Submitted:
27 November 2023
Posted:
30 November 2023
You are already at the latest version
Abstract
Keywords:
1. Motivation
1.1. Scale Invariance and Physical Reality
1.2. Einstein General Relativity and Weyl Integrable Geometry
2. Mathematical Framework
2.1. Weyl Integrable Geometry and Dirac Co-Calculus
2.1.1. Gauge Change and (co-) covariant Derivatives
2.1.2. Dirac Co-Calculus
2.2. Consequences of going beyond the EGR
2.3. Scale Invariant Cosmology
2.3.1. The Einstein Equation for Weyl’s Geometry
2.3.2. The Scale Invariant Vacuum Gauge at and
3. Comparisons and Applications
3.1. Comparing the Scale Factor within CDM and SIV [9]
3.2. Possible differentiators of SIV from CDM [10]

3.3. Application to Scale-Invariant Dynamics of Galaxies [5]
3.4. MOND as a peculiar case of the SIV theory [6]
- The equation of the deep-MOND limit is reproduced by the SIV theory both analytically and numerically if and M can be considered as constant. This may apply to systems with a typical dynamical timescale up to a few hundred million years.
- Parameter is not a universal constant. It depends on the Hubble-Lemaître parameter (or the age of the Universe) and on in the model Universe, cf. Eq. (35). The value of applies to the present epoch.
- Parameter is defined by the condition that , i.e. when the dynamical gravity in the equation of motion (30) becomes larger than the Newtonian gravity. This situation occurs in regions at the edge of gravitational systems.
3.5. Local dynamical effects within SIV: the lunar recession [7]
3.6. Growth of the Density Fluctuations within the SIV [4]
3.7. Big-Bang Nucleosynthesis within the SIV Paradigm [3]
3.8. SIV and the Inflation of the Early Universe [2]
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gueorguiev, V.G.; Maeder, A. Geometric Justification of the Fundamental Interaction Fields for the Classical Long-Range Forces. Symmetry 2021, 13, 379. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. Scale invariance, horizons, and inflation. MNRAS 2021, 504, 4005. [Google Scholar] [CrossRef]
- Gueorguiev, V.G. and Maeder, A. “Big-Bang Nucleosynthesis within the Scale Invariant Vacuum Paradigm” under peer review (April 2023); arXiv e-Print: 2307.04269 [nucl-th].
- Maeder, A.; Gueorguiev, V.G. The growth of the density fluctuations in the scale-invariant vacuum theory. Phys. Dark Univ. 2019, 25, 100315. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. Scale-invariant dynamics of galaxies, MOND, dark matter, and the dwarf spheroidals. MNRAS 2019, 492, 2698. [Google Scholar] [CrossRef]
- Andre Maeder, “MOND as a peculiar case of the SIV theory”. MNRAS 2023, 520, 1447. [CrossRef]
- Maeder, A., Gueorguiev, V. (2022). Local Dynamical Effects of Scale Invariance: the Lunar Recession. Conference Contribution to Cosmology on Small Scales (CSS2022); arXiv e-prints. [CrossRef]
- Gueorguiev, V. G., and Maeder, A. The Scale Invariant Vacuum Paradigm: Main Results and Current Progress. Universe 2022, 8, 213, e-Print: 2202.08412 [gr-qc]. [CrossRef]
- Maeder, A. An Alternative to the LambdaCDM Model: the case of scale invariance. Astrophys. J. 2017, 834, 194. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. The Scale-Invariant Vacuum (SIV) Theory: A Possible Origin of Dark Matter and Dark Energy. Universe 2020, 6, 46. [Google Scholar] [CrossRef]
- Weyl, H. Raum, Zeit, Materie; Vorlesungen über Allgemeine Relativitätstheorie; Springer-Verlag: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Carl, H. Brans Jordan-Brans-Dicke Theory. Scholarpedia 2014, 9, 31358. [Google Scholar]
- Faraoni, V.; Gunzig, E.; Nardone, P. Conformal transformations in classical gravitational theories and in cosmology. Fundam. Cosm. Phys. 1999, 20, 121–175. [Google Scholar]
- Behnke, D., Blaschke, D. B., Pervushin, V. N., Proskurin, D. Description of supernova data in conformal cosmology without cosmological constant. Phys. Lett. B 2002, 530, 20–26. [CrossRef]
- Christodoulou, D. M., Kazanas, D. Varying-G gravity. MNRAS 2023, 519, 1277–1292.
- Xue, C.; Liu, J.P.; Li, Q.; Wu, J.F.; Yang, S.Q.; Liu, Q.; Shao, C., Tu, L., Hu, Z., Luo, J. Precision measurement of the Newtonian gravitational constant. Natl. Sci. Rev. 2020, 7, 1803.
- Dirac, P.A.M. Long Range Forces and Broken Symmetries. Proc. R. Soc. Lond. A 1973, 333, 403. [Google Scholar]
- Canuto, V.; Adams, P.J.; Hsieh, S.-H.; Tsiang, E. Scale-covariant theory of gravitation and astrophysical applications. Phys. Rev. D 1977, 16, 1643. [Google Scholar] [CrossRef]
- Gueorguiev, V. G. , Maeder, A. 2021. Reparametrization Invariance and Some of the Key Properties of Physical Systems. Symmetry 2021, 13, 522, e-Print:1903.02483. [Google Scholar] [CrossRef]
- Wheeler, J.T. Weyl geometry. Gen. Relativ. Gravit. 2018, 50, 80. [Google Scholar] [CrossRef]
- Zakharov, A. F., Pervushin, V. N. Conformal Cosmological Model Parameters with Distant SNe Ia Data:. “gold” and “silver”. Int. J. Mod. Phys. D 2010, 19, 1875–1887. [CrossRef]
- Pervushin, V. N., Arbuzov, A. B., Zakharov, A. F. Estimation of conformal cosmological model parameters with SDSS and SNLS supernova samples. Phys. Part. Nuc. Lett. 2017, 14, 368–370. [CrossRef]
- Maeder, A.; Gueorguiev, V.G. Action Principle for Scale Invariance and Applications (Part I). Symmetry 2023, 15(11), 1966. [Google Scholar] [CrossRef]
- Maeder, A.; Bouvier, P. Scale invariance, metrical connection and the motions of astronomical bodies. Astron. Astrophys. 1979, 73, 82–89. [Google Scholar]
- Bouvier, P.; Maeder, A. Consistency of Weyl’s Geometry as a Framework for Gravitation. Astrophys. Space Sci. 1978, 54, 497. [Google Scholar] [CrossRef]
- Gueorguiev, V.; Maeder, A. Revisiting the Cosmological Constant Problem within Quantum Cosmology. Universe 2020, 5, 108. [Google Scholar] [CrossRef]
- Jesus, J.F. Exact solution for flat scale-invariant cosmology, Rev. Mex. Astron. Astrophys. 55, 17 (2018). ArXiV: 1712.00697.
- Maeder, A. “Evolution of the early Universe in the scale invariant theory. arXiv 2019, arXiv:1902.10115. [Google Scholar]
- Frieman, J. A., Turner, M. S., & Huterer, D. ARA&A, 46, 385 (2008).
- Lusso, E. et al. Astron. Astrophys. 2019, 628, L4.
- Liske, J. et al. MNRAS 2008, 386, 1192.
- Milgrom, M. 2015, Phys. Rev. D. 91, 044009.
- Feynman, R. P. Mainly mechanics, radiation, and heat. Feynman lectures on physics, 1(1963).
- Williams, J.G., Boggs, D.H., Ratcliff, J.T.: Lunar Tidal Recession. 47th Lunar and Planetary Science Conference (2016a), 1096–1100.
- Williams, J.G., Boggs, D.H.: Secular tidal changes in lunar orbit and Earth rotation. Celestial Mechanics and Dynamical Astron 2016, 126, 89–129. [CrossRef]
- Christodoulidis, D. C., Smith, D. E., Williamson, R. G. et al.: Observed Tidal Braking in the Earth/moon/sun System. J. Geophys. Res. 93(B6) (1988), 6216–6236.
- Stephenson, F.R., Morrison, L.V., Hohenkerk, C.Y.: Measurement of the Earth’s rotation: 720 BC to AD 2015. Proc. R. Soc. A472 (2016), 404–430.
- Deines, S.D., Williams, C.A.: Earth’s rotational deceleration: determination of tidal friction independent of timescales. Astron.Journal. 151 (2016), 103–114.
- Stephenson, F.R., Morrison, L.V., Hohenkerk, C.Y.: Eclipses and the Earth’s Rotation General Assembly, Proceedings of the IAU IAU XXX (2020), 160–162.
- McCarthy, D.D., Babcock, A.: The length of day since 1656. Physics of the Earth and Planetary Interiors. 44 (1986), 281–292.
- Sidorenkov, N.S.: The effect of the El Nino Southern oscillation on the excitation of the Chandler motion of the Earth’s pole. Astron. Reports (in Russian) 41 (1997), 705–708.
- Williams, J.G.: Contribution to the Earth’s Obliquity Rate, Precession, and Nutation Astron. J. 108 (1994), 71.
- Maeder, A. M., Gueorguiev, V. G. On the relation of the lunar recession and the length-of-the-day. Astrophys Space Sci 366, 101 (2021).
- Bunker, A. J. and 61 colleagues (2023) JADES NIRSpec Spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in a z=10.60 luminous galaxy. arXiv e-prints. [CrossRef]
- Pitrou, C., Coc, A., Uzan, J.-P., Vangioni, E. “Precision big bang nucleosynthesis with improved Helium-4 predictions.” Physics Reports 754, 1–66 (2018). ArXiV: 1801.08023.
- Guth, A. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Linde, A. D. Lectures on Inflationary Cosmology in Particle Physics and Cosmology. In Proceedings of the Ninth Lake Louise Winter Institute, 20-26 February 1994. Lake Louise, Alberta, Canada. Lect. Notes Phys.1995,455, pp363-372.
- Linde, A. Particle Physics and Inflationary Universe. Contemp. Concepts Phys. 2005, 5, pp1–362. [Google Scholar]
- Weinberg, S. Cosmology; Oxford Univ. Press: Oxford, UK, 2008; p. 593. [Google Scholar]
- Skordis, C.; Złośnik, T. New Relativistic Theory for Modified Newtonian Dynamics. Phys. Rev. Lett. 2021, 2021 127, 1302. [Google Scholar] [CrossRef]
- Skordis, C.; Mota, D.F.; Ferreira, P.G.; Boehm, C. Large Scale Structure in Bekenstein’s Theory of Relativistic Modified Newtonian Dynamics. Phys. Rev. Lett. 2006, 96, 11301. [Google Scholar] [CrossRef]






| Co-Tensor Type | Mathematical Expression |
|---|---|
| co-scalar | , |
| co-vector | , |
| co-covector | . |
| Element | Obs. | PRMT | fit | fit* | fit* | fit | ||
|---|---|---|---|---|---|---|---|---|
| H | 0.755 | 0.753 | 0.805 | 0.755 | 0.849 | 0.75 | 0.753 | 0.755 |
| 0.245 | 0.247 | 0.195 | 0.245 | 0.151 | 0.25 | 0.247 | 0.245 | |
| 2.53 | 2.43 | 0.743 | 2.52 | 2.52 | 1.49 | 2.52 | 2.53 | |
| 3 | 1.1 | 1.04 | 0.745 | 1.05 | 0.825 | 0.884 | 1.05 | 1.04 |
| 7 | 1.58 | 5.56 | 11.9 | 5.24 | 6.97 | 9.65 | 5.31 | 5.42 |
| 3.01 | 3.01 | 3.01 | 3.01 | 3.01 | 3.01 | 3.01 | 3.01 | |
| 6.09 | 6.14 | 6.14 | 1.99 | 0.77 | 1.99 | 5.57 | 5.56 | |
| FRF | 1 | 1 | 1 | 1 | 1.63 | 1 | 1 | 1.02 |
| mŤ | 1 | 1 | 1 | 1 | 0.78 | 1 | 1 | 0.99 |
| Q/Ť | 1 | 1 | 1 | 1 | 1.28 | 1 | 1 | 1.01 |
| [%] | 4.9 | 4.9 | 4.9 | 1.6 | 0.6 | 1.6 | 4.4 | 4.4 |
| [%] | 31 | 31 | 31 | 5.9 | 23 | 5.9 | 86 | 95 |
| N/A | 6.84 | 34.9 | 6.11 | 14.8 | 21.9 | 6.2 | 6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).