Submitted:
03 November 2023
Posted:
06 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Background Material
3. Setup and Main Results
- C1
- The function is discrete almost automorphic.
- C2
- are discrete bi-almost automorphic in t and uniformly for
- C3
- For the Lipschitz inequalitiesandhold together with
- C4
- For every integer sequence there exists a subsequence of such that
3.1. Existence Results
- C5
- is satisfied. Then, the abstract difference equation (4) has a unique discrete almost automorphic solution.
- C6
- for all
3.2. Bohr-Neugebauer Criterion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Avron, J.E.; Simon, B. Almost periodic Hill’s equation and the rings of Saturn. Phys. Rev. Lett. 1981, 46, 1166–1168. [Google Scholar] [CrossRef]
- Ohta, M.; Koizumi, T. Digital simulation of a white noise model formed of uniformly almost periodic functions. Information and Control 1970, 17, 340–358. [Google Scholar] [CrossRef]
- Ohta, M.; Hiromitsu, S. A trial of a new formation of the random noise model by use of arbitrary uniformly almost periodic functions. Information and Control 1977, 33, 227–252. [Google Scholar] [CrossRef]
- Bohr, H. Zur theorie der fastperiodischen funktionen I. Acta Math. 1925, 45, 29–127. [Google Scholar] [CrossRef]
- Besicovitch, A.S. On generalized almost periodic functions. Proc. London Math. Soc. 1926, s2-25, 495–512. [Google Scholar] [CrossRef]
- Bochner, S. Beitrage zur theorie der fastperiodischen funktionen. Math. Annalen 1926, 96, 119–147. [Google Scholar] [CrossRef]
- Bochner, S.; von Neumann, J. Almost periodic function in a group II. Trans. Amer. Math. Soc. 1935, 37, 21–50. [Google Scholar]
- Stepanov, W. Über einige verallgemeinerungen der fastperiodischen funktionen. Math. Ann. 1925, 45, 473–498. [Google Scholar] [CrossRef]
- Bochner, S. Continuous mappings of almost automorphic and almost periodic functions. Proc. Nat. Acad. Sci. U.S.A. 1964, 52, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Besicovitch, A.S. Almost Periodic Functions; Cambridge University Press: Cambridge, UK, 1954. [Google Scholar]
- Veech, W.A. On a theorem of Bochner. Ann. Math. 1967, 86, 117–137. [Google Scholar] [CrossRef]
- Bayliss, A. Almost Periodic Solutions to Difference Equations. Ph.D. Thesis, New York University, New York, NY, USA, 1975. [Google Scholar]
- Diagana, T. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces; Springer, 2013. [CrossRef]
- N’Guerekata, G.M. Almost Automorphic and Almost Periodic Functions in Abstract Spaces; Springer, 2001. [CrossRef]
- Vesely, M. Constructions of Almost Periodic Sequences and Functions and Homogeneous Linear Difference and Differential Systems. Ph.D. Thesis, Masaryk University, 2011.
- Adıvar, M.; Koyuncuoglu, H.C. Almost automorphic solutions of discrete delayed neutral system. J. Math. Anal. Appl. 2016, 435, 532–550. [Google Scholar] [CrossRef]
- Adıvar, M.; Koyuncuoglu, H.C.; Raffoul, Y.N. Almost automorphic solutions of delayed neutral dynamic systems on hybrid domains. Appl. Anal. Discrete Math. 2016, 10, 128–151. [Google Scholar] [CrossRef]
- Koyuncuoglu, H.C.; Adıvar, M. Almost periodic solutions of Volterra difference systems. Dem. Math. 2017, 50, 320–329. [Google Scholar] [CrossRef]
- Araya, D.; Castro, R.; Lizama, C. Almost automorphic solutions of difference equations. Adv. Difference Equ. 2009, 2009, 1–69. [Google Scholar] [CrossRef]
- Bohner, M.; Mesquita, J.G. Almost periodic functions in quantum calculus. Electron. J. Differential Equation 2018, 2018, 1–11. [Google Scholar]
- Chávez, A.; Pinto, M.; Zavaleta, U. On almost automorphic type solutions of abstract integral equations, a Bohr-Neugebauer type property and some applications. J. Math. Anal. Appl. 2021, 494. [Google Scholar] [CrossRef]
- Castillo, S.; Pinto, M. Dichotomy and almost automorphic solution of difference system. Electron. J. Qual. Theory Differ. Equ. 2013, 32, 1–17. [Google Scholar] [CrossRef]
- Diagana, T.; Elaydi, S.; Yakubu, A. Population models in almost periodic environments. J. Differ. Equat. Appl. 2007, 13, 239–260. [Google Scholar] [CrossRef]
- Kostić, M.; Koyuncuoğlu, H.C. Multi-dimensional almost automorphic type sequences and applications. Georgian Math. J. in press.
- Lizama, C.; Mesquita, J.G. Almost automorphic solutions of dynamic equations on time scales. J. Funct. Anal. 2013, 265, 2267–2311. [Google Scholar] [CrossRef]
- Lizama, C.; Mesquita, J.G. Almost automorphic solutions of non-autonomous difference equations. J. Math. Anal. Appl. 2013, 407, 339–349. [Google Scholar] [CrossRef]
- Mishra, I.; Bahuguna, D.; Abbas, S. Existence of almost automorphic solutions of neutral functional differential equation. Nonlinear Dyn. Syst. Theory 2011, 11, 165–172. [Google Scholar]
- Massera, J.L. The existence of periodic solutions of systems of differential equations. Duke Math. J. 1950, 17, 457–475. [Google Scholar] [CrossRef]
- Bohr, H.; Neugebauer, O. Über lineare differentialgleichungen mit konstanten koeffizienten und fastperiodischer rechter seite. Nachr. Ges. Wiss. Gött., Math.-Phys. Kl. 1926, 1926, 8–22. [Google Scholar]
- Floquet, G. Sur les équations différentielles linéaires à coefficients périodiques. Annales Scientifiques de l’École Normale Supérieure 1883, 12, 47–88. [Google Scholar] [CrossRef]
- Favard, J. Sur les équations différentielles linéaires à coefficients presque-périodiques. Acta Math. 1928, 51, 31–81. [Google Scholar] [CrossRef]
- Benkhalti, R.; Es-sebbar, B.; Ezzinbi, K. On a Bohr-Neugebauer property for some almost automorphic abstract delay equations. J. Integral Equ. Appl. 2018, 30, 313–345. [Google Scholar] [CrossRef]
- Dads, E.A.; Es-sebbar, B.; Lhachimi, L. On Massera and Bohr-Neugebauer type theorems for some almost automorphic differential equations. J. Math. Anal. Appl. 2023, 518. [Google Scholar] [CrossRef]
- Drisi, N.; Es-sebbar, B. A Bohr-Neugebauer property for abstract almost periodic evolution equations in Banach spaces: Application to a size-structured population model. J. Math. Anal. Appl. 2017, 456, 412–428. [Google Scholar] [CrossRef]
- Es-sebbar, B.; Ezzinbi, K.; N’Guérékata, G.M. Bohr-Neugebauer property for almost automorphic partial functional differential equations. Appl. Anal. 2019, 98, 381–407. [Google Scholar] [CrossRef]
- Liu, J.; N’Guerekata, G.M.; Van Minh, N. A Massera type theorem for almost automorphic solutions of differential equations. J. Math. Anal. Appl. 2004, 299, 587–599. [Google Scholar] [CrossRef]
- Liu, Q.; Van Minh, N.; N’Guerekata, G.M.; Yuan, R. Massera type theorems for abstract functional differential equations. Funkcial. Ekvac. 2008, 51, 329–350. [Google Scholar] [CrossRef]
- Murakami, S.; Hino, Y.; Van Minh, N. Massera’s theorem for almost periodic solutions of functional differential equations. J. Math. Soc. Japan 2004, 56, 247–268. [Google Scholar] [CrossRef]
- Radova, L. Theorems of Bohr-Neugebauer-type for almost-periodic differential equations. Math. Slovaca 2004, 54, 191–207. [Google Scholar]
- Van Minh, N.; Minh, H.B. A Massera-type criterion for almost periodic solutions of higher-order delay or advance abstract functional differential equations. Abstr. Appl. Anal. 2004, 2004, 881–896. [Google Scholar] [CrossRef]
- Veech, W.A. Almost automorphic functions on groups. Amer. J. Math. 1965, 87, 719–751. [Google Scholar] [CrossRef]
- Li, Y. Almost automorphic functions on the quantum time scale and applications. Discrete Dyn. Nat. Soc. 2017, 2017. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
