Submitted:
28 November 2023
Posted:
29 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Sensory disconnection in sleep across different sensory modalities
2.1. Auditory system
2.2. Visual system
2.3. Somatosensory system and pain pathways
2.4. Olfactory system
3. Neuromodulators and disconnection
3.1. Noradrenaline
3.2. Histamine
3.3. Serotonin
3.4. Orexin
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cirelli, C.; Tononi, G.; Biol, P.L.2008) e216.
- Tononi, G.; Cirelli, C., Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81 (2014) 12-34. [CrossRef]
- Rechtschaffen, A.; Hauri, P.; Zeitlin, M., Auditory awakening thresholds in REM and NREM sleep stages. Percept Mot Skills 22 (1966) 927-42. [CrossRef]
- Zepelin, H.; McDonald, C.S.; Zammit, G.K., Effects of age on auditory awakening thresholds. J Gerontol 39 (1984) 294-300. [CrossRef]
- Neckelmann, D.; Ursin, R., Sleep stages and EEG power spectrum in relation to acoustical stimulus arousal threshold in the rat. Sleep 16 (1993) 467-77. [CrossRef]
- Hayat, H.; Regev, N.; Matosevich, N.; Sales, A.; Paredes-Rodriguez, E.; Krom, A.J.; Bergman, L.; Li, Y.; Lavigne, M.; Kremer, E.J.; Yizhar, O.; Pickering, A.E.; Nir, Y., Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci Adv 6 (2020) eaaz4232. [CrossRef]
- Price, L.J.; Kremen, I., Variations in behavioral response threshold within the REM period of human sleep. Psychophysiology 17 (1980) 133-40. [CrossRef]
- Ermis, U.; Krakow, K.; Voss, U., Arousal thresholds during human tonic and phasic REM sleep. J Sleep Res 19 (2010) 400-6. [CrossRef]
- Hall, R.D.; Borbely, A.A., Acoustically evoked potentials in the rat during sleep and waking. Experimental brain research 11 (1970) 93-110. [CrossRef]
- Kakigi, R.; Naka, D.; Okusa, T.; Wang, X.; Inui, K.; Qiu, Y.; Tran, T.D.; Miki, K.; Tamura, Y.; Nguyen, T.B.; Watanabe, S.; Hoshiyama, M., Sensory perception during sleep in humans: a magnetoencephalograhic study. Sleep medicine 4 (2003) 493-507. [CrossRef]
- Velluti, R.A., Interactions between sleep and sensory physiology. J Sleep Res 6 (1997) 61-77. [CrossRef]
- Issa, E.B.; Wang, X., Sensory responses during sleep in primate primary and secondary auditory cortex. The Journal of neuroscience: the official journal of the Society for Neuroscience 28 (2008) 14467-80.
- Issa, E.B.; Wang, X., Altered neural responses to sounds in primate primary auditory cortex during slow-wave sleep. The Journal of neuroscience: the official journal of the Society for Neuroscience 31 (2011) 2965-73.
- Nir, Y.; Vyazovskiy, V.V.; Cirelli, C.; Banks, M.I.; Tononi, G., Auditory responses and stimulus-specific adaptation in rat auditory cortex are preserved across NREM and REM sleep. Cerebral cortex 25 (2015) 1362-78. [CrossRef]
- Sela, Y.; Vyazovskiy, V.V.; Cirelli, C.; Tononi, G.; Nir, Y., Responses in Rat Core Auditory Cortex are Preserved during Sleep Spindle Oscillations. Sleep 39 (2016) 1069-82. [CrossRef]
- Sela, Y.; Krom, A.J.; Bergman, L.; Regev, N.; Nir, Y., Sleep Differentially Affects Early and Late Neuronal Responses to Sounds in Auditory and Perirhinal Cortices. The Journal of neuroscience: the official journal of the Society for Neuroscience 40 (2020) 2895-2905. [CrossRef]
- Hayat, H.; Marmelshtein, A.; Krom, A.J.; Sela, Y.; Tankus, A.; Strauss, I.; Fahoum, F.; Fried, I.; Nir, Y., Reduced neural feedback signaling despite robust neuron and gamma auditory responses during human sleep. Nature neuroscience 25 (2022) 935-943. [CrossRef]
- Wang, Y.; You, L.; Tan, K.; Li, M.; Zou, J.; Zhao, Z.; Hu, W.; Li, T.; Xie, F.; Li, C.; Yuan, R.; Ding, K.; Cao, L.; Xin, F.; Shang, C.; Liu, M.; Gao, Y.; Wei, L.; You, Z.; Gao, X.; Xiong, W.; Cao, P.; Luo, M.; Chen, F.; Li, K.; Wu, J.; Hong, B.; Yuan, K., A common thalamic hub for general and defensive arousal control. Neuron 111 (2023) 3270-3287 e8. [CrossRef]
- Massimini, M.; Ferrarelli, F.; Huber, R.; Esser, S.K.; Singh, H.; Tononi, G., Breakdown of cortical effective connectivity during sleep. Science 309 (2005) 2228-2232. [CrossRef]
- Funk, C.M.; Honjoh, S.; Rodriguez, A.V.; Cirelli, C.; Tononi, G., Local Slow Waves in Superficial Layers of Primary Cortical Areas during REM Sleep. Curr Biol 26 (2016) 396-403. [CrossRef]
- Huttenlocher, P.R., Evoked and spontaneous activity in single units of medial brain stem during natural sleep and waking. Journal of neurophysiology (1961) 451-468. [CrossRef]
- Rechtschaffen, A.; Foulkes, D., Effect of Visual Stimuli on Dream Content. Percept Mot Skills 20 (1965) SUPPL:1149-60.
- Yuzgec, O.; Prsa, M.; Zimmermann, R.; Huber, D., Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation. Curr Biol 28 (2018) 392-400 e3. [CrossRef]
- Dagnino, N.; Favale, E.; Loeb, C.; Manfredi, M., Sensory Transmission in the Geniculostriate System of the Cat during Natural Sleep and Arousal. Journal of neurophysiology 28 (1965) 443-56. [CrossRef]
- Malcolm, L.J.; Bruce, I.S.; Burke, W., Excitability of the lateral geniculate nucleus in the alert, non-alert and sleeping cat. Experimental brain research 10 (1970) 283-97. [CrossRef]
- Coenen, A.M.; Vendrik, A.J., Determination of the transfer ratio of cat’s geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness. Experimental brain research 14 (1972) 227-42. [CrossRef]
- Hubel, D.H., Single unit activity in lateral geniculate body and optic tract of unrestrained cats. J Physiol 150 (1960) 91-104. [CrossRef]
- Galambos, R.; Juhasz, G.; Kekesi, A.K.; Nyitrai, G.; Szilagyi, N., Natural sleep modifies the rat electroretinogram. Proceedings of the National Academy of Sciences of the United States of America 91 (1994) 5153-7.
- Evarts, E.V., Photically Evoked Responses in Visual Cortex Units during Sleep and Waking. Journal of neurophysiology 26 (1963) 229-248.
- Sakakura, H., Spontaneous and evoked unitary activities of cat lateral geniculate neurons in sleep and wakefulness. Jpn J Physiol 18 (1968) 23-42. [CrossRef]
- Angel, A.; Strata, P., Relationship between cortical activity and the excitability of optic nerve terminals in the lateral geniculate body. Brain research 5 (1967) 501-3. [CrossRef]
- Iwama, K.; Sakakura, H.; Kasamatsu, T., Presynaptic inhibition in the lateral geniculate body induced by stimulation of the cerebral cortex. Jap J of Physiol 15 (1965) 310-322.
- Evarts, E.V., Activity of Neurons in Visual Cortex of Cat during Sleep with Low Voltage Fast Eeg Activity. Journal of neurophysiology 25 (1962) 812-816. [CrossRef]
- Carli, G.; Dietespi.K; Pompeiano, O., Transmission of Sensory Information through Lemniscal Pathway during Sleep. Archives Italiennes De Biologie 105 (1967) 31-51.
- Carli, G.; Dietespi.K; Pompeiano, O., Presynaptic and Postsynaptic Inhibition of Transmission O Somatic Afferent Volleys through Cuneate Nucleus during Sleep. Archives Italiennes De Biologie 105 (1967) 52-82.
- Soja, P.J.; Oka, J.I.; Fragoso, M., Synaptic transmission through cat lumbar ascending sensory pathways is suppressed during active sleep. Journal of neurophysiology 70 (1993) 1708-12.
- Soja, P.J.; Pang, W.; Taepavarapruk, N.; McErlane, S.A., Spontaneous spike activity of spinoreticular tract neurons during sleep and wakefulness. Sleep 24 (2001) 18-25. [CrossRef]
- Mariotti, M.; Formenti, A.; Mancia, M., Responses of VPL thalamic neurones to peripheral stimulation in wakefulness and sleep. Neuroscience letters 102 (1989) 70-5. [CrossRef]
- Gucer, G., The effect of sleep upon the transmission of afferent activity in the somatic afferent system. Experimental brain research 34 (1979) 287-98. [CrossRef]
- Cairns, B.E.; McErlane, S.A.; Fragoso, M.C.; Jia, W.G.; Soja, P.J., Spontaneous discharge and peripherally evoked orofacial responses of trigemino-thalamic tract neurons during wakefulness and sleep. The Journal of neuroscience: the official journal of the Society for Neuroscience 16 (1996) 8149-59. [CrossRef]
- Cairns, B.E.; Fragoso, M.C.; Soja, P.J., Active-sleep-related suppression of feline trigeminal sensory neurons: evidence implicating presynaptic inhibition via a process of primary afferent depolarization. Journal of neurophysiology 75 (1996) 1152-62. [CrossRef]
- Leung, C.G.; Mason, P., Physiological properties of raphe magnus neurons during sleep and waking. Journal of neurophysiology 81 (1999) 584-95. [CrossRef]
- Foo, H.; Mason, P., Brainstem modulation of pain during sleep and waking. Sleep Med Rev 7 (2003) 145-54.
- Beydoun, A.; Morrow, T.J.; Shen, J.F.; Casey, K.L.; Variability of laser-evoked potentials: attention, arousal and lateralized differences. Electroencephalography and Clinical Neurophysiology 88 (1993) 173-181.
- Lavigne, G.; Zucconi, M.; Castronovo, C.; Manzini, C.; Marchettini, P.; Smirne, S., Sleep arousal response to experimental thermal stimulation during sleep in human subjects free of pain and sleep problems. Pain 84 (2000) 283-90. [CrossRef]
- Badia, P.; Wesensten, N.; Lammers, W.; Culpepper, J.; Harsh, J., Responsiveness to olfactory stimuli presented in sleep. Physiol Behav 48 (1990) 87-90. [CrossRef]
- Carskadon, M.A.; Herz, R.S., Minimal olfactory perception during sleep: why odor alarms will not work for humans. Sleep 27 (2004) 402-5. [CrossRef]
- Tseng, Y.T.; Zhao, B.; Chen, S.; Ye, J.; Liu, J.; Liang, L.; Ding, H.; Schaefke, B.; Yang, Q.; Wang, L.; Wang, F.; Wang, L., The subthalamic corticotropin-releasing hormone neurons mediate adaptive REM-sleep responses to threat. Neuron 110 (2022) 1223-1239 e8. [CrossRef]
- Tsuno, Y.; Kashiwadani, H.; Mori, K., Behavioral state regulation of dendrodendritic synaptic inhibition in the olfactory bulb. The Journal of neuroscience: the official journal of the Society for Neuroscience 28 (2008) 9227-38.
- Murakami, M.; Kashiwadani, H.; Kirino, Y.; Mori, K., State-dependent sensory gating in olfactory cortex. Neuron 46 (2005) 285-96. [CrossRef]
- Yamaguchi, M., The role of sleep in the plasticity of the olfactory system. Neurosci Res 118 (2017) 21-29. [CrossRef]
- Moruzzi, G.; Magoun, H.W., Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1 (1949) 455-73.
- Brown, R.E.; Basheer, R.; McKenna, J.T.; Strecker, R.E.; McCarley, R.W., Control of sleep and wakefulness. Physiol Rev 92 (2012) 1087-187. [CrossRef]
- Aston-Jones, G.; Bloom, F.E., Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. The Journal of neuroscience: the official journal of the Society for Neuroscience 1 (1981) 876-86. [CrossRef]
- Takahashi, K.; Kayama, Y.; Lin, J.S.; Sakai, K., Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience 169 (2010) 1115-26. [CrossRef]
- el Mansari, M.; Sakai, K.; Jouvet, M., Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Experimental brain research 76 (1989) 519-29.
- Boucetta, S.; Cisse, Y.; Mainville, L.; Morales, M.; Jones, B.E., Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. The Journal of neuroscience: the official journal of the Society for Neuroscience 34 (2014) 4708-27.
- Lee, M.G.; Hassani, O.K.; Alonso, A.; Jones, B.E., Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. The Journal of neuroscience: the official journal of the Society for Neuroscience 25 (2005) 4365-9.
- Xu, M.; Chung, S.; Zhang, S.; Zhong, P.; Ma, C.; Chang, W.C.; Weissbourd, B.; Sakai, N.; Luo, L.; Nishino, S.; Dan, Y., Basal forebrain circuit for sleep-wake control. Nature neuroscience 18 (2015) 1641-7. [CrossRef]
- McGinty, D.J.; Harper, R.M., Dorsal raphe neurons: depression of firing during sleep in cats. Brain research 101 (1976) 569-75. [CrossRef]
- Trulson, M.E.; Jacobs, B.L., Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain research 163 (1979) 135-50. [CrossRef]
- Wu, M.F.; John, J.; Boehmer, L.N.; Yau, D.; Nguyen, G.B.; Siegel, J.M., Activity of dorsal raphe cells across the sleep-waking cycle and during cataplexy in narcoleptic dogs. J Physiol 554 (2004) 202-15. [CrossRef]
- John, J.; Wu, M.F.; Boehmer, L.N.; Siegel, J.M., Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 42 (2004) 619-34. [CrossRef]
- Takahashi, K.; Lin, J.S.; Sakai, K., Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. The Journal of neuroscience: the official journal of the Society for Neuroscience 26 (2006) 10292-8.
- Lee, M.G.; Hassani, O.K.; Jones, B.E., Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. The Journal of neuroscience: the official journal of the Society for Neuroscience 25 (2005) 6716-20.
- Mileykovskiy, B.Y.; Kiyashchenko, L.I.; Siegel, J.M., Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46 (2005) 787-98. [CrossRef]
- Dahan, L.; Astier, B.; Vautrelle, N.; Urbain, N.; Kocsis, B.; Chouvet, G., Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32 (2007) 1232-41. [CrossRef]
- Eban-Rothschild, A.; Rothschild, G.; Giardino, W.J.; Jones, J.R.; de Lecea, L., VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nature neuroscience 19 (2016) 1356-66. [CrossRef]
- Cho, J.R.; Treweek, J.B.; Robinson, J.E.; Xiao, C.; Bremner, L.R.; Greenbaum, A.; Gradinaru, V., Dorsal Raphe Dopamine Neurons Modulate Arousal and Promote Wakefulness by Salient Stimuli. Neuron 94 (2017) 1205-1219 e8. [CrossRef]
- Poe, G.R.; Foote, S.; Eschenko, O.; Johansen, J.P.; Bouret, S.; Aston-Jones, G.; Harley, C.W.; Manahan-Vaughan, D.; Weinshenker, D.; Valentino, R.; Berridge, C.; Chandler, D.J.; Waterhouse, B.; Sara, S.J., Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci 21 (2020) 644-659. [CrossRef]
- Carter, M.E.; Yizhar, O.; Chikahisa, S.; Nguyen, H.; Adamantidis, A.; Nishino, S.; Deisseroth, K.; de Lecea, L., Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature neuroscience 13 (2010) 1526-33. [CrossRef]
- Hunsley, M.S.; Palmiter, R.D., Altered sleep latency and arousal regulation in mice lacking norepinephrine. Pharmacol Biochem Behav 78 (2004) 765-73. [CrossRef]
- Feng, J.; Zhang, C.; Lischinsky, J.E.; Jing, M.; Zhou, J.; Wang, H.; Zhang, Y.; Dong, A.; Wu, Z.; Wu, H.; Chen, W.; Zhang, P.; Zou, J.; Hires, S.A.; Zhu, J.J.; Cui, G.; Lin, D.; Du, J.; Li, Y., A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine. Neuron 102 (2019) 745-761 e8. [CrossRef]
- Osorio-Forero, A.; Cardis, R.; Vantomme, G.; Guillaume-Gentil, A.; Katsioudi, G.; Devenoges, C.; Fernandez, L.M.J.; Luthi, A., Noradrenergic circuit control of non-REM sleep substates. Curr Biol 31 (2021) 5009-5023 e7. [CrossRef]
- Kjaerby, C.; Andersen, M.; Hauglund, N.; Untiet, V.; Dall, C.; Sigurdsson, B.; Ding, F.; Feng, J.; Li, Y.; Weikop, P.; Hirase, H.; Nedergaard, M., Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nature neuroscience 25 (2022) 1059-1070. [CrossRef]
- Lecci, S.; Fernandez, L.M.; Weber, F.D.; Cardis, R.; Chatton, J.Y.; Born, J.; Luthi, A., Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci Adv 3 (2017) e1602026. [CrossRef]
- Swift, K.M.; Gross, B.A.; Frazer, M.A.; Bauer, D.S.; Clark, K.J.D.; Vazey, E.M.; Aston-Jones, G.; Li, Y.; Pickering, A.E.; Sara, S.J.; Poe, G.R., Abnormal Locus Coeruleus Sleep Activity Alters Sleep Signatures of Memory Consolidation and Impairs Place Cell Stability and Spatial Memory. Curr Biol 28 (2018) 3599-3609 e4. [CrossRef]
- Aston-Jones, G.; Bloom, F.E., Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. The Journal of neuroscience: the official journal of the Society for Neuroscience 1 (1981) 887-900.
- Simor, P.; van der Wijk, G.; Nobili, L.; Peigneux, P., The microstructure of REM sleep: Why phasic and tonic? Sleep Med Rev 52 (2020) 101305.
- Venner, A.; Mochizuki, T.; De Luca, R.; Anaclet, C.; Scammell, T.E.; Saper, C.B.; Arrigoni, E.; Fuller, P.M., Reassessing the Role of Histaminergic Tuberomammillary Neurons in Arousal Control. The Journal of neuroscience: the official journal of the Society for Neuroscience 39 (2019) 8929-8939.
- Takahashi, K.; Lin, J.S.; Sakai, K., Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 153 (2008) 860-70. [CrossRef]
- Nishino, S.; Mignot, E., Pharmacological aspects of human and canine narcolepsy. Progress in Neurobiology 52 (1997) 27-78. [CrossRef]
- Nishino, S.; Tafti, M.; Reid, M.S.; Shelton, J.; Siegel, J.M.; Dement, W.C.; Mignot, E., Muscle atonia is triggered by cholinergic stimulation of the basal forebrain: implication for the pathophysiology of canine narcolepsy. The Journal of neuroscience: the official journal of the Society for Neuroscience 15 (1995) 4806-14. [CrossRef]
- Lydic, R.; McCarley, R.W.; Hobson, J.A., Serotonin neurons and sleep. I. Long term recordings of dorsal raphe discharge frequency and PGO waves. Arch Ital Biol 125 (1987) 317-43.
- Jacobs, B.L.; Fornal, C.A., Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 21 (1999) 9S-15S.
- Portas, C.M.; Bjorvatn, B.; Ursin, R., Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol 60 (2000) 13-35. [CrossRef]
- Trulson, M.E.; Jacobs, B.L.; Morrison, A.R., Raphe unit activity during REM sleep in normal cats and in pontine lesioned cats displaying REM sleep without atonia. Brain research 226 (1981) 75-91. [CrossRef]
- Steinfels, G.F.; Heym, J.; Strecker, R.E.; Jacobs, B.L., Raphe unit activity in freely moving cats is altered by manipulations of central but not peripheral motor systems. Brain research 279 (1983) 77-84. [CrossRef]
- Cape, E.G.; Jones, B.E., Differential modulation of high-frequency gamma-electroencephalogram activity and sleep-wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons. The Journal of neuroscience: the official journal of the Society for Neuroscience 18 (1998) 2653-66.
- Rogawski, M.A.; Aghajanian, G.K., Norepinephrine and serotonin: opposite effects on the activity of lateral geniculate neurons evoked by optic pathway stimulation. Experimental neurology 69 (1980) 678-94. [CrossRef]
- Waterhouse, B.D.; Azizi, S.A.; Burne, R.A.; Woodward, D.J., Modulation of rat cortical area 17 neuronal responses to moving visual stimuli during norepinephrine and serotonin microiontophoresis. Brain research 514 (1990) 276-92. [CrossRef]
- Fornal, C.A.; Metzler, C.W.; Marrosu, F.; Ribiero-do-Valle, L.E.; Jacobs, B.L., A subgroup of dorsal raphe serotonergic neurons in the cat is strongly activated during oral-buccal movements. Brain research 716 (1996) 123-33. [CrossRef]
- Heym, J.; Trulson, M.E.; Jacobs, B.L., Raphe unit activity in freely moving cats: effects of phasic auditory and visual stimuli. Brain research 232 (1982) 29-39. [CrossRef]
- Steinfels, G.F.; Heym, J.; Strecker, R.E.; Jacobs, B.L., Response of dopaminergic neurons in cat to auditory stimuli presented across the sleep-waking cycle. Brain research 277 (1983) 150-4. [CrossRef]
- Buchanan, G.F.; Richerson, G.B., Central serotonin neurons are required for arousal to CO2. Proceedings of the National Academy of Sciences of the United States of America 107 (2010) 16354-9.
- Kaur, S.; De Luca, R.; Khanday, M.A.; Bandaru, S.S.; Thomas, R.C.; Broadhurst, R.Y.; Venner, A.; Todd, W.D.; Fuller, P.M.; Arrigoni, E.; Saper, C.B., Role of serotonergic dorsal raphe neurons in hypercapnia-induced arousals. Nature communications 11 (2020) 2769. [CrossRef]
- Corcoran, A.E.; Hodges, M.R.; Wu, Y.; Wang, W.; Wylie, C.J.; Deneris, E.S.; Richerson, G.B., Medullary serotonin neurons and central CO2 chemoreception. Respir Physiol Neurobiol 168 (2009) 49-58. [CrossRef]
- Kaur, S.; Saper, C.B., Neural Circuitry Underlying Waking Up to Hypercapnia. Front Neurosci 13 (2019) 401. [CrossRef]
- McCormick, D.A.; Wang, Z., Serotonin and noradrenaline excite GABAergic neurones of the guinea-pig and cat nucleus reticularis thalami. J Physiol 442 (1991) 235-55. [CrossRef]
- Pape, H.C.; McCormick, D.A., Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 340 (1989) 715-8. [CrossRef]
- Lee, K.H.; McCormick, D.A., Abolition of spindle oscillations by serotonin and norepinephrine in the ferret lateral geniculate and perigeniculate nuclei in vitro. Neuron 17 (1996) 309-21. [CrossRef]
- Lin, L.; Faraco, J.; Li, R.; Kadotani, H.; Rogers, W.; Lin, X.; Qiu, X.; de Jong, P.J.; Nishino, S.; Mignot, E., The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98 (1999) 365-376. [CrossRef]
- Chemelli, R.M.; Willie, J.T.; Sinton, C.M.; E. J.K.; Scammell, T.; Lee, C.; Richardson, J.A.; Williams, S.C.; Xiong, Y.; Kisanuki, Y.; Fitch, T.E.; Nakazato, M.; Hammer, R.E.; Saper, C.B.; Yanagisawa, M., Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell 98 (1999) 437-451. [CrossRef]
- Adamantidis, A.R.; Zhang, F.; Aravanis, A.M.; Deisseroth, K.; de Lecea, L., Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450 (2007) 420-4. [CrossRef]
- Carter, M.E.; Brill, J.; Bonnavion, P.; Huguenard, J.R.; Huerta, R.; de Lecea, L., Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proceedings of the National Academy of Sciences of the United States of America 109 (2012) E2635-44.
- Bayer, L.; Eggermann, E.; Saint-Mleux, B.; Machard, D.; Jones, B.E.; Muhlethaler, M.; Serafin, M., Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. The Journal of neuroscience: the official journal of the Society for Neuroscience 22 (2002) 7835-9.
- Bayer, L.; Serafin, M.; Eggermann, E.; Saint-Mleux, B.; Machard, D.; Jones, B.E.; Muhlethaler, M., Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons. The Journal of neuroscience: the official journal of the Society for Neuroscience 24 (2004) 6760-4.
- Zolnik, T.A.; Ledderose, J.; Toumazou, M.; Trimbuch, T.; Oram, T.; Rosenmund, C.; Eickholt, B.J.; Sachdev, R.N.S.; Larkum, M.E., Layer 6b Is Driven by Intracortical Long-Range Projection Neurons. Cell Rep 30 (2020) 3492-3505 e5. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
