Submitted:
03 November 2023
Posted:
06 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Animals and samples manufactured
2.2. Sensory analysis
2.3. Sample Set and NIRS Analysis
2.4. Data Analysis
| Pre-treatment | Normalization* | SVR type** | Kernel** | PSO parameters** |
|---|---|---|---|---|
| MSC | Mean center | ε-SVR | Linear | C |
| SNV | Autoscale | ν-SVR | Polynomial | ε (for ε-SVR) |
| 1std | Pareto | Radial Base | ν (ν-SVR) | |
| 2ndd | Poison | Sigmoid | γ (except for linear kernel) | |
| MinMax#break#[-1+1] | Intercept (for polynomial and sigmoid kernel) | |||
| Degree (2 to 5 for polynomial kernel) |
3. Results and discussion
3.1. Sensory data
3.2. NIR analysis
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SPREGA, 2023. Suínos. Sociedade Portuguesa de Recursos Genéticos Animais. Santarém. Disponível em: http://www.sprega.com.pt/conteudo.php?idesp=su%EDnos (Acessed on: August of 2022).
- Araújo, J.; Cerqueira, J.; Pires, P.; Amorim, I.; Durão, J.; Cadavez, V.; Santos Silva, J.; Dominguez, R.; Bermúdez, R.; Lorenzo, J. Growth performance of Bísaro pigs in hoop barn and confinement housing systems. Archivos de Zootecnia: Proceedings IX Simposio Internacional sobre el Cerdo Mediterrâneo. 2018, 31-35. https://dialnet.unirioja.es/servlet/articulo?codigo=6537176.
- ANCSUB, 2023. Associação Nacional de Criadores de Suínos da Raça Bísara. Raça Bísara. Disponível em: http://www.porcobisaro.net/dados/racabisara.php. (Acessed on: July of 2022).
- Barbosa, N. 2017. Caracterização físico-química de presuntos de porcos da raça Bísara com diferentes tempos de cura. Dissertação de mestrado. Departamento de Tecnologias da Ciência Animal. Escola Superior Agrária do Instituto Politécnico de Bragança. Bragança: 1-87.
- Lebret, B.; Candek-Potokar, M. Review: Pork quality attributes from farm to fork. Part II. Processed pork products. Int. J. Anim. Biosci. 2022, 16, 100–383. [Google Scholar] [CrossRef]
- Carvalho, M.; Oliveira, M.; Azevedo, J. 2013. Efeito do sexo no perfil em ácidos gordos do músculo bíceps femoris de suínos da raça Bísara. In VII Congresso Mundial do Presunto. Instituto Superior de Agronomia. Universidade de Lisboa. Ourique.
- Ramarathnam, N; Rubin, L.J. The flavor of cured meat. F Shahidi (Ed.). Flavor of meat and meat products, Blackie Academic Professional, London, 1994, pp. 174-198.
- Muriel, E.; Antequera, T.; Petrón, M.J.; Andrés, A.I.; Ruiz, J. Volatile compounds in Iberian dry-cured loin. Meat Sci. 2004, 68, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Schouteten, J.J.; De Steur, H.; De Pelsmaeker, S.; Lagast, S.; Juvinal, J.G.; De Bourdeaudhhuij, I.; Gellynck, X. Emotional and sensory profiling of insect-, plant- and meat-based burgers under blind, expected and informed conditions. Food Qual. Prefer. 2016, 52, 27–31. [Google Scholar] [CrossRef]
- Prieto, N.; Pawluczyk, O.; Dugan, M.E.R.; Aalhus, J.L. A review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products. Appl. Spectrosc. 2017, 71, 1403–1426. [Google Scholar] [CrossRef] [PubMed]
- Caballero, D.; Rodríguez, P.G.; Caro, A.; del Mar'Avila, M.; Torres, J.P.; Antequera, T.; Perez-Palacios, T. An experimental protocol to determine quality parameters of dry-cured loins using low-field magnetic resonance imaging. J. Food Eng. 2022, 313, 110–750. [Google Scholar] [CrossRef]
- Cafferky, J.; Sweeney, T.; Allena, P.; Sahara, A.; Downeya, G.; Cromiec, A.R.; Hamilla, R.M. Investigating the use of visible and near infrared spectroscopy to predict sensory and texture attributes of beef M. longissimus thoracis et lumborum. Meat Sci. 2020, 159, 107915. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, C.; Erbou, S.G.; Thauland, T.; Adler-Nissen, J.; Berg, P. Salt distribution in dry-cured ham measured by computed tomography and image analysis. Meat Sci. 2005, 69, 9–15. [Google Scholar] [CrossRef] [PubMed]
- González-Mohino, A.; Antequera, T.; Ventanas, S.; Caballero, D.; Mir-Bel, J.; Pérez-Palacios, T. Near-infrared spectroscopy-based analysis to study sensory parameters on pork loins as affected by cooking methods and conditions. Sci Food Agric. 2018, 98, 4227–4236. [Google Scholar] [CrossRef] [PubMed]
- Perez-Palacios, T.; Caballero, D.; González-Mohíno, A.; Mir-Bel, J.; Antequera, T. Near infrared reflectance spectroscopy to analyse texture related characteristics of sous vide pork loin. J. Food Eng. 2019, 263, 417–423. [Google Scholar] [CrossRef]
- Fan, Y.; Liao, Y.; Cheng, F. Predicting of intramuscular fat content in pork using near infrared spectroscopy and multivariate analysis. Int. J. Food Prop. 2018, 21, 1180–1189. [Google Scholar] [CrossRef]
- Ortiz, A.; Parrini, S.; Tejerina, D.; Pinto de Araújo, J.P.; ˇCandek-Potokar, M.; Crovetti, A.; Bozzi, R. Potential use of near-infrared spectroscopy to predict fatty acid profile of meat from different european autochthonous pig breeds. Appl. Sci. 2020, 10, 5801. [Google Scholar] [CrossRef]
- Savoia, S.; Albera, A.; Brugiapaglia, A.; Di Stasio, L.; Ferragina, A.; Cecchinato, A.; Bittante, G. Prediction of meat quality traits in the abattoir using portable and hand-held near-infrared spectrometers. Meat Sci. 2020, 161, 108017. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Peng, Y.; Sun, H.; Zheng, X.; Wei, W. Real-time inspection of pork quality attributes using dual-band spectroscopy. J. Food Eng. 2018, 237, 103–109. [Google Scholar] [CrossRef]
- Weng, S.; Guo, B.; Tang, P.; Yin, X.; Pan, F.; Zhao, J.; Zhang, D. Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2020, 230, 118005. [Google Scholar] [CrossRef]
- Uddin, M.N.; Hossain, M.N.; Shoshe, N.Z.; Toma, S.A.; Belal, S.A.; Akanda, M.R.; Zaman, M.A.; Hossain, F.M.A.; Maburutse, B.E. Impact of near infrared (NIR) spectroscopy and hyperspectral (HS) imaging system to predict physicochemical composition and quality attributes of meat: A review. J. Food Agric. Environ. 2021, 2, 55–65. [Google Scholar] [CrossRef]
- Aouadi, B.; Zaukuu, J.L.Z.; Vitalis, F.; Bodor, Z.; Feher, O.; Gillay, Z.; Bazar, G.; Kovacs, Z. Historical evolution and food control achievements of near infrared spectroscopy, electronic nose, and electronic tongue – critical overview. Sensors. 2020, 20, 5479. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Jiménez, M.; Hernández-Ramos, P.; Martínez-Martína, I.; Vivar-Quintana, A.M.; González-Martín, I.; Revilla, I. Comparison of artificial neural networks and multiple regression tools applied to near infrared spectroscopy for predicting sensory properties of products from quality labels. Microchem. J. 2020, 159, 105459. [Google Scholar] [CrossRef]
- Àlvarez-Rodríguez, J.; Teixeira, A. Slaughter weight rather than sex affects carcass cuts and tissue composition of Bísaro pigs. Meat Sci. 2019, 154, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Council Regulation (EC) No. 1099/2009 on the Protection of Animals at the Time of Killing. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02009R1099-20180518 (accessed on 10 April 2022).
- Leite, A.; Vasconcelos, L.; Ferreira, I.; Domínguez, R.; Pereira, E.; Rodrigues, S.; Lorenzo, J. M.; Teixeira, A. Effect of the inclusion of olive cake in the diet on the physicochemical characteristics of dry-cured loin and dry-cured "cachaço" of Bísaro pig. Applied Sci. 2023, 13, 1439. [Google Scholar] [CrossRef]
- UNE-EN ISO 8586:2014; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2014.
- UNE-EN ISO 8589:2010/A1:2014; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2014.
- UNE-EN ISO 6658:2005; Sensory analysis – Methodology –General Guidance. International Organization for Standardization: Geneva, Switzerland, 2005.
- Fearn, T.; Riccioli, C.; Garrido-Varo, A.; Guerrero-Ginel, J.E. On the geometry of SNV and MSC. Chemometrics and intelligent laboratory systems. 2009, 96, 22–26. [Google Scholar] [CrossRef]
- Galvao, R.; Araujo, M.; Jose, G.; Pontes, M.; Silva, E.; Saldanha, T. A method for calibration and validation subset partitioning. Talanta, 2005; 67, 736–740. [Google Scholar] [CrossRef]
- Haykin, S. 2008. Neural networks and learning machines (3rd ed.). Prentice Hall. ISBN-13: 978-0-13147-139-9.
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemometrics and intelligent laboratory systems. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Bona, E.; Março, P.H.; Valderrama, P. Chemometrics applied to food control. In A. M. Holban & A. M. Grumezescu (Eds.), Food Control and Biosecurity (1st ed., Vol. 16, pp. 105–133). Elsevier. 2018. [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Transactions on intelligent systems and technology 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J. A.; Smilde, A. K.; Van der Werf, M. J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 2006, 7, 142. [Google Scholar] [CrossRef] [PubMed]
- Válková, V.; Saláková, A.; Buchtová, H.; Tremlová, B. Chemical, instrumental and sensory characteristics of cooked pork ham. Meat Sci. 2007, 77, 608–615. [Google Scholar] [CrossRef]
- Martins, J.; Neves, J.; Freitas, A.; Tirapicos, J. Effect of long-term betaine supplementation on chemical and physical characteristics of three muscles from the Alentejano pig. J. Sci. Food Agric. 2012, 92, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lonergan, S.M.; Yu, C. Rapid determination of pork sensory quality using Raman spectroscopy. Meat Sci. 2012, 91, 232–239. [Google Scholar] [CrossRef]
- Revilla, I.; Vivar-Quintana, A.M.; González-Martín, M.I.; Hernández-Jiménez, M.; Martínez-Martín, I.; Hernández-Ramos, P. NIR spectroscopy for discriminating and predicting the sensory profile of dry-cured beef "Cecina". Sensors 2020, 20, 6892. [Google Scholar] [CrossRef] [PubMed]
- Ruivo, L. 2017. Produção de suínos em regime intensivo e gestão dos seus efluentes. Dissertação de mestrado. Faculdade de Medicina Veterinária da Universidade de Lisboa. Lisboa. 39-97.
- Seong, P.N.; Park, K.M.; Kang, G.H.; Cho, S.H.; Park, B.Y.; Ba, H.V. The Impact of Ripening Time on Technological Quality Traits, Chemical Change and Sensory Characteristics of Dry-cured Loin. Asian Australas. J. Anim. Sci. 2015, 28, 677–685. [Google Scholar] [CrossRef]
- Goulart, J. 2013. Avaliação nutricional e organolética de carne proveniente de suínos sujeitos a diferentes dietas: Resultados preliminares. Dissertação de mestrado. Departamento de Tecnologia e Segurança Alimentar. Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa. Lisboa: 20-81.
- Lebret, B.; Faure, J. La viande et les produits du porc: comment satisfaire des attentes qualitatives variées. INRA Prod. Animales 2015, 28, 111–114. [Google Scholar] [CrossRef]
- Squires, E.; Bonneau, M. Boar taint: Biological causes and practical means to alleviate it. (2ª ed.) Encyclopedia of Meat Sciences. Massachusetts. Estados Unidos da América: Academic Press. 2014, 1: 1-7.
- Ruiz, J.; Ventanas, J.; Cava, R.; Timon, M.L.; Garcia, C. Sensory characteristics of Iberian ham: influence of processing time and slice location. Food Res. Int. 1998, 31, 53–58. [Google Scholar] [CrossRef]
- Flores, M. Understanding the implications of current health trends on the aroma of wet and dry cured meat products. Review. Meat sci. 2018, 144, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Raimundo, A. Análise das categorias da qualidade da carne suína num matadouro. Revista das Ciências Agrárias 2017, 40, 365–377. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Sosa-Morales, M.E.; Reyes, J.F.; Pazos, A.; Nieto, G.; Munekata, P.E.S.; Lorenzo, J.M. Dry-cured loin. In Production of Traditional Mediterranean Meat products. Methods and Protocols in Food Science; Lorenzo, J.M., Domínguez, R., Pateiro, M., Munekata, P.E.S., Eds.; Humana: New York, NY, USA, 2022; pp. 79–85. [Google Scholar]
- Feiner, G. Cured air-dried meat products. In Meat Products Handbook; Feiner, G., Ed.; Woodhead Publishing: Cambridge, UK, 2006; pp. 417–441. ISBN 978-1-84569-050-2. [Google Scholar]
- Totaro, M.P.; Squeo, G.; De Angelis, D.; Pasqualone, A.; Caponio, F.; Summo, C. Application of NIR spectroscopy coupled with DD-SIMCA class modelling for the authentication of pork meat. J. Food Compost. Anal. 2023, 118, 105–211. [Google Scholar] [CrossRef]
- Varrà, M.O.; Fasolato, L.; Serva, L.; Ghidini, S.; Novelli, E.; Zanardi, E. Use of near infrared spectroscopy coupled with chemometrics for fast detection of irradiated dry fermented sausages. Food Control. 2020, 110, 107–009. [Google Scholar] [CrossRef]
- Bona, E.; Marquetti, I.; Link, J.V.; Makimori, G.Y.F.; da Costa Arca, V.; Guimarães Lemes, A.L.; Ferreira, J.M.G.; dos Santos Scholz, M.B.; Valderrama, P.; Poppi, R.J. Support vector machines in tandem with infrared spectroscopy for geographical classification of green arabica coffee. LWT. 2017, 76, 330–336. [Google Scholar] [CrossRef]
- Sanchez, J.L.; Pereira, S.B.G.; de Lima, P.C.; Possebon, G.; Tanamati, A.; Poppi, R.J.; Tanamati, A.A.C.; Bona, E. Mid-infrared spectroscopy and support vector machines applied to control the hydrogenation process of soybean oil. Eur. Food Res. Technol. 2017, 243, 1447–1457. [Google Scholar] [CrossRef]
- Olivieri, A.C. Introduction to multivariate calibration. Springer International Publishing. 2018, 1-239. ISBN: 978-3-319-97096-7. [CrossRef]
- Hernández-Ramos, P.; Vivar-Quintana, A.M.; Revilla, I.; González-Martín, M.I.; Hernández-Jiménez, M.; Martínez-Martín, I. Prediction of Sensory Parameters of Cured Ham: A Study of the Viability of the Use of NIR Spectroscopy and Artificial Neural Networks. Sensors 2020, 20, 5624. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Albertí, P.; Panea, B.; Olleta, J.L.; Sañudo, C. Near-infrared reflectance spectroscopy for predicting chemical, instrumental and sensory quality of beef. Meat Sci. 2008, 80, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Prieto, N.; Ross, D.W.; Navajas, E.A.; Nute, G.R.; Richardson, R.I.; Hyslop, J.J.; Roehe, R. On-line application of visible and near infrared reflectance spectroscopy to predict chemical-physical and sensory characteristics of beef quality. Meat Sci. 2009, 83, 96–103. [Google Scholar] [CrossRef]
- Rødbotten, R.; Nilsen, B.N.; Hildrum, K.I. I. Prediction of beef quality attributes from early post mortem near infrared reflectance spectra. Food Chem. 2000, 69, 427–436. [Google Scholar] [CrossRef]


| Attributes | Min | Max | Mean (±sd) |
|---|---|---|---|
| Odor | 5.13 | 6.78 | 5.92(±0.38) |
| Andros | 1.11 | 2.38 | 1.50(±0.28) |
| Scatol | 1.00 | 1.78 | 1.24(±0.19) |
| Color | 2.88 | 6.11 | 4.05(±0.73) |
| Fat color | 1.56 | 4.89 | 3.11(±0.85) |
| Hardness | 2.44 | 6.56 | 3.90(±1.23) |
| Juiciness | 3.44 | 6.11 | 5.10(±0.64) |
| Chewiness | 2.13 | 5.44 | 3.62(±0.85) |
| Flavor intensity | 5.11 | 6.44 | 5.89(±0.33) |
| Flavor persistence | 4.56 | 6.33 | 5.67(±0.42) |
| Calibration | Prediction | |||||||
|---|---|---|---|---|---|---|---|---|
| Attribute | C | ε | γ | RMSE | R2 | RMSE | R2 | RSD(%) |
| Odor | 23.43 | 0.0161 | 0.0227 | 0.0155 | 0.9995 | 0.0549 | 0.9888 | 0.98 |
| Andros | 18.11 | 0.0010 | 0.0258 | 0.0011 | 1.0000 | 0.0400 | 0.9892 | 2.87 |
| Scatol | 87.79 | 0.0051 | 0.0221 | 0.0051 | 0.9998 | 0.0548 | 0.9616 | 4.47 |
| Color | 39.03 | 0.0074 | 0.0151 | 0.0072 | 0.9998 | 0.0507 | 0.9853 | 1.85 |
| Fat color | 100.0 | 0.0010 | 0.0446 | 0.0010 | 1.0000 | 0.0685 | 0.9878 | 2.26 |
| Hardness | 100.0 | 0.0010 | 0.0257 | 0.0011 | 1.0000 | 0.0403 | 0.9955 | 1.03 |
| Juiciness | 34.28 | 0.0522 | 0.0155 | 0.0499 | 0.9966 | 0.1031 | 0.9705 | 2.65 |
| Chewiness | 40.46 | 0.0395 | 0.0090 | 0.0374 | 0.9966 | 0.0674 | 0.9800 | 1.81 |
| Flavor intensity | 53.00 | 0.0252 | 0.0135 | 0.0240 | 0.9974 | 0.0554 | 0.9876 | 0.98 |
| Flavor persistence | 51.00 | 0.0010 | 0.0124 | 0.0011 | 1.0000 | 0.0417 | 0.9907 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
