Submitted:
10 December 2023
Posted:
11 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Main Results
3. Conclusions
Acknowledgments
Conflict of interest
References
- Lambert J H, Anlage Zür Architektonik., Vol. II (1971) Riga p. 507.
- R. P. Agarwal. Lambert series and Ramanujan. Proc. Indian Acad. Sci., 103 (1993), 269–293. [CrossRef]
- L. Lóczi, Guaranteed- and high-precision evaluation of the Lambert W function, Appl. Math. Comput., 433 (2022), 1-22. [CrossRef]
- Schmidt, M. D. A catalog of interesting and useful Lambert series identities. arXiv preprint arXiv:2004.02976, (2020).
- Postnikov A G, Introduction to analytical number theory (Moscow) 1971.
- T. M. Apostol. Introduction to Analytic Number Theory. Springer–Verlag, 1976.
- Kesisoglou I, Singh G, Nikolaou M. The Lambert Function Should Be in the Engineering Mathematical Toolbox. Comput Chem Eng. (2021) May; 148:107259. Epub 2021 Feb 17. [CrossRef] [PubMed]
- G. Robin, Grande valeurs de la function somme des diviseurs et hypothese de Riemann, J. Math. Pures App., 63 (1984), 187 – 213.
- Axler, C. On Robin’s inequality. Ramanujan J (2022). [CrossRef]
- YoungJu Choie, Nicolas Lichiardopol, Pieter Moree, and Patrick Solé. On Robin’s criterion for the Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux., 19 (2007), 357–372. [CrossRef]
- Jamal Salah, Hameed Ur Rehman, and, Iman Al- Buwaiqi, The Non-Trivial Zeros of the Riemann Zeta Function through Taylor Series Expansion and Incomplete Gamma Function, Mathematics and Statistics., 10 (2022), 410-418. [CrossRef]
- Jamal Salah, Some Remarks and Propositions on Riemann Hypothesis, Mathematics and Statistics., 9 (2021), 159-165. [CrossRef]
- K Eswaran. The pathway to the Riemann hypothesis. Open Reviews of the Proof of The Riemann Hypothesis, page 189, 2021.
- Enrico Bombieri. The Riemann hypothesis – official problem description (pdf). Clay Mathematics Institute, 2000.
- L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys-Math. Kl. 940, (1916).
- L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154, 137 (1985). [CrossRef]
- G. Murugusundaramoorthy and N. Magesh, Linear operators associated with a subclass of uniformly convex functions, Internat. J. Pure Appl. Math. Sci., 3 (2) (2006), 113–125.
- B.A. Frasin, On certain subclasses of analytic functions associated with Poisson distribution series, Acta Univ. Sapientiae, Mathematica., 11 (1) (2019), 78–86. [CrossRef]
- B.A. Frasin, Subclasses of analytic functions associated with Pascal distribution series, Adv. Theory Nonlinear Anal. Appl., 4 (2) (2020), 92–99. [CrossRef]
- B. A. Frasin, S. R. Swamy and A. K. Wanas, Subclasses of starlike and convex functions associated with Pascal distribution series , Kyungpook Math. J., 61 (2021), 99-110.
- Amourah, B.A. Frasin and G. Murugusundaramoorthy, On certain subclasses of uniformly spirallike functions associated with Struve functions, J. Math. Comput. Sci., 11 (4) (2021), 4586-4598. [CrossRef]
- El-Deeb S. M.; Murugusundaramoorthy, G. Applications on a subclass of β−uniformly starlike functions connected with q−Borel distribution. Asian-Eur. J. Math., 15 (2022), 1–20. Asian-Eur. J. Math., 1142.
- Jamal Salah, Hameed Ur Rehman, Iman Al Buwaiqi, Ahmad Al Azab and Maryam Al Hashmi, Subclasses of spiral-like functions associated with the modified Caputo's derivative operator, AIMS Mathematics. 8 (8) (2023), 18474-18490. [CrossRef]
- Hameed Ur Rehman, Maslina Darus, Jamal Salah, Generalizing Certain Analytic Functions Correlative to the n-th Coefficient of Certain Class of Bi-Univalent Functions, Journal of Mathematics, (2021), Article ID 6621315, 14 pages, 2021.
- Y. Rabotnov, Equilibrium of an Elastic Medium with After-Effect, Prikladnaya Matematika I Mekhanika, 12 (1) (1948), 53-62 (in Russian), Reprinted: Fractional Calculus and Applied Analysis, 17 (3) (2014), 684-696.
- Y. Kao, Y. Li, J. H. Park, X. Chen, Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control, IEEE T. Neur. Net. Lear., 32 (2021), 2279–2284. [CrossRef]
- Y. Cao, Y. Kao, J. H. Park, H. Bao, Global Mittag-Leffler stability of the delayed fractional-coupled reaction-diffusion system on networks without strong connectedness, IEEE T. Neur. Net. Lear., 33 (2022), 6473–6483. [CrossRef]
- Y. Kao, Y. Cao, X. Chen, Global Mittag-Leffler synchronization of coupled delayed fractional reaction-diffusion Cohen-Grossberg neural networks via sliding mode control, Chaos, 32 (2022), 113123. [CrossRef]
- H. U. Rehman, M. Darus, J. Salah, Coefficient properties involving the generalized k-Mittag-Leffler functions, Transylv. J. Math. Mech., 9 (2017), 155–164. Available from: http://tjmm.edyropress.ro/journal/17090206.pdf.
- J. Salah, M. Darus, A note on generalized Mittag-Leffler function and Application, Far East. J. Math. Sci., 48 (2011), 33–46. Available from: http://www.pphmj.com/abstract/5478.htm.
- S. S. Eker and S. Ece. Geometric properties of normalized Rabotnov function, Hacet. J. Math. Stat., 51 (5) (2022), 1248-1259. [CrossRef]
- S. Ponnusamy and A. Baricz, Starlikeness and convexity of generalized Bessel functions. Integral Transforms Spec. Funct., 21 (9) (2010), 641-653. [CrossRef]
- J. K. Prajapat, Certain geometric properties of the Wright functions, Integral Transforms Spec. Funct., 26 (3) (2015), 203-212. [CrossRef]
- D. Răducanu, Geometric properties of Mittag-Leffler functions, Models and Theories in Social Systems, Springer: Berlin, Germany, (2019), 403-415.
- S. Sumer Eker, S. Ece, Geometric Properties of the Miller-Ross Functions, Iran. J. Sci. Technol. Trans., (2022). [CrossRef]
- PL. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, New York, NY, USA: Springer-Verlag, (1983).
- A.W. Goodman, Univalent Functions, New York, NY, USA: Mariner Publishing Company, (1983).
- S. Ozaki, On the theory of multivalent functions, Science Reports of the Tokyo Bunrika Daigaku, Section A., 2(40) (1935), 167-188.
- L. Fejér, Untersuchungen uber Potenzreihen mit mehrfach monotoner Koeffizientenfolge, Acta Litt. Sci. Szeged., 8 (1936), 89-115.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
