Submitted:
13 November 2023
Posted:
14 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Literature Review Methodology
3. Energy Harvesting Basics
- Newton’s second law
- Maxwell’s displacement current
- Joule’s thermal conductivity
- Strouhal’s number for frequency oscillation
- Euler-Lagrange theorem
- Bernoulli’s fluid mechanics equation
- Navier-Strokes for incompressible Newtonian fluids
- Reynolds number for fluids
- Darcy’s law of flow rate
- Among others, unfairly not cited.
3.1. Piezoelectricity
3.2. Pyroelectricity
3.3. Triboelectricity
4. Energy Harvesting in Geoenvironmental Engineering Sources
4.1. Solar
4.2. Wind
4.3. Hydraulic
4.3.1. Dams and Reservoirs
4.3.2. Fluid Dynamics
4.4. Geomechanical and Geothermal
4.4.1. Soil Dynamics
4.4.2. Geothermal
4.4.3. Industry Machines
4.4.4. Transportation
4.4.5. Smart Homes
4.5. Biochemical
4.5.1. Microbiological
4.5.2. Biomechanics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ekonomou, G.; Menegaki, A. China in the Renewable Energy Era: What has Been Done and What Remains to be Done. Energies 2023, vol. 16, p. 6696. [CrossRef]
- Wang, H.; Jasim, A.; Chen, X. Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review. Applied Energy 2018, vol. 212, pp. 1083-1094. [CrossRef]
- United Nations Parliament and Council. The 2030 Agenda for Sustainable Development. 2020.
- Cao, L.N.; Xu, Z.; Wang, Z. Application of Triboelectric Nanogenerator in Fluid Dynamics Sensing: Past and Future. Nanomaterials 2022, vol. 12, no. 19, p. 3261. [CrossRef]
- Perez, R.; Perez, M. A fundamental look at energy reserves for the planet. IEA SHS Solar Update 2009.
- Da, H.; Xu, D.; Li, J.; Tang, Z.; Li, J.; Wang, C.; Luan, H.; Zhang, F.; Zeng, Y. Influencing Factors of Carbon Emission from Typical Refining Units: Identification, Analysis, and Mitigation Potential. Energies 2023, vol. 16, p. 6527. [CrossRef]
- Maggiotti, G.; Colangelo, G.; Milanese, M.; Risi, A. Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review. Energies 2023, vol. 16, p. 6772. [CrossRef]
- Kozuch, A.; Cywicka, D.; Adamowicz, K.; Wieruszewski, M.; Wysocka-Fijorek, E.; Kielbasa, P. The Use of Forest Biomass for Energy Purposes in Selected European Countries. Energies 2023, vol. 16, p. 5776. [CrossRef]
- Mo, C.; Davidson, J. Energy harvesting technologies for structural health monitoring applications. In Proceedings of 2013 IEEE Conference on Technologies for Sustainability (Sustech), Portland, Oregon, USA, 2013. [CrossRef]
- Balakrishnan, P.; Shabbir, M.; Siddiqi, A.; Wang, X. Current status and future prospects of renewable energy: A case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2020, vol. 42, no. 21, pp. 2698-2703. [CrossRef]
- Nurunnabi, M.; Esquer, J.; Munguia, N.; Zepeda, D.; Perez, R.; Velazquez, L. Reaching the sustainable development goals 2030: energy efficiency as an approach to corporate social responsibility (CSR). GeoJournal 2020, vol. 85, pp. 363-374. [CrossRef]
- Jäger-Waldau, A. Snapshot of Photovoltaics - May 2023. EPJ Photovoltaics 2023, vol. 14, no. 23. [CrossRef]
- Kazem, H.; Chaichan, M.; Ali, H.; Al-Waeli; Gholami, A. A systematic review of solar photovoltaic energy systems design modelling algorithms and software. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2022. vol. 44, no. 3, pp. 6709-6736. [CrossRef]
- Mohamed, M.; Wu, W.; Moniri, M. Power harvesting for smart sensor networks in monitoring water distribution system. In Proceedings of 2011 International Conference on Networking, Sensing and Control, Delft, the Netherlands, 2011. [CrossRef]
- Trivedi, A.; Shukla, S. Testing and Technology for Load Carrying Capacity of Deep Foundations. In Proceedings of 2019 International Symposium, Delhi, India, 2019.
- Newston, C.; Halter, S.; Hassan, M. Tran-SET 2020. In Proceedings of Tran-SET Conference 2020, Albuquerque, New Mexico, USA, 2020.
- Zheng, X.; He, L.; Wang, S.; Liu, X.; Liu, R. A review of piezoelectric energy harvesters for harvesting wind energy. Sensors and Actuators: A. Physical 2023. vol. 352, p. 114190. [CrossRef]
- Chandrasekharam, D.; Bundschuh, J. Low Enthalpy Geothermal Resources for Power Generation. Bombay, India: CRC Press, 2008.
- Wang,Y.; Voskov, D.; Khait, M.; Saeid, S.; Bruhn, D. Influential factors on the development of a low-enthalpy geothermal reservoir: A sensitivity study of a realistic field. Renewable Energy 2021. vol. 179, pp. 641-651. [CrossRef]
- Singh, P.; Hussain, C.; Sillanpaa, M. Innovative Bio-based Technologies for Environmental Remediation, Boca Raton, Florida, USA: CRC Press, 2022. [CrossRef]
- Fouladi, A.; Arulrajah, A.; Chu, J.; Horpibulsuk, S. Application of Microbially Induced Calcite Precipitation (MICP) technology in construction materials: A comprehensive review of waste stream contributions." Construction and Building Materials 2023. vol. 388, p. 131546. [CrossRef]
- Islam, T.; Nabi, M.; Arefin, M.; Mostakim, K.; Rashid, F.; Hassan, N.; Rahman, S.; McIntosh, S.; Mullins, B.; Muyeen, S. Trends and prospects of geothermal energy as an alternative source of power: A comprehensive review. Heliyon 2022. vol. 8, p. e11836. [CrossRef]
- Salazar, S.; Muñoz, Y.; Ospino, A. Analysis of geothermal energy as an alternative source for electricity in Colombia. Geothermal Energy 2017. vol. 5, no. 27, pp. 1-12. [CrossRef]
- Trota, A.; Ferreira, P.; Ferreira-Gomes, L.; Cabral, J.; Kallberg, P. Power Production Estimates from Geothermal Resources by Means of Small-Size Compact Climeon Heat Power Converters: Case Studies from Portugal (Sete Cidades, Azores and Longroiva Spa, Mainland). Energies 2019. vol. 12, p. 2838. [CrossRef]
- Vieira, A.; Andrés, B.; Ferreira-Gomes, L.; Kallberg, P. Contribuição para a utilização de energia geotérmica no Brasil. In Engenharia de Construção Civil e Urbana, Ponta Grossa, PR, Atena Editora, 2019, pp. 149-165.
- Zhu, J.; Zhu, M.; Shi, Q.; Wen, F.; Liu, L.; Dong, B.; Haroun, A.; Yang, Y.; Vachon, P.; Guo, X.; He, T.; Lee, C. Progress in TENG technology - A journey from energy harvesting to nanoenergy and nanosystem. EcoMat - Functional Materials for Green Energy and Environment 2020. vol. 2, no. e12058, pp. 1-45. [CrossRef]
- Mei, X.; Lu, B.; Yan, C.; Gu, J.; Ren, N.; Ren, Z.; Xing, D. The interplay of active energy harvesting and wastewater organic loading regulates fermentation products and microbiomes in microbial fuel cells. Resources, Conservation and Recycling 2022. vol. 183, p. 106366. [CrossRef]
- Stilwell, A.; Hoppock, D.; Webber, M. Energy Recovery from Wastewater Treatment Plants in the United States: A Case Study of the Energy-Water Nexus. Sustainability 2010. vol. 2, no. 4, pp. 945-962. [CrossRef]
- Santos, E.; Albuquerque, A.; Lisboa, I.; Murray, P.; Ermis, H. Economic Assessment of Energy Consumption in Wastewater Treatment Plants: Applicability of Alternative Nature-Based Technologies in Portugal. Water 2022. vol. 14, no. 13, p. 2042. [CrossRef]
- Fan, S.; Li, A.; ter Heijne, A.; Buisman, C.; Chen, W.-S. Heat potential, generation, recovery and utilization from composting: A review. Resources, Conservation and Recycling 2021. vol. 175, p. 105850. [CrossRef]
- Azizul Moqsud, M. Bioelectricity from Organic Solid Waste. Strategies of Sustainable Solid Waste Management. In Strategies of Sustainable Solid Waste Management, London, UK, IntechOpen, 2021.
- Hanson, J.; Onnen, M.; Yeşiller, N.; Kopp, K. Heat energy potential of municipal solid waste landfills: Review of heat generation and assessment of vertical extraction systems. Renewable and Sustainable Energy Reviews 2021. vol. 167, p. 112835. [CrossRef]
- Llácer-Iglesias, R.; López-Jiménez, P.; Pérez-Sánchez, M. Hydropower Technology for Sustainable Energy Generation in Wastewater Systems: Learning from the Experience. Water 2021. vol. 13, no. 22, p. 3259. [CrossRef]
- Sarkar, P.; Sharma, B.; Malik, U. Energy generation from grey water in high raised buildings: The case of India. Renewable Energy 2014. vol. 69, pp. 284-289. [CrossRef]
- Wang, S.; Liu, Q.; Li, J.; Wang, Z. Methane in wastewater treatment plants: status, characteristics, and bioconversion feasibility by methane oxidizing bacteria for high value-added chemicals production and wastewater treatment. Water Research 2021. vol. 198, p. 117122. [CrossRef]
- Song, C.; Zhu, J.-J.; Willis, J.; Moore, D.; Zondlo, M.; Ren, Z. Methane Emissions from Municipal Wastewater Collection and Treatment Systems. Environmental Science & Technology 2023. vol. 57, no. 6, pp. 2248-2261. [CrossRef]
- Đurđević, D.; Balić, D.; Franković, B. Wastewater heat utilization through heat pumps: The case study of City of Rijeka. Journal of Cleaner Production 2019. vol. 231, pp. 207-213. [CrossRef]
- Nagpal, H.; Spriet, J.; Murali, M.; McNabola, A. Heat Recovery from Wastewater—A Review of Available Resource. Water 2021. vol. 13, no. 9, p. 1274. [CrossRef]
- Zahmatkesh, S.; Amesho, K.; Sillanpaa, M.; Wang, C. Integration of renewable energy in wastewater treatment during COVID-19 pandemic: Challenges, opportunities, and progressive research trends. Cleaner Chemical Engineering 2022. vol. 3, p. 100036. [CrossRef]
- Maktabifard, M.; Zaborowska, E.; Makinia, J. Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production. Reviews in Environmental Science and Bio/Technology 2018. vol. 17, pp. 655-689. [CrossRef]
- Kumar, S.; Yasasve, M.; Karthigadevi, G.; Aashabharathi, M.; Subbaiya, R.; Karmegam, K.; Govarthanan, M. Efficiency of microbial fuel cells in the treatment and energy recovery from food wastes: Trends and applications - A review. Chemosphere 2022. vol. 287, no. Part 4, p. 132439. [CrossRef]
- Serra, P.; Espírito-Santo, A.; Albuquerque, A. An experimental setup for energy efficiency evaluation of microbial fuel cells. In Proceedings of 2015 IEEE International Conference on Industrial Technology (ICIT), 2015. [CrossRef]
- Koffi, N.; Okabe, S. High electrical energy harvesting performance of an integrated microbial fuel cell and low voltage booster-rectifier system treating domestic wastewater. Bioresource Technology 2022. vol. 359, p. 127455. [CrossRef]
- Wang, Y.; Liu, X.; Chen, T.; Wang, H.; Zhu, C.; Yu, H.; Song, L.; Pan, X.; Mi, J.; Lee, C.; Xu, M. An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition. Nano Energy 2021. vol. 90, p. 106503. [CrossRef]
- Yao, C.-J.; Zhang, H.-L., Zhang, Q. Recent Progress in Thermoelectric Materials Based on Conjugated Polymers. Polymers 2019. vol. 11, no. 1, p. 107. [CrossRef]
- Curie, J.; P. Curie, P. Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de Minéralogie 1880, Vols. 3-4, pp. 90-93.
- Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021. vol. 80, p. 105567. [CrossRef]
- Kargar, S.; Hao, G. An Atlas of Piezoelectric Energy Harvesters in Oceanic Applications. Sensors 2022. vol. 22, no. 5, p. 1949. [CrossRef]
- Li, Z.; Zheng, Q.; Wang, Z.; Li, Z.; Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics. AAAS Research 2020. p. 25, 2020. [CrossRef]
- Afroz, A.; Romano, D.; Inglese, F.; Stefanini, C. Towards Bio-Hybrid Energy Harvesting in the Real-World: Pushing the Boundaries of Technologies and Strategies Using Bio-Electrochemical and Bio-Mechanical Processes. Applied Science 2021. vol. 11, no. 5, p. 2220, 2021. [CrossRef]
- Junior, O.; Calderon, N.; Souza, S. Characterization of a thermoelectric generator (TEG) system for waste heat recovery. Energies 2018. vol. 11, no. 6, p. 1555. [CrossRef]
- Chung, C.-K.; Huang, Y.-J.; Wang, T.; Lo, Y.-L. Fiber-Based Triboelectric Nanogenerator for Mechanical Energy Harvesting and Its Application to a Human–Machine Interface. Sensors 2022. vol. 22, no. 24, p. 9632. [CrossRef]
- Chen, L.; Zhao, Y.; Shen, Y.; Wang, K.; Ma, P.; Wang, F.; Chen, C. 3D Stitching Double Weave Fabric-Based Elastic Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing. Energies 2023. vol. 16, p. 2284. [CrossRef]
- Shi, S.; Jiang, Y.; Xu, Q.; Zhang, Y.; Zhang, J.; Li, J.; Xie, Y.; Cao, Z.-P. A self-powered triboelectric multi-information motion monitoring sensor and its application in wireless real-time control. Nano Energy 2022. vol. 97, p. 107150. [CrossRef]
- Kahn, N.T.H. The Effect of Magnetic Field on Soli-Liquid Contact Electrification for Streaming Flow Energy Harvesting. Energies 2023. vol. 16, p. 4779. [CrossRef]
- M. Aldamasy, I. Z.; Li, G.; Pascual, J.; Alharthi, F.; Abate, A.; Li, M. Challenges in tin perovskite solar cells. Physical Chemistry Chemical Physics 2021. vol. 23, pp. 23413-23427. [CrossRef]
- Ziegler, W. Radiant heating of airport aprons. Airport Operations and Maintenance Challenge, New York, USA, 2009.
- Palosaari, J.; Juuti, J.; Jantunen, H. Piezoelectric Energy Harvesting from Rotational Motion to Power Industrial Maintenance Sensors. Sensors 2022. vol. 22, no. 19, p. 7449. [CrossRef]
- Njiri, J.; Soffker, D. State-of-the-art in wind turbine control: Trends and challenges. Renewable and Sustainable Energy Reviews 2016. vol. 60, pp. 377-393. [CrossRef]
- GWEC. Global Wind Report 2018. GWEC, Brussels, Belgium, 2019.
- Menezes, E.; Araújo, A. Bouchonneau da Silva, N. A review on wind turbine control and its associated methods. Journal of Cleaner Production 2018. vol. 174, pp. 945-953. [CrossRef]
- Soares-Ramos, E.; Oliveira-Assis, L.; Sarrias-Mena, R.; Fernández Ramírez, L. Current status and future trends of offshore wind power in Europe. Energy 2020. vol. 202, p. 117787. [CrossRef]
- Lakc, J.; Pao, L.; Wright, A. Control of Wind Turbines: Past, Present, and Future. In Proceedings of 2009 American Control Conference, St. Louis, MO, USA, 2009. [CrossRef]
- Kwak, S.; Yoon, H.-J.; Kim, S.-W. Textile-Based Triboelectric Nanogenerators for Self-Powered Wearable Electronics. Advanced Functional Materials 2018. vol. 29, no. 2, p. 1804533. [CrossRef]
- Cha, Y.; Chae, H.; Kim, H.; Walcott, H.; Peterson, S.; Porfiri, M. Energy harvesting from a piezoelectric biomimetic fish tail. Renewable Energy 2016. vol. 86, pp. 449-458. [CrossRef]
- Ri, X.; Zeng, Z.; Zhag, Y.; Li, Y.; Feng, H.; Huang, X.; Sha, Z. Design and experimental investigation of a self-tuning piezoelectric energy harvesting system for intelligent vehicle wheels. IEEE: Transactions on Vehicular Technology 2020. vol. 69, no. 2, pp. 1440-1451. [CrossRef]
- Zhu, H.; Tang, T.; Yang, H.; Wang, J.; Song, J.; Peng, G. The State-of-the-Art Brief Review on Piezoelectric Energy Harvesting from Flow-Induced Vibration. Hindawi Shock and Vibration 2021. p. 19. [CrossRef]
- Kasa, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a waste 2.0: A global snapshot of solid waste management to 2050. pp. 1-295, 2018.
- Lee, S.; Kim, S.; Pathak, A.; Tripathi, A.; Qiao, T.; Lee, Y.; Lee, H.; Woo, H Recent Progress in Organic Thermoelectric Materials and Devices. Macromolecular Research 2020. vol. 28, pp. 531-552. [CrossRef]
- Toshima, N. Recent progress of organic and hybrid thermoelectric materials. Synthetic Metals 2017. vol. 225, pp. 3-21. [CrossRef]
- Fang, R.; Zhang, W.; Zhang, S.; Chen, W. The rising star in photovoltaics-perovskite solar cells: The past, present and future. Science China Technological Series 2016. vol. 59, pp. 989-1006. [CrossRef]
- Ibrahim, I.; Otvos, T.; Gilmanova, A.; Tocca, E.; Ghanem, C.; Wanat, M. Intergovernmental Organizations. In International Energy Agency, The Netherlands: Kluwer Law International B. V., 2021.
- Sen, S.; Al Nafi Khan, A.; Dutta, S.; Mortuza, A.; Sumaiya, U. Hydropower potentials in Bangladesh in context of current exploitation of energy sources: a comprehensive review. International Journal of Energy and Water Resources 2022. vol. 6, pp. 413-435. [CrossRef]
- Erturk, A.; Inman, D. Piezoelectric Energy Harvesting, Chichester, UK: John Wiley & Sons, 2011.
- Wu, N.; Bao, B.; Wang, Q. Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output. Engineering Structures 2021. vol. 235, p. 112068. [CrossRef]
- T. Chen, T.; Song, W.-Z.; Zhang, M.; Sun, D.-J.; Zhan, D.-S.; Li, C.-L.; Cui, W.-Y.; Fan, T.-T.; Ramakrishna, S.; Long, Y.-Z. Acid and alkali-resistant fabric-based triboelectric nanogenerator for self-powered intelligent monitoring of protective clothing in highly corrosive environments. RSC Advances 2023. vol. 13, pp. 11697-11705. [CrossRef]
- Min, Z.; Hou, C.; Sui, G.; Shan, X.; Xie, T. Simulation and Experimental Study of a Piezoelectric Stack Energy Harvester for Railway Track Vibrations. Micromachines 2023. vol. 14, no. 4, p. 892. [CrossRef]
- Guo, H.; Li, T.; Cao, X.; Xiong, J.; Jie, Y.; Willander, M.; Cao, X.; Wang, N.; Wang, Z. Self-Sterilized Flexible Single-Electrode Triboelectric Nanogenerator for Energy Harvesting and Dynamic Force Sensing. ACS Nano 2011. vol. 11, no.1, pp. 856-864. [CrossRef]
- Laldjebaev, M.; Isaev, R.; Saukhimov, A. Renewable energy in Central Asia: An overview of potentials, deployment, outlook, and barriers. Energy Reports 2021. vol. 7, pp. 3125-3136. [CrossRef]
- Lund, J.; Freeston, D.; Boyd, T. Direct utilization of geothermal energy 2010 worldwide review. Geothermics 2011. vol. 40, pp. 159-180. [CrossRef]
- Chandrasekharam, D.; Ranjith Pathegama, G. CO2 emissions from renewables: solar pv, hydrothermal and EGS sources. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 2021. vol. 6, no. 13. [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; Ehalt Macedo, H.; Filgueiras, R.; Goichot, M.; Higgins, J.; Hogan, Z.; Lip, B.; McClain, M.; Meng, J.; Mulligan, M. Mapping the world's free-flowing rivers. Nature 2019. vol. 569, pp. 217-239. [CrossRef]
- NASA. NASA Scientific Visualization Studio. NASA, 3 May 2023. [Online]. Available: https://svs.gsfc.nasa.gov/3827. [Accessed 30 May 2023].
- Rodrigues, J.; Segundo, D.; Junqueira, H.; Sabino, M.; Prince, R.; Al-Muhtadi, J.; Albuquerque, V. Enabling Technologies for the Internet of Health Things. IEEE Access 2018. vol. 1, no. 1, p. 99. [CrossRef]
- Cisco. Cisco Annual Internet Report (2018–2023). Cisco, San José, California, USA, 25p., 2020.
- Kim, M. Beyond-materials for sustainable power generation. In Proceedings of IEEE 34th International Conference on Micro Electromechanical Systems (MEMS), Virtual, 2021. [CrossRef]
- Abdugapbar, K.; Dautov, K.; Hashmi, M.; Nauryzbayev, G. Design of Performance Enhanced Metamaterial-Enabled Absorber for Low-Power IoT Networks. In Proceedings of International Conference on Internet of Things as a Service, 2022. [CrossRef]
- Ramya, M.; Senthil Kumar, P. A review on recent advancements in bioenergy production using microbial fuel cells. Chemosphere 2022. vol. 288, p. 132512. [CrossRef]
- Wang, J.; Ren, X.; Zhu, Y.; Huang, J.; Liu, S. A Review of Recent Advances in Microbial Fuel Cells: Preparation, Operation, and Application. BioTech 2022. vol. 11, no. 4, p. 44. [CrossRef]
- Rabaey, K.; Angenent, L.; Schroder, U.; Keller, J. Bioelectrochemical Systems, London, UK: IWA Publishing, 2010.
- Prathiba, S.; Kumar, P.; Vo, D.-V. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere 2022. vol. 286, p. 131856. [CrossRef]



| Sources | EH Techniques | EH Basics | Recent Investigation | Geoenvironmental |
|---|---|---|---|---|
| Solar [12,13,45,56,57] |
Photovoltaics Thermal Solar cells |
Piezoelectricity TENG |
AI compatibility Stable crystalline structure New materials Photo-reactors |
Construction in general |
| Wind [58,59,60,61,62,63] |
Wind Turbines | Piezoelectricity | Smart sensors AI compatibility |
Offshore Platform Construction in general |
| Hydraulic[14,44,48] | Devices for Oceanic and River Flow | Piezoelectricity TENG |
Smart sensors New materials Durability |
Offshore Platforms Canals Water Distribution System |
| Water Turbines | Piezoelectricity | Smart sensors AI compatibility Power storage |
Water Storage Facility Waste Containment |
|
| Biochemical [7-9,20,21,28–31,35,41,43,50–54,64,65] |
Microbial fuel cells Enzyme-based fuel cells |
Piezoelectricity | Electrode configurationsNew materialsBiosensors | Wastewater Treatment Bioremediation Solid Waste Processing Biosensing |
| Biomechanisms | Piezoelectricity Pyroelectricity TENG |
AI compatibility New materials Biosensors |
Biosensing Agroindustry |
|
| Geothermal and Geomechanical [2,15,16,17,18,19,22,66,67] |
Devices for Civil and Geotechnical structures | Piezoelectricity TENG |
New materials Smart sensors Durability |
Construction in general Earthworks in general Highway and Roads Railways Machinery in general |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
