Submitted:
13 November 2023
Posted:
14 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methodology
2.1. Study Area
2.2. Date Sets
2.3. Method
2.3.1. Image Recognition
2.3.2. Model Training
2.3.3. Manual Verification
2.3.4. Quantitative Testing
3. Results
3.1. Results of Rural Buildings Extraction
3.2. Date Verification
3.2.1. Manual Sampling Verification
3.2.2. Correlation Testing
| Geogrephic region | correlation coefficient |
|---|---|
| Red River Delta | 0.96 |
| Northern Midlands and Mountain areas | 0.97 |
| Northern Central area and Central coastal area | 0.98 |
| Central Highlands | 0.87 |
| South East | 0.40 |
| Mekong River Delta | 0.93 |
3.3. Analysis of Rural Buildings Distribution
3.3.1. Analysis on National Scale
3.3.2. Analysis on Regional Scale
| Echelon | Area | Number of rural buildings | Density of rural buildings | Rural population (million) | Gini coefficient |
|---|---|---|---|---|---|
| 一 | Red River Delta | 6496812 | 477/km2 | 1.47 | 0.13 |
| 二 | South East | 2687616 | 190/km2 | 7.67 | 0.17 |
| Mekong River Delta | 5412507 | 188/km2 | 1.23 | 0.17 | |
| 三 | Northern Central area and Central coastal | 7248274 | 92/km2 | 8.31 | 0.47 |
| Northern Midlands and Mountain areas | 4860459 | 79/km2 | 7.95 | 0.40 | |
| 四 | Central Highlands | 2040244 | 45/km2 | 4.29 | 0.30 |
3.3.3. Analysis on Provincial Scale
4. Conclusions and Prospects
References
- Nguyen, T. A., Gillen, J., & Rigg, J.; Economic transition without agrarian transformation: the pivotal place of smallholder rice farming in Vietnam's modernisation. J. Rural Stud. 2020, 74, 86–95. [CrossRef]
- Qiming, Jin. The Rural Settlement Geography in China; Jiangsu Science and Technology Press: Nanjing, China, 1989. (in Chinese) [Google Scholar]
- Le, T.H.; Tran-Nam. Relative costs and FDI: Why did Vietnam forge so far ahead? Econ Analysis and Policy. 2018, 59, 1–13. [Google Scholar] [CrossRef]
- Vu, H.T.D.; Tran, D.D.; Schenk, A.; etc. Land use change in the Vietnamese Mekong Delta: New evidence from remote sensing. Sci. Total Environ. 2022, 813, 151918. [CrossRef]
- Tong, Sun.; Xiao Xiao. Analysis of regional differences and influencing factors of rural housing conditions in China. China Market. 2016, 20, 36–39. (in Chinese).
- McKinley, T.; Wang, L.N. Housing and wealth in rural China. China Econ. Rev. 1992, 3, 195–211. [Google Scholar] [CrossRef]
- Wanlin, Z.; Zhigang, W. Design of a settlement residential space based on fractal structures and isomorphism: A case study on traditional Yi settlements in Chu Xiong. South Architecture. 2021, 5, 130–137. (in Chinese). [Google Scholar]
- Lichter, D.T.; Johnson, K.M. Emerging rural settlement patterns and the geographic redistribution of America's new immigrants. Rural Social. 2006, 71, 109–131. [Google Scholar] [CrossRef]
- Hosseini, S.B.; Faizi, M.; Norouzian-Maleki, S.; Karimi Azari, A.R. Impact evaluation of rural development plans for renovating and retrofitting of rural settlements: Case Study: Rural Districts of Tafresh in Iran. Environ. Earth Sci. 2015, 73, 3033–3042. [Google Scholar] [CrossRef]
- Dao, M.Q. Rural poverty in developing countries: an empirical analysis. J. Econ. Stud. 2004, 31(6), 500–508. [Google Scholar] [CrossRef]
- Saksena, S.; Fox, J.; Spencer, J.; Castrence, M., DiGregorio, M., Epprecht, M., ... & Vien, T. D. Classifying and mapping the urban transition in Vietnam. Appl Geogr. 2014, 50, 80–89. [CrossRef]
- Linard, C.; Gilbert, M.; Snow, R.W.; Noor, A.M.; Tatem, A.J. Population distribution, settlement patterns and accessibility across Africa in 2010. PloS one. 2012, 7, e31743. [Google Scholar] [CrossRef]
- Oliver.; Schulte.; Trung, Thanh, Nguyen. Agricultural commercialisation, asset growth and poverty in rural Vietnam. Aust. J. Agric. Res. Econ. 2023. [CrossRef]
- Kerkvliet, B. J. T.; & Porter, D. J. Rural Vietnam in rural Asia. Vietnam's rural transformation, 2018; 1–37.
- Eva, Salve, T.; Bacud.; Ranjitha, Puskur.; Tran, Nhat, Lam, Duyen.; Bjoern, Ole, Sander.; Joyce, Luis. Rural outmigration – feminization – agricultural production nexus: Case of Vietnam. Migration for Development, 2021. [CrossRef]
- Yutao, G. New initiatives of agricultural reform in Vietnam in recent years and a review. Agric Econ. 2014, 5, 14–16. (in Chinese). [Google Scholar]
- Chuc, N. D.; Anh, D. T. Digital Transformation in Vietnam. J. Sou. Asi. Econ. 2023, 40, 127–144. [Google Scholar]
- Manh, Hai, Nguyen.; Duc, Anh, Dang.; Amy, Y.C.; Liu. Study of Rural–Urban Migration in Vietnam: The Survey. Res. Pap. Econ. 2019. [CrossRef] [PubMed]
- Dacai, D.; Four paradigms beyond the village: A methodological perspective: A case study of Skinner, Friedman, Zongzhi Huang and Zanqi Du. Soc. Sci. Res. 2010, 2, 130–136. (in Chinese).
- Cuong, Hoang, Van; Yen, Hai, Thi, Nguyen. A quantitative analysis of housing and its correlates in rural Vietnam. Mana. Sci. Let. 2020. [CrossRef]
- Thi, Anh, Dao, Vo.; Tien-Khai, Tran. Climate change and rural vulnerability in Vietnam: An analysis of livelihood vulnerability index. Hum. Eco. Risk. Ass. 2022. [CrossRef]
- Nguyen, Thi, Bich, Thuan.; Curt, Löfgren.; Nguyen, Thi, Kim, Chuc.; Lars, H, Lindholm. Are the Estimates of Catastrophic Health Expenditure Among Rural Population too High? A Comparison of Studies in Vietnam. The Open Pub. Hea. J. 2009. [CrossRef]
- Yifan, C.; Weipan, X. Evaluation of village view AI-assisted rural construction. World Arch. 2022, 11, 20–21. (in Chinese). [Google Scholar]
- Andrew, McKay.; Saurabh, Singhal.; Finn, Tarp. Welfare dynamics in rural Vietnam: Learning from regular, high-quality panel data. Res Pap Econ. 2018. [CrossRef]
- Duc, Loc, Nguyen.; Ulrike, Grote.; Trung, Thanh, Nguyen. Migration, crop production and non-farm labor diversification in rural Vietnam. Econ Anal. Policy 2019. [CrossRef]
- Ngoc-Wen-Li. North-South Differences in Vietnamese Villages and Cultural Characteristics of Water Trade in the South. Taiw. J. Southeast Asia. 2018, 13, 59–77. (in Chinese). [Google Scholar]
- Hui, W.; Xueqiong, T. Symbolic symbolization and identity construction of rural residential landscapes along the Sino Vietnamese border - A case of border villages in Long Zhou County, Guangxi. Sci Geo Sin. 2017, 37, 595–602. (in Chinese). [Google Scholar]
- Arouri, M.; Nguyen, C.; & Youssef, A. B. Natural disasters, household welfare, and resilience: evidence from rural Vietnam. World dev. 2015, 70, 59–77. [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; ... & Zhang, L. Deep learning in environmental remote sensing: Achievements and challenges. Rem Sens. Env. 2020, 241, 111716. [CrossRef]
- Hernández, J.; Garcıa, L.; & Ayuga, F. Integration methodologies for visual impact assessment of rural buildings by geographic information systems. Bios Eng. 2004, 88, 255–263. [CrossRef]
- Chen, S.; Ogawa, Y.; Zhao, C.; & Sekimoto, Y. Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach. ISPRS J.Pho. Rem Sens. 2023, 195, 129–152. [CrossRef]
- Amo-Boateng, M.; Sey, N.E.N.; Amproche, A.A.; etc. Instance segmentation scheme for roofs in rural areas based on Mask R-CNN. The Egy. J. Rem Sens. Space Sci. 2022, 25, 569–577. [CrossRef]
- Luo, L.; Guo, X. Recognition and Extraction of Blue-roofed Houses in Remote Sensing Images based on Improved Mask-RCNN. Int. Core. J. Eng. 2022, 8, 639–645. [Google Scholar]
- Wu, W.; Liu, H.; Li, L.; Long, Y.; Wang, X.; Wang, Z.; ... & Chang, Y. Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image. PloS one. 2021, 16, e0259283. [CrossRef]
- Conrad, C.; Rudloff, M.; Abdullaev, I.; etc. Measuring rural settlement expansion in Uzbekistan using remote sensing to support spatial planning. Appl Geogr. 2015, 62, 29–43. [CrossRef]
- Zhou, Y.; Liu, Y. Solar power brings money to rural areas. Nature. 2018, 560, 29–30. [Google Scholar] [CrossRef]
- Gassar, A.A.A.; Cha, S.H. Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales. Appl Ener. 2021, 291, 116817. [Google Scholar] [CrossRef]
- Zou, S.; Wang, L. Individual vacant house detection in very-high-resolution remote sensing images. Ann. Am. Assoc. Geogr. 2020, 110, 449–461. [Google Scholar] [CrossRef]
- Schuegraf, P., Schnell, J., Henry, C., & Bittner, K. Building Section Instance Segmentation with Combined Classical and Deep Learning Methods. ISPRS Ann. Photo, Rem Sens. Spa. Inf. Sci. 2022, 2, 407–414. [CrossRef]
- Wang, W.; Shi, Y.; Zhang, J.; Hu, L.; Li, S.; etc. Traditional Village Building Extraction Based on Improved Mask R-CNN: A Case Study of Beijing, China. Remote Sensing. 2023, 15, 2616. [CrossRef]
- Zhang, X.; An, G.; & Liu, Y. Mask R-CNN with feature pyramid attention for instance segmentation. In 2018 14th IEEE International Conference on Signal Processing (ICSP) (pp. 1194-1197). 2018, IEEE. [CrossRef]
- Ghanea, M.; Moallem, P.; Momeni, M. Building extraction from high-resolution satellite images in urban areas: Recent methods and strategies against significant challenges. Int. J. Rem Sens. 2016, 37, 5234–5248. [Google Scholar] [CrossRef]
- Stiller, D.; Stark, T.; Wurm, M.; etc. Large-scale building extraction in very high-resolution aerial imagery using Mask R-CNN. Joint Urban Remote Sensing Event (JURSE). 2019, 1–4. [CrossRef]
- Tiede, D.; Schwendemann, G.; Alobaidi, A.; etc. Mask R- CNN- based building extraction from VHR satellite data in operational humanitarian action: An example related to Covid-19 response in Khartoum, Sudan. Transactions in GIS. 2021, 25, 1213–1227. [CrossRef]
- ISPRS 2D Semantic Labeling Contest, 2018. http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html.
- Mnih, V. Machine learning for aerial image labeling. University of Toronto: Toronto, Canada, 2013.
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; etc. Can semantic labeling methods generalize to any city? The Inria aerial image labeling benchmark. Int Geosci. Remo Sens Sym (IGARSS). 2017, 3226–3229. [CrossRef]
- Ji, S, P.; Wei, S, Q.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Transac. Geosci. Remo Sens. 2019, 57, 574–586. [CrossRef]
- Ghanea, M.; Moallem, P.; Momeni, M. Building extraction from high-resolution satellite images in urban areas: Recent methods and strategies against significant challenges. Int. J. Remo Sens. 2016, 37, 5234–5248. [Google Scholar] [CrossRef]
- Nguyen, Q.; Kim, D. C. Reconsidering rural land use and livelihood transition under the pressure of urbanization in Vietnam: A case study of Hanoi. Land Use Policy. 2020, 99, 104896. [Google Scholar] [CrossRef]
- Institute of International Trade and Economic Cooperation, Ministry of Commerce of China, Economic and Commercial Section of the Chinese Embassy in Viet Nam, Department of Foreign Investment and Economic Cooperation, Ministry of Commerce. Country (Region) Guide for Outward Investment Cooperation–Vietnam (2020 Edition) [DB/OL], Beijing, 2021.
- Xuecao, Li.; Peng, Gong.; Yuyu, Zhou.; etc. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Envi Res Letters. 2020, 15, 094044. [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; etc. Mask r-cnn. Proceedings of the IEEE international conference on computer vision. 2017, 2961–2969.
- Xun, LI.; Weipan, XU.; Yaofu, Huang.; etc. Spatial distribution of rural building in China: Remote sensing interpretation and density analysis. J. Geogr. 2022, 77, 835–851.
- He, K.; Zhang, X.; Ren, S.; etc. Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016, 770–778.
- Huiming, Y.; Fuxin, X. A remote sensing image target recognition method based on improved Mask-RCNN model. International Conference on Big Data. Art. Int. Int. Thi. Engin (ICBAIE) 2021, 436–439. [Google Scholar] [CrossRef]
- Zhao, K.; Kang, J.; Jung, J.; etc. Building extraction from satellite images using Mask R-CNN with building boundary regularization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops 2018, 247–251.
- Sun, L.; Tang, Y.; Zhang, L. Rural building detection in high-resolution imagery based on a two-stage CNN model. IEEE Geosci. Remo Sens. Letters. 2017, 14, 1998–2002. [Google Scholar] [CrossRef]
- Shibuya, S. Urbanization, Jobs, and the Family in the Mekong Delta, Vietnam. J. Compar. Fam. Stu. 2018, 49, 93–108. [Google Scholar] [CrossRef]
- Nguyen, Hong, Nhung., Nguyen, Quang, Thai., Bui, Trinh., Nguyen, Viet, Phong. (2019). Rural and Urban in Vietnam Economic Structure. Int. Busi. Res. [CrossRef]
- Yin, X.; Li, P.; Feng, Z. M.; etc. Population Dataset in Vietnam (2000–2019). J. Glob. Cha. Data. Disc. 2022, 1, 1–11. [CrossRef]
- Liu, Y.; Ke, X.; Wu, W.; etc. Geospatial characterization of rural settlements and potential targets for revitalization by geoinformation technology. Sci. Rep. 2022, 12, 8399. [CrossRef]
- Rigg, J. Evolving rural-urban relations and livelihoods. Southeast Asia transformed: A geography of change 2003, 231–256. [Google Scholar] [CrossRef]
| 1 | Data Sources: https://data.worldbank.org/country/viet-nam. |
| 2 | |
| 3 | Data Sources: https://www.gso.gov.vn/en/data-and-statistics/. |








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
