Submitted:
16 December 2023
Posted:
18 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction to groundwater modeling
2. Climate change and groundwater interactions

3. Key modelling approaches
4. Advancement in hydrological modeling technologies

5. Spatial, Temporal Consideration and Assumptions in Modelling Ground Water Susceptibility
6. Selectivity and sensitivity indicators for climate vulnerability of Ground water
| S. No. | Country | Major Climate Change Event | Major Impact on Environment | Impact on Groundwater | Model used | References |
|---|---|---|---|---|---|---|
| 1 | Shazand Plain, Iran | Rainfall in the region will decrease by 18–45% (2059) Average annual temperature is projected to rise by 16 % (from 13.7 to 15.9). |
River discharge will decrease by 63–81% by the end of 2059. | Average groundwater level in 2060 may decrease significantly by 15.1 m compared to 2010. | Groundwater - Integrated hydrological model MODFLOW-OWHM Climate model -NorESM, River discharge - HEC-HMS model. |
[103] |
| 2 | Punjab, India | Precipitation is predicted to rise by 5% at 2040, while it would decline by 0.6% at 2030. | Groundwater nitrate pollution will increase to 49-50% in 2030 and 65-66% in 2040. | Groundwater contaminants prediction - RF model (Random Forest) Climate model - Global climate models (GCM). |
[104] | |
| 3 | Great Britain (Coltishall, Gatwick, and Paisley) | High greenhouse gas emission (atmospheric CO2 concentration increases to 525 ppm by the end of the present century and rise global temperature by 3.5 °C. | Winters up to 30% wetter and summers up to 50% drier are probable scenarios for Coltishall and Paisley by the 2080s. | Decline of 40% in annual potential groundwater recharge for Gatwick and 20% for Coltishall, and for Paisley a 7% reduction in is likely. |
Climate model - Global climate models (GCM) (UKCIP02 scenario). | [105] |
| 4 | Palestine | 10% reduction in annual rainfall 3.0 ℃ increase in temperature. |
- | 14% to 24% reduction in groundwater recharge (636 to 516 mcm/year). | Climate model – GCM Groundwater flow model – MODFLOW. |
[106] |
| 5 | Oka River basin, European Russia | Annual precipitation will increase by almost 10% Decrease in the annual runoff will amount to 25–30% by the middle of the century, and 18-22% at the end. |
- | Groundwater flow will decrease by 12–17% at the middle of the century and about 9% by its end. |
Climate models (GFDL-ESM2M, HadGEM2-ES, IPSLCM5A-LR, MIROC5). |
[107] |
| 6 | Vientiane basin, Laos | Average annual rainfall was projected to be significantly higher than the baseline condition (2011-2020 - 1,438 mm) by about 230, 250, and 700 mm/year, respectively, from 2021 to 2050. | The water with the TDS between 500 and 1,500 mg/l will tend to decrease, while the freshwater (TDS < 500 mg/l) area will tend to increase. | Average annual groundwater recharge (272 MCM/year) can be increased by 22.7–47.5% (334 to 401 MCM/year). | Groundwater recharge model (HELP3), groundwater flow model (MODFLOW), and salt transport model (MT3D). | [107,108] |
| 7 | Mosian plain, Iran | Annual precipitation will decrease by 3% during 2015-2030. | Decline of groundwater level in the study area was 0.48 m/year during the past 24 years. Annual groundwater depletion should increase to 0.75 m in the coming 16 years. | Climate model - HadCM3 Groundwater flow model – MODFLOW. |
[109] | |
| 8 | India (Haryana, Utter Pradesh, Rajasthan and Delhi) |
Annual mean surface air temperature would rise by 1.7-2℃ in 2030. | Groundwater recharge would decrease by 0.09 m to 0.21 m and 0.11 m, respectively, during 2030 and 2100 as compared to the reference year 2005. | HYDRUS and PMWIN model for vadose zone moisture movement and MODFLOW. | [63] | |
| 9 | Arusha, Tanzania | Mean annual temperatures expected to increase by between 0.8 °C and 1.8 °C by 2050 Annual precipitation will decrease by 10-11%. |
Increased evapotranspiration | Groundwater recharge may fall 30–44% by 2050, causing groundwater levels to drop at most 75 m. | Parameter ESTimation (PEST) package of MODFLOW | [110] |
| 10 | Coastal plains of Odisha, India | Climate change-mediated rise in sea level. | Salt water intrusion into aquifers. | Concentrations of Fe (44%), Mn (44%), As (4%) and Al (4%) in post-monsoon and Fe (32%), Mn (32%), As (4%), B (8%) and Ni (16%) in pre-monsoon exceeded Bureau of Indian Standards (BIS) drinking water limits. High concentrations of heavy metals (Fe, Sr, Mn, B, Ba, Li, Ni and Co) and high EC (>3000 μS/cm). | [111] |
7. Hybrid Model for Vulnerability assessment of Ground Water and its Challenges
7.1. Advantages and limitations of the hybrid study
7.1.1. Gradually sea level rise
7.1.2. Topography factors inclusion
7.1.3. Heterogenous aquifer properties
7.1.4. Groundwater contamination and rainfall recharge process optimization
8. Implications for sustainable water resource management (policy considerations)
9. Summary and future prospective
10. Conclusions
Acknowledgments
References
- Du Plessis, A. Freshwater Challenges of South Africa and Its Upper Vaal River; Springer, 2017; ISBN 3319495011. [CrossRef]
- López-Morales, C.A.; Mesa-Jurado, M.A. Valuation of Hidden Water Ecosystem Services: The Replacement Cost of the Aquifer System in Central Mexico. Water (Basel) 2017, 9, 571. [Google Scholar] [CrossRef]
- Misra, A.K. Climate Change and Challenges of Water and Food Security. International Journal of Sustainable Built Environment 2014, 3, 153–165. [Google Scholar] [CrossRef]
- Velis, M.; Conti, K.I.; Biermann, F. Groundwater and Human Development: Synergies and Trade-Offs within the Context of the Sustainable Development Goals. Sustain Sci 2017, 12, 1007–1017. [Google Scholar] [CrossRef]
- Liesch, T.; Wunsch, A. Aquifer Responses to Long-Term Climatic Periodicities. J Hydrol (Amst) 2019, 572, 226–242. [Google Scholar] [CrossRef]
- Munday, P.L.; Donelson, J.M.; Domingos, J.A. Potential for Adaptation to Climate Change in a Coral Reef Fish. Glob Chang Biol 2017, 23, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Asoka, A.; Gleeson, T.; Wada, Y.; Mishra, V. Relative Contribution of Monsoon Precipitation and Pumping to Changes in Groundwater Storage in India. Nat Geosci 2017, 10, 109–117. [Google Scholar] [CrossRef]
- de Graaf, I.E.M.; van Beek, R.L.P.H.; Gleeson, T.; Moosdorf, N.; Schmitz, O.; Sutanudjaja, E.H.; Bierkens, M.F.P. A Global-Scale Two-Layer Transient Groundwater Model: Development and Application to Groundwater Depletion. Adv Water Resour 2017, 102, 53–67. [Google Scholar] [CrossRef]
- Russo, T.A.; Lall, U. Depletion and Response of Deep Groundwater to Climate-Induced Pumping Variability. Nat Geosci 2017, 10, 105–108. [Google Scholar] [CrossRef]
- Sivarajan, N.A.; Mishra, A.K.; Rafiq, M.; Nagraju, V.; Chandra, S. Examining Climate Change Impact on the Variability of Ground Water Level: A Case Study of Ahmednagar District, India. Journal of Earth System Science 2019, 128, 1–7. [Google Scholar] [CrossRef]
- van der Knaap, Y.A.M.; de Graaf, M.; van Ek, R.; Witte, J.-P.M.; Aerts, R.; Bierkens, M.F.P.; van Bodegom, P.M. Potential Impacts of Groundwater Conservation Measures on Catchment-Wide Vegetation Patterns in a Future Climate. Landsc Ecol 2015, 30, 855–869. [Google Scholar] [CrossRef]
- van Engelenburg, J.; Hueting, R.; Rijpkema, S.; Teuling, A.J.; Uijlenhoet, R.; Ludwig, F. Impact of Changes in Groundwater Extractions and Climate Change on Groundwater-Dependent Ecosystems in a Complex Hydrogeological Setting. Water resources management 2018, 32, 259–272. [Google Scholar] [CrossRef]
- Gamvroudis, C.; Dokou, Z.; Nikolaidis, N.P.; Karatzas, G.P. Impacts of Surface and Groundwater Variability Response to Future Climate Change Scenarios in a Large Mediterranean Watershed. Environ Earth Sci 2017, 76, 1–16. [Google Scholar] [CrossRef]
- Mustafa, I. Methylene Blue Removal from Water Using H2SO4 Crosslinked Magnetic Chitosan Nanocomposite Beads. Microchemical Journal 2019, 144, 397–402. [Google Scholar] [CrossRef]
- da Costa, A.M.; de Salis, H.H.C.; Viana, J.H.M.; Leal Pacheco, F.A. Groundwater Recharge Potential for Sustainable Water Use in Urban Areas of the Jequitiba River Basin, Brazil. Sustainability 2019, 11, 2955. [Google Scholar] [CrossRef]
- Alam, S.; Gebremichael, M.; Li, R.; Dozier, J.; Lettenmaier, D.P. Climate Change Impacts on Groundwater Storage in the Central Valley, California. Clim Change 2019, 157, 387–406. [Google Scholar] [CrossRef]
- Weissinger, R.; Philippi, T.E.; Thoma, D. Linking Climate to Changing Discharge at Springs in Arches National Park, Utah, USA. Ecosphere 2016, 7, e01491. [Google Scholar] [CrossRef]
- Tambe, S.; Kharel, G.; Arrawatia, M.L.; Kulkarni, H.; Mahamuni, K.; Ganeriwala, A.K. Reviving Dying Springs: Climate Change Adaptation Experiments from the Sikkim Himalaya. Mt Res Dev 2012, 32, 62–72. [Google Scholar] [CrossRef]
- Zhong, Y.; Hao, Y.; Huo, X.; Zhang, M.; Duan, Q.; Fan, Y.; Liu, Y.; Liu, Y.; Yeh, T.J. A Statistical Model for Karst Spring Discharge Estimation under Extensive Groundwater Development and Extreme Climate Change. Hydrological Sciences Journal 2016, 61, 2011–2023. [Google Scholar] [CrossRef]
- Solder, J.E.; Stolp, B.J.; Heilweil, V.M.; Susong, D.D. Characterization of Mean Transit Time at Large Springs in the Upper Colorado River Basin, USA: A Tool for Assessing Groundwater Discharge Vulnerability. Hydrogeol J 2016, 24, 2017. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; MacQuarrie, K.T.B.; Caissie, D.; McKenzie, J.M. Shallow Groundwater Thermal Sensitivity to Climate Change and Land Cover Disturbances: Derivation of Analytical Expressions and Implications for Stream Temperature Modeling. Hydrol Earth Syst Sci 2015, 19, 2469–2489. [Google Scholar] [CrossRef]
- Amanambu, A.C.; Obarein, O.A.; Mossa, J.; Li, L.; Ayeni, S.S.; Balogun, O.; Oyebamiji, A.; Ochege, F.U. Groundwater System and Climate Change: Present Status and Future Considerations. J Hydrol (Amst) 2020, 589, 125163. [Google Scholar] [CrossRef]
- Fu, G.; Crosbie, R.S.; Barron, O.; Charles, S.P.; Dawes, W.; Shi, X.; Van Niel, T.; Li, C. Attributing Variations of Temporal and Spatial Groundwater Recharge: A Statistical Analysis of Climatic and Non-Climatic Factors. J Hydrol (Amst) 2019, 568, 816–834. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P. Climate Change Impacts on Groundwater and Dependent Ecosystems. J Hydrol (Amst) 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Leite, M.B.; Mattos, T.; Nearing, M.A.; Scott, R.L.; de Oliveira Xavier, R.; da Silva Matos, D.M.; Wendland, E. Groundwater Recharge Decrease with Increased Vegetation Density in the Brazilian Cerrado. Ecohydrology 2017, 10, e1759. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater Recharge Rates and Surface Runoff Response to Land Use and Land Cover Changes in Semi-Arid Environments. Ecol Process 2016, 5, 1–21. [Google Scholar] [CrossRef]
- Kundu, S.; Khare, D.; Mondal, A. Past, Present and Future Land Use Changes and Their Impact on Water Balance. J Environ Manage 2017, 197, 582–596. [Google Scholar] [CrossRef]
- Merz, C.; Lischeid, G. Multivariate Analysis to Assess the Impact of Irrigation on Groundwater Quality. Environ Earth Sci 2019, 78, 274. [Google Scholar] [CrossRef]
- McGill, B.M.; Altchenko, Y.; Hamilton, S.K.; Kenabatho, P.K.; Sylvester, S.R.; Villholth, K.G. Complex Interactions between Climate Change, Sanitation, and Groundwater Quality: A Case Study from Ramotswa, Botswana. Hydrogeol J 2019, 27, 997–1015. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Peña-Haro, S.; García-Prats, A.; Mocholi-Almudever, A.F.; Henríquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A. Integrated Assessment of the Impact of Climate and Land Use Changes on Groundwater Quantity and Quality in the Mancha Oriental System (Spain). Hydrol Earth Syst Sci 2015, 19, 1677–1693. [Google Scholar] [CrossRef]
- Romanazzi, A.; Gentile, F.; Polemio, M. Modelling and Management of a Mediterranean Karstic Coastal Aquifer under the Effects of Seawater Intrusion and Climate Change. Environ Earth Sci 2015, 74, 115–128. [Google Scholar] [CrossRef]
- Knott, J.F.; Jacobs, J.M.; Daniel, J.S.; Kirshen, P. Modeling Groundwater Rise Caused by Sea-Level Rise in Coastal New Hampshire. J Coast Res 2019, 35, 143–157. [Google Scholar] [CrossRef]
- Dong, Y.; Jiang, C.; Suri, M.R.; Pee, D.; Meng, L.; Goldstein, R.E.R. Groundwater Level Changes with a Focus on Agricultural Areas in the Mid-Atlantic Region of the United States, 2002–2016. Environ Res 2019, 171, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Brauman, K.A.; Richter, B.D.; Postel, S.; Malsy, M.; Flörke, M. Water Depletion: An Improved Metric for Incorporating Seasonal and Dry-Year Water Scarcity into Water Risk Assessments. Elementa 2016, 4, 83. [Google Scholar] [CrossRef]
- Tosi, L.; Strozzi, T.; Da Lio, C.; Teatini, P. Regional and Local Land Subsidence at the Venice Coastland by TerraSAR-X PSI. Proceedings of the International Association of Hydrological Sciences 2015, 372, 199–205. [Google Scholar] [CrossRef]
- Zhu, L.; Gong, H.; Li, X.; Wang, R.; Chen, B.; Dai, Z.; Teatini, P. Land Subsidence Due to Groundwater Withdrawal in the Northern Beijing Plain, China. Eng Geol 2015, 193, 243–255. [Google Scholar] [CrossRef]
- Ghazifard, A.; Moslehi, A.; Safaei, H.; Roostaei, M. Effects of Groundwater Withdrawal on Land Subsidence in Kashan Plain, Iran. Bulletin of Engineering Geology and the Environment 2016, 75, 1157–1168. [Google Scholar] [CrossRef]
- Faunt, C.C.; Sneed, M.; Traum, J.; Brandt, J.T. Water Availability and Land Subsidence in the Central Valley, California, USA. Hydrogeol J 2016, 24, 675. [Google Scholar] [CrossRef]
- Li, R.; Merchant, J.W. Modeling Vulnerability of Groundwater to Pollution under Future Scenarios of Climate Change and Biofuels-Related Land Use Change: A Case Study in North Dakota, USA. Science of the total environment 2013, 447, 32–45. [Google Scholar] [CrossRef]
- Luoma, S.; Okkonen, J.; Korkka-Niemi, K. Comparison of the AVI, Modified SINTACS and GALDIT Vulnerability Methods under Future Climate-Change Scenarios for a Shallow Low-Lying Coastal Aquifer in Southern Finland. Hydrogeol J 2017. [Google Scholar] [CrossRef]
- Seeboonruang, U. Impact Assessment of Climate Change on Groundwater and Vulnerability to Drought of Areas in Eastern Thailand. Environ Earth Sci 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Chang, S.W.; Nemec, K.; Kalin, L.; Clement, T.P. Impacts of Climate Change and Urbanization on Groundwater Resources in a Barrier Island. Journal of Environmental Engineering 2016, 142, D4016001. [Google Scholar] [CrossRef]
- De Sherbinin, A.; Bukvic, A.; Rohat, G.; Gall, M.; McCusker, B.; Preston, B.; Apotsos, A.; Fish, C.; Kienberger, S.; Muhonda, P. Climate Vulnerability Mapping: A Systematic Review and Future Prospects. Wiley Interdiscip Rev Clim Change 2019, 10, e600. [Google Scholar] [CrossRef]
- Leterme, B.; Mallants, D. Climate and Land Use Change Impacts on Groundwater Recharge. Proceedings Model CARE 2011. [Google Scholar]
- Scibek, J.; Allen, D.M. Modeled Impacts of Predicted Climate Change on Recharge and Groundwater Levels. Water Resour Res 2006, 42. [Google Scholar] [CrossRef]
- Toews, M.W.; Allen, D.M. Simulated Response of Groundwater to Predicted Recharge in a Semi-Arid Region Using a Scenario of Modelled Climate Change. Environmental Research Letters 2009, 4, 35003. [Google Scholar] [CrossRef]
- Waikar, M.L.; Somwanshi, M.A. Data Preparation For Assessing Impact Of Climate Change On Groundwater Recharge. International Journal Of Innovative Research In Advanced Engineering (Ijirae) 2014, 1. [Google Scholar]
- Manish, K.; Telwala, Y.; Nautiyal, D.C.; Pandit, M.K. Modelling the Impacts of Future Climate Change on Plant Communities in the Himalaya: A Case Study from Eastern Himalaya, India. Model Earth Syst Environ 2016, 2, 1–12. [Google Scholar] [CrossRef]
- Crosbie, R.S.; Scanlon, B.R.; Mpelasoka, F.S.; Reedy, R.C.; Gates, J.B.; Zhang, L. Potential Climate Change Effects on Groundwater Recharge in the High Plains Aquifer, USA. Water Resour Res 2013, 49, 3936–3951. [Google Scholar] [CrossRef]
- Nyenje, P.M.; Batelaan, O. Estimating the Effects of Climate Change on Groundwater Recharge and Baseflow in the Upper Ssezibwa Catchment, Uganda. Hydrological sciences journal 2009, 54, 713–726. [Google Scholar] [CrossRef]
- Niu, G.; Yang, Z.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E. The Community Noah Land Surface Model with Multiparameterization Options (Noah-MP): 1. Model Description and Evaluation with Local-scale Measurements. Journal of Geophysical Research: Atmospheres 2011, 116. [Google Scholar] [CrossRef]
- Banda, V.D.; Dzwairo, R.B.; Singh, S.K.; Kanyerere, T. Hydrological Modelling and Climate Adaptation under Changing Climate: A Review with a Focus in Sub-Saharan Africa. Water (Basel) 2022, 14, 4031. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U. A Decade of Predictions in Ungauged Basins (PUB)—a Review. Hydrological sciences journal 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity Is Dead: Whither Water Management? Science (1979) 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.P.; Fan, Y.; Lawrence, D.M.; Adam, J.C.; Bolster, D.; Gochis, D.J.; Hooper, R.P.; Kumar, M.; Leung, L.R.; Mackay, D.S. Improving the Representation of Hydrologic Processes in Earth System Models. Water Resour Res 2015, 51, 5929–5956. [Google Scholar] [CrossRef]
- Moges, E.; Demissie, Y.; Larsen, L.; Yassin, F. Sources of Hydrological Model Uncertainties and Advances in Their Analysis. Water (Basel) 2021, 13, 28. [Google Scholar] [CrossRef]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V. Evaluation of Climate Models. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press, 2014; pp. 741–866. [CrossRef]
- Swenson, S.C.; Lawrence, D.M. Assessing a Dry Surface Layer-based Soil Resistance Parameterization for the Community Land Model Using GRACE and FLUXNET-MTE Data. Journal of Geophysical Research: Atmospheres 2014, 119, 10–299. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Verburg, P.H.; Erb, K.-H.; Mertz, O.; Espindola, G. Land System Science: Between Global Challenges and Local Realities. Curr Opin Environ Sustain 2013, 5, 433–437. [Google Scholar] [CrossRef]
- Dembélé, M.; Salvadore, E.; Zwart, S.; Ceperley, N.; Mariéthoz, G.; Schaefli, B. Water Accounting under Climate Change in the Transboundary Volta River Basin with a Spatially Calibrated Hydrological Model. J Hydrol (Amst) 2023, 626, 130092. [Google Scholar] [CrossRef]
- Swain, S.; Taloor, A.K.; Dhal, L.; Sahoo, S.; Al-Ansari, N. Impact of Climate Change on Groundwater Hydrology: A Comprehensive Review and Current Status of the Indian Hydrogeology. Appl Water Sci 2022, 12. [Google Scholar] [CrossRef]
- Kambale, J.B.; Singh, D.K.; Sarangi, A. Impact of Climate Change on Groundwater Recharge in a Semi-Arid Region of Northern India. Appl Ecol Environ Res 2017, 15, 335–362. [Google Scholar] [CrossRef]
- Crosbie, R.S.; McCallum, J.L.; Walker, G.R.; Chiew, F.H.S. Modelling Climate-Change Impacts on Groundwater Recharge in the Murray-Darling Basin, Australia. Hydrogeol J 2010, 18, 1639–1656. [Google Scholar] [CrossRef]
- Aslam, R.A.; Shrestha, S.; Pandey, V.P. Groundwater Vulnerability to Climate Change: A Review of the Assessment Methodology. Science of the Total Environment 2018, 612, 853–875. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Merchant, J.W. Modeling Vulnerability of Groundwater to Pollution under Future Scenarios of Climate Change and Biofuels-Related Land Use Change: A Case Study in North Dakota, USA. Science of The Total Environment 2013, 447, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Kerr Environmental, R.S.; Bear, J.; Beljin, M.S.; Ross, R.R.; Kovalick, W.W. Ground Water Issue Fundamentals of Ground-Water Modeling Superfund Technology Support Center for Ground Water.
- Rodella, A.-S.; Zaveri, E.; Bertone, F. About the Water Global Practice; 2023.
- Reilly, T.E.; Harbaugh, A.W. Guidelines for Evaluating Ground-Water Flow Models. [CrossRef]
- Forero-Ortiz, E.; Martínez-Gomariz, E.; Monjo, R. Climate Change Implications for Water Availability: A Case Study of Barcelona City. Sustainability (Switzerland) 2020, 12, 1779. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Chatterjee, U. Chapter 15 - Ground Water Depletion and Climate Change: Role of Geospatial Technology for a Mitigation Strategy. In Climate Change, Community Response and Resilience; Chatterjee, U., Shaw, R., Bhunia, G.S., Setiawati, M.D., Banerjee, S., Eds.; Elsevier, 2023; Vol. 6, pp. 291–304 ISBN 978-0-443-18707-0. [CrossRef]
- Scibek, J.; Allen, D.M.; Cannon, A.J.; Whitfield, P.H. Groundwater-Surface Water Interaction under Scenarios of Climate Change Using a High-Resolution Transient Groundwater Model. J Hydrol (Amst) 2007, 333, 165–181. [Google Scholar] [CrossRef]
- Ejaz, F.; Guthke, A.; Wöhling, T.; Nowak, W. Comprehensive Uncertainty Analysis for Surface Water and Groundwater Projections under Climate Change Based on a Lumped Geo-Hydrological Model. J Hydrol (Amst) 2023, 626, 130323. [Google Scholar] [CrossRef]
- Ejaz, F.; Guthke, A.; Wöhling, T.; Nowak, W. Comprehensive Uncertainty Analysis for Surface Water and Groundwater Projections under Climate Change Based on a Lumped Geo-Hydrological Model. J Hydrol (Amst) 2023, 626, 130323. [Google Scholar] [CrossRef]
- Goderniaux, P.; Brouyére, S.; Blenkinsop, S.; Burton, A.; Fowler, H.J.; Orban, P.; Dassargues, A. Modeling Climate Change Impacts on Groundwater Resources Using Transient Stochastic Climatic Scenarios. Water Resour Res 2011, 47. [Google Scholar] [CrossRef]
- Tootoonchi, F.; Todorović, A.; Grabs, T.; Teutschbein, C. Uni- and Multivariate Bias Adjustment of Climate Model Simulations in Nordic Catchments: Effects on Hydrological Signatures Relevant for Water Resources Management in a Changing Climate. J Hydrol (Amst) 2023, 623, 129807. [Google Scholar] [CrossRef]
- Di Salvo, C. Groundwater Hydrological Model Simulation. Water (Switzerland) 2023, 822. [Google Scholar] [CrossRef]
- Reinecke, R.; Müller Schmied, H.; Trautmann, T.; Seaby Andersen, L.; Burek, P.; Flörke, M.; Gosling, S.N.; Grillakis, M.; Hanasaki, N.; Koutroulis, A.; et al. Uncertainty of Simulated Groundwater Recharge at Different Global Warming Levels: A Global-Scale Multi-Model Ensemble Study. Hydrol Earth Syst Sci 2021, 25, 787–810. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (Eds.)]. IPCC, Geneva, Switzerland.; Arias, P., Bustamante, M., Elgizouli, I., Flato, G., Howden, M., Méndez-Vallejo, C., Pereira, J.J., Pichs-Madruga, R., Rose, S.K., Saheb, Y., Sánchez Rodríguez, R., Ürge-Vorsatz, D., Xiao, C., Yassaa, N., Romero, J., Kim, J., Haites, E.F., Jung, Y., Stavins, R., Birt, A., Ha, M., Orendain, D.J.A., Ignon, L., Park, S., Park, Y., Reisinger, A., Cammaramo, D., Fischlin, A., Fuglestvedt, J.S., Hansen, G., Ludden, C., Masson-Delmotte, V., Matthews, J.B.R., Mintenbeck, K., Pirani, A., Poloczanska, E., Leprince-Ringuet, N., Péan, C., Eds.; 2023. [CrossRef]
- IPCC Summary for Policymakers Sixth Assessment Report (WG3); 2022; ISBN 9781107415416.
- Benini, L.; Antonellini, M.; Laghi, M.; Mollema, P.N. Assessment of Water Resources Availability and Groundwater Salinization in Future Climate and Land Use Change Scenarios: A Case Study from a Coastal Drainage Basin in Italy. Water Resources Management 2016, 30, 731–745. [Google Scholar] [CrossRef]
- Giordano, M. Global Groundwater? Issues and Solutions. Annu Rev Environ Resour 2009, 34, 153–178. [Google Scholar] [CrossRef]
- Mc, M. Climate Change Impacts on Groundwater: Literature Review. 2017, 2, 16. [CrossRef]
- Lal, M.; Sau, B.L.; Patidar, J.; Patidar, A. Climate Change and Groundwater: Impact, Adaptation and Sustainable. International Journal of Bio-resource and Stress Management 2018, 9, 408–415. [Google Scholar] [CrossRef]
- Zume, J.T.; Tarhule, A.A. Modelling the Response of an Alluvial Aquifer to Anthropogenic and Recharge Stresses in the United States Southern Great Plains. Journal of earth system science 2011, 120, 557–572. [Google Scholar] [CrossRef]
- Shah, T.; Molden, D.; Sakthivadivel, R.; Seckler, D. The Global Groundwater Situation: Overview of Opportunities and Challenges; 2000. [CrossRef]
- Kenda, K.; Čerin, M.; Bogataj, M.; Senožetnik, M.; Klemen, K.; Pergar, P.; Laspidou, C.; Mladenić, D. Groundwater Modeling with Machine Learning Techniques: Ljubljana Polje Aquifer.; MDPI AG, August 3 2018; p. 697. [CrossRef]
- Riedel, T. Temperature-Associated Changes in Groundwater Quality. J Hydrol (Amst) 2019, 572, 206–212. [Google Scholar] [CrossRef]
- McNeill, V.F. Atmospheric Aerosols: Clouds, Chemistry, and Climate. Annu Rev Chem Biomol Eng 2017, 8, 427–444. [Google Scholar] [CrossRef]
- de Vries, F.W.T.P. Rice Production and Climate Change. In Systems approaches for agricultural development: Proceedings of the International Symposium on Systems Approaches for Agricultural Development, 2–6 December 1991, Bangkok, Thailand; de Vries, F.P., Teng, P., Metselaar, K., Eds.; Springer Netherlands: Dordrecht, 1993; pp. 175–189 ISBN 978-94-011-2842-1.
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jørgensen, S.E.; Brix, H. Wetlands, Carbon, and Climate Change. Landsc Ecol 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Climate Change and Food Security: Risks and Responses.
- Lavell, A.; Oppenheimer, M.; Diop, C.; Hess, J.; Lempert, R.; Li, J.; Muir-Wood, R.; Myeong, S.; Moser, S.; Takeuchi, K. Climate Change: New Dimensions in Disaster Risk, Exposure, Vulnerability, and Resilience. In Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change; Cambridge University Press, 2012; pp. 25–64.
- Earman, S.; Dettinger, M. Potential Impacts of Climate Change on Groundwater Resources - A Global Review. Journal of Water and Climate Change 2011, 2, 213–229. [Google Scholar] [CrossRef]
- Wallace, L.; Sundaram, B.; Ross, S.; Brodie, M.S.; Dawson, S.; Jaycock, J.; Stewart, G.; Furness, L. Vulnerability Assessment of Climate Change Impact on Groundwater Resources in Timor Leste. Australia Government Department of climate change and energy efficiency 2012, 55. [Google Scholar]
- Chattopadhyay, P.B.; Singh, V.S. Hydrochemical Evidences: Vulnerability of Atoll Aquifers in Western Indian Ocean to Climate Change. Glob Planet Change 2013, 106, 123–140. [Google Scholar] [CrossRef]
- Gosling, S.N.; Taylor, R.G.; Arnell, N.W.; Todd, M.C. A Comparative Analysis of Projected Impacts of Climate Change on River Runoff from Global and Catchment-Scale Hydrological Models. Hydrol Earth Syst Sci 2011, 15, 279–294. [Google Scholar] [CrossRef]
- Chang, S.W.; Nemec, K.; Kalin, L.; Clement, T.P. Impacts of Climate Change and Urbanization on Groundwater Resources in a Barrier Island. Journal of Environmental Engineering 2016, 142, D4016001. [Google Scholar] [CrossRef]
- Patle, G.T.; Singh, D.K.; Sarangi, A.; Sahoo, R.N. Modelling of Groundwater Recharge Potential from Irrigated Paddy Field under Changing Climate. Paddy and Water Environment 2017, 15, 413–423. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Shukla, S.; Wani, S.P.; Graham, W.D.; Jones, J.W. Future Irrigation Expansion Outweigh Groundwater Recharge Gains from Climate Change in Semi-Arid India. Science of the Total Environment 2018, 635, 725–740. [Google Scholar] [CrossRef] [PubMed]
- Dangar, S.; Asoka, A.; Mishra, V. Causes and Implications of Groundwater Depletion in India: A Review. J Hydrol (Amst) 2021, 596. [Google Scholar] [CrossRef]
- Ferrant, S.; Caballero, Y.; Perrin, J.; Gascoin, S.; Dewandel, B.; Aulong, S.; Dazin, F.; Ahmed, S.; Maréchal, J.C. Projected Impacts of Climate Change on Farmers’ Extraction of Groundwater from Crystalline Aquifers in South India. Sci Rep 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Soltani, F.; Javadi, S.; Roozbahani, A.; Massah Bavani, A.R.; Golmohammadi, G.; Berndtsson, R.; Ghordoyee Milan, S.; Maghsoudi, R. Assessing Climate Change Impact on Water Balance Components Using Integrated Groundwater–Surface Water Models (Case Study: Shazand Plain, Iran). Water (Basel) 2023, 15, 813. [Google Scholar] [CrossRef]
- Sarkar, S.; Mukherjee, A.; Senapati, B.; Duttagupta, S. Predicting Potential Climate Change Impacts on Groundwater Nitrate Pollution and Risk in an Intensely Cultivated Area of South Asia. ACS Environmental Au 2022, 2, 556–576. [Google Scholar] [CrossRef]
- Herrera-Pantoja, M.; Hiscock, K.M. The Effects of Climate Change on Potential Groundwater Recharge in Great Britain. Hydrological Processes: An International Journal 2008, 22, 73–86. [Google Scholar] [CrossRef]
- Mizyed, N. Climate Change Challenges to Groundwater Resources: Palestine as a Case Study. J Water Resour Prot 2018, 10, 215–229. [Google Scholar] [CrossRef]
- Kalugin, A.S. The Impact of Climate Change on Surface, Subsurface, and Groundwater Flow: A Case Study of the Oka River (European Russia). Water Resources 2019, 46, S31–S39. [Google Scholar] [CrossRef]
- Soundala, P.; Saraphirom, P. Impact of Climate Change on Groundwater Recharge and Salinity Distribution in the Vientiane Basin, Lao PDR. Journal of Water and Climate Change 2022, 13, 3812–3829. [Google Scholar] [CrossRef]
- Ghazavi, R.; Ebrahimi, H. Predicting the Impacts of Climate Change on Groundwater Recharge in an Arid Environment Using Modeling Approach. Int J Clim Chang Strateg Manag 2018, 11, 88–99. [Google Scholar] [CrossRef]
- Olarinoye, T.; Foppen, J.W.; Veerbeek, W.; Morienyane, T.; Komakech, H. Exploring the Future Impacts of Urbanization and Climate Change on Groundwater in Arusha, Tanzania. In Groundwater; Routledge, 2023; pp. 79–93. [CrossRef]
- Nayak, S.K.; Nandimandalam, J.R. Impacts of Climate Change and Coastal Salinization on the Environmental Risk of Heavy Metal Contamination along the Odisha Coast, India. Environ Res 2023, 238, 117175. [Google Scholar] [CrossRef] [PubMed]
- Wojkowski, J.; Wałęga, A.; Młyński, D.; Radecki-Pawlik, A.; Lepeška, T.; Piniewski, M.; Kundzewicz, Z.W. Are We Losing Water Storage Capacity Mostly Due to Climate Change – Analysis of the Landscape Hydric Potential in Selected Catchments in East-Central Europe. Ecol Indic 2023, 154, 110913. [Google Scholar] [CrossRef]
- Bennour, A.; Jia, L.; Menenti, M.; Zheng, C.; Zeng, Y.; Barnieh, B.A.; Jiang, M. Assessing Impacts of Climate Variability and Land Use/Land Cover Change on the Water Balance Components in the Sahel Using Earth Observations and Hydrological Modelling. J Hydrol Reg Stud 2023, 47, 101370. [Google Scholar] [CrossRef]
- Amanambu, A.C.; Obarein, O.A.; Mossa, J.; Li, L.; Ayeni, S.S.; Balogun, O.; Oyebamiji, A.; Ochege, F.U. Groundwater System and Climate Change: Present Status and Future Considerations. J Hydrol (Amst) 2020, 589. [Google Scholar] [CrossRef]
- Adhikari, R.K.; Yilmaz, A.G.; Mainali, B.; Dyson, P.; Imteaz, M.A. Methods of Groundwater Recharge Estimation under Climate Change: A Review. Sustainability (Switzerland) 2022, 15619. [Google Scholar] [CrossRef]
- Hughes, A.; Mansour, M.; Ward, R.; Kieboom, N.; Allen, S.; Seccombe, D.; Charlton, M.; Prudhomme, C. The Impact of Climate Change on Groundwater Recharge: National-Scale Assessment for the British Mainland. J Hydrol (Amst) 2021, 598. [Google Scholar] [CrossRef]
- Ng, G.H.C.; McLaughlin, D.; Entekhabi, D.; Scanlon, B.R. Probabilistic Analysis of the Effects of Climate Change on Groundwater Recharge. Water Resour Res 2010, 46. [Google Scholar] [CrossRef]
- Wood, W.W.; Imes, J.L. Dating of Holocene Ground-Water Recharge in Western Part of Abu Dhabi (United Arab Emirates): Constraints on Global Climate-Change Models. In Developments in Water Science; Alsharhan, A.S., Wood, W.W., Eds.; Elsevier, 2003; Vol. 50, pp. 379–385 ISBN 0167-5648. [CrossRef]
- Wu, W.Y.; Lo, M.H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.F.; Ducharne, A.; Yang, Z.L. Divergent Effects of Climate Change on Future Groundwater Availability in Key Mid-Latitude Aquifers. Nat Commun 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Gleick, P.H. Global Freshwater Resources: Soft-Path Solutions for the 21st Century. Science (1979) 2003, 302, 1524–1528. [Google Scholar] [CrossRef] [PubMed]
- Bates, B.; Kundzewicz, Z.; Wu, S. Climate Change and Water; Intergovernmental Panel on Climate Change Secretariat, 2008; ISBN 9291691232.
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. A Conceptual Framework for Analysing Adaptive Capacity and Multi-Level Learning Processes in Resource Governance Regimes. Global environmental change 2009, 19, 354–365. [Google Scholar] [CrossRef]
- Gerber, J.-D.; Knoepfel, P.; Nahrath, S.; Varone, F. Institutional Resource Regimes: Towards Sustainability through the Combination of Property-Rights Theory and Policy Analysis. Ecological economics 2009, 68, 798–809. [Google Scholar] [CrossRef]
- Tsur, Y. Economic Aspects of Irrigation Water Pricing. Canadian Water Resources Journal 2005, 30, 31–46. [Google Scholar] [CrossRef]
- Postel, S.; Richter, B. Rivers for Life: Managing Water for People and Nature; Island press, 2012; ISBN 1597267805. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
