Submitted:
04 November 2023
Posted:
06 November 2023
You are already at the latest version
Abstract
Keywords:
MSC: 30L15; 35A23; 35R11; 46B50; 46E35
1. Introduction
2. Preliminaries
- 1.
- ;
- 2.
- for every , there exists compact such that ;
- 3.
- for every compact .
3. Embedding in Function Spaces: Continuity
4. Embedding in Function Spaces: Compactness
4.1. Compactness: Higher Regularity
4.2. Compactness: Unified Approach
5. Gagliardo-Nirenberg Inequalities
6. Minimization Problems
Author Contributions
Conflicts of Interest
References
- J. Bellazzini, M. Ghimenti, C. Mercuri, V. Moroz, J. Van Schaftingen, Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces. Trans. Am. Math. Soc. 2018, 370, 8285–8310. [CrossRef]
- S. Cuccagna, M. Tarulli, On stabilization of small solutions in the nonlinear Dirac equation with a trapping potential. Journal of Mathematical Analysis and Applications 2016, 436, 1332–1368. [CrossRef]
- P. L. De Nápoli, Symmetry breaking for an elliptic equation involving the fractional Laplacian. Differ. Integral Equ. 2018, 31, 75–94.
- B. Gidas, W.M. Ni, .L Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys. 1979, 68, 209–243. [Google Scholar] [CrossRef]
- Grafakos, Loukas. Classical Fourier analysis, Second edition; Graduate Texts in Mathematics, 249; Springer: New York, 2008; p. xvi+489. [Google Scholar]
- A. Gulisashvili, M. A. Kon, Exact smoothing properties of Schroödinger semigroups. Amer. J. Math. 1996, 118, 1215–1248, MR1420922. [CrossRef]
- J. Li, L. Ma, Extremals to new Gagliardo-Nirenberg inequality and ground states. Applied Mathematics Letters 2021, 120, 107266. [Google Scholar] [CrossRef]
- E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math. 1983, 18, 349–374.
- V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations. Trans. Amer. Math. Soc. 2015, 367, 6557–6579.
- E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- G. Palatucci, A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 2014, 50, 799–829. [CrossRef]
- P. Sintzoff, Symmetry of solutions of a semilinear elliptic equation with unbounded coefficients. Differential Integral Equations 2003, 6, 769–786.
- E.M. Stein and G. Weiss. Introduction to Fourier Analysis on Euclidean Spaces; Princeton University Press, 1971. [Google Scholar]
- Y. Su, Z. Feng, Fractional Sobolev embedding with radial potential. Journal of Differential Equations 2022, 340, 1–44. [CrossRef]
- B. S. Rubin, One-dimensional representation, inversion and certain properties of Riesz potentials of radial functions (Russian). Mat. Zametki 1983, 34, 521–533.
- Tarulli, M. H2-scattering for systems of weakly coupled fourth-order NLS Equations in low space dimensions. Potential Analysis 2019, 51, 291–313. [Google Scholar] [CrossRef]
- M. Willem. Functional Analysis, Fundamentals and Applications; Cornerstones, Birkhäuser: New York, 2013; pp. 1–213. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
