column split stream and flash unit in gas treatment devices. It will help refine the design and operation of gas treatment units, enabling more energy-efficient processes in the gas refining industry. By optimizing energy consumption in gas treatment units, the study contributes to the industry's goals of reducing greenhouse gas emissions and improving sustainability. The integration of the absorption column split stream and flash unit offers a promising approach to enhance energy efficiency, reduce operational costs, and minimize environmental impact. Overall, this research underscores the importance of exploring innovative solutions, such as the integration of different process units, to achieve energy savings in gas treatment operations. Through a comprehensive analysis of energy consumption patterns, this study aims to provide practical recommendations for optimizing energy efficiency in gas treatment units, fostering a more sustainable and efficient gas refining industry.The research specifically explores the impact of integrating the absorption column split stream and flash unit when dealing with sour gas streams containing carbon dioxide concentrations of less than mole ℅, while utilizing MDEA fluid as the solvent. Through comprehensive analysis and simulation using advanced software tools, the study demonstrates that by incorporating the absorption column split stream and flash unit, a significant reduction in device energy consumption of up to 10% can be achieved. The integration of the absorption column split stream and flash unit offers promising opportunities to enhance the energy efficiency of gas treatment devices. By diverting a portion of the gas stream to the flash unit, the separation of hydrocarbons and the subsequent release of entrained hydrocarbons at lower pressure significantly reduce the overall energy requirements for gas treatment. The comprehensive analysis and simulation conducted in the research provide concrete evidence of the energy-saving potential of this integration. By quantifying the energy consumption patterns and comparing scenarios with and without integration, the study establishes the effectiveness of the approach and its impact on operational efficiency. The findings of the research highlight the importance of considering the specific gas composition and utilizing appropriate solvents, such as MDEA, for optimizing energy efficiency. The integration of the absorption column split stream and flash unit not only reduces energy consumption but also offers the potential for cost savings and environmental benefits. Overall, the research demonstrates that by incorporating the absorption column split stream

Keywords

energy; MDEA; base; HYSYS; amine; software; analysis

Subject

Engineering, Chemical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.