Submitted:
02 November 2023
Posted:
03 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The role of apolipoprotein e in Alzheimer’s disease pathogenesis
3. Apolipoprotein E, human longevity, and Alzheimer’s disease
4. Specific epigenetic modifications of apolipoprotein E in Alzheimer’s disease
5. Epigenetics of apolipoprotein E and cognitive function: contrasting evidence in Alzheimer’s disease
6. Conclusions
Ethical Approval
Informed Consent
Conflicts of Interest
References
- Heyn, H. A symbiotic liaison between the genetic and epigenetic code. Front. Genet. 2014, 5, 113. [Google Scholar] [CrossRef]
- Mill, J.; Heijmans, B.T. From promises to practical strategies in epigenetic epidemiology. Nat. Rev. Genet. 2013, 14, 585–594. [Google Scholar] [CrossRef]
- Frisoni, G.B.; Altomare, D.; Thal, D.R.; Ribaldi, F.; van der Kant, R.; Ossenkoppele, R.; Blennow, K.; Cummings, J.; van Duijn, C.; Nilsson, P.M.; Dietrich, P.Y.; Scheltens, P.; Dubois, B. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat. Rev. Neurosci. 2022, 23, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Coppieters, N.; Dragunow, M. Epigenetics in Alzheimer’s disease: A focus on DNA modifications. Curr. Pharm. Des. 2011, 17, 3398–3412. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 2019, 571, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Cheng, L.; Badner, J.A.; Chen, C.; Chen, Q.; Luo, W.; Craig, D.W.; Redman, M.; Gershon, E.S.; Liu, C. Genetic control of individual differences in gene-specific methylation in human brain. Am. J. Hum. Genet. 2010, 86, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.R.; van der Brug, M.P.; Hernandez, D.G.; Traynor, B.J.; Nalls, M.A.; Lai, S.L.; Arepalli, S.; Dillman, A.; Rafferty, I.P.; Troncoso, J.; Johnson, R.; Zielke, H.R.; Ferrucci, L.; Longo, D.L.; Cookson, M.R.; Singleton, A.B. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 2010, 6, e1000952. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, R.; Deng, J.; Wang, W.; Zhang, K. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res. 2010, 20, 883–889. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein e type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef]
- Chartier-Harlin, M.C.; Parfitt, M.; Legrain, S.; Pérez-Tur, J.; Brousseau, T.; Evans, A.; Berr, C.; Odile, V.; Roques, P.; Gourlet, V.; Fruchart, J.C.; Delacourte, A.; Rossor, M.; Amouyel, P. Apolipoprotein E, epsilon 4 allele as a major risk factor for sporadic early and late-onset forms of alzheimer’s disease: analysis of the 19q13,2 chromosomal region. Hum. Mol. Genet. 1994, 3, 569–574. [Google Scholar] [CrossRef]
- Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein e genotype and alzheimer disease. a meta-analysis. APOE and Alzheimer disease meta- analysis consortium. JAMA 1997, 278, 1349–1356. [Google Scholar] [CrossRef]
- Genin, E.; Hannequin, D.; Wallon, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Bullido, M.J.; Engelborghs, S.; De Deyn, P.; Berr, C.; Pasquier, F.; Dubois, B.; Tognoni, G.; Fiévet, N.; Brouwers, N.; Bettens, K.; Arosio, B.; Coto, E.; Del Zompo, M.; Mateo, I.; Epelbaum, J.; Frank-Garcia, A.; Helisalmi, S.; Porcellini, E.; Pilotto, A.; Forti, P.; Ferri, R.; Scarpini, E.; Siciliano, G.; Solfrizzi, V.; Sorbi, S.; Spalletta, G.; Valdivieso, F.; Vepsäläinen, S.; Alvarez, V.; Bosco, P.; Mancuso, M.; Panza, F.; Nacmias, B.; Bossù, P.; Hanon, O.; Piccardi, P.; Annoni, G.; Seripa, D.; Galimberti, D.; Licastro, F.; Soininen, H.; Dartigues, J.F.; Kamboh, M.I.; Van Broeckhoven, C.; Lambert, J.C.; Amouyel, P.; Campion, D. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 2011, 16, 903–907. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Risch, N.J.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C. Jr; Rimmler, J. B.; Locke, P. A.; Conneally, P. M.; Schmader, K. E.; Small, G. W.; Roses, A. D; Haines, J. L.; Pericak-Vance, M. A. Protective effect of apolipoprotein e type 2 allele for late onset Alzheimer disease. Nat. Genet. 1994, 7, 180–184. [Google Scholar] [CrossRef]
- Panza, F.; Solfrizzi, V.; Torres, F.; Mastroianni, F.; Colacicco, A.M.; Basile, A.M.; Capurso, C.; D’Introno, A.; Del Parigi, A.; Capurso, A. Apolipoprotein E in Southern Italy: protective effect of epsilon 2 allele in early- and late-onset sporadic Alzheimer’s disease. Neurosci. Lett. 2000, 292, 79–82. [Google Scholar] [CrossRef]
- Mayeux, R.; Saunders, A.M.; Shea, S.; Mirra, S.; Evans, D.; Roses, A.D.; Hyman, B.T.; Crain, B.; Tang, M.X.; Phelps, C.H. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s disease centers consortium on apolipoprotein E and Alzheimer’s disease. N. Engl. J. Med. 1998, 338, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Seripa, D.; D’Onofrio, G.; Panza, F.; Cascavilla, L.; Masullo, C.; Pilotto, A. The genetics of the human APOE polymorphism. Rejuvenation Res. 2011, 14, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, D.A.; Taylor, S.L.; Fullerton, S.M.; Weiss, K.M.; Clark, A.G.; Stengård, J.H.; Salomaa, V.; Boerwinkle, E.; Sing, C.F. Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. Genome Res. 2000, 10, 1532–1545. [Google Scholar] [CrossRef]
- Yu, C.E.; Foraker, J. Epigenetic considerations of the APOE gene. Biomol. Concepts 2015, 6, 77–84. [Google Scholar] [CrossRef]
- Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021, 20, 68–80. [Google Scholar] [CrossRef]
- Reiman, E.M.; Arboleda-Velasquez, J.F.; Quiroz, Y.T.; Huentelman, M.J.; Beach, T.G.; Caselli, R.J.; Chen, Y.; Su, Y.; Myers, A.J.; Hardy, J.; Paul Vonsattel, J.; Younkin, S.G.; Bennett, D.A.; De Jager, P.L.; Larson, E.B.; Crane, P.K.; Keene, C.D.; Kamboh, M.I.; Kofler, J.K.; Duque, L.; Gilbert, J.R.; Gwirtsman, H.E.; Buxbaum, J.D.; Dickson, D.W.; Frosch, M.P.; Ghetti, B.F.; Lunetta, K.L.; Wang, L.S.; Hyman, B.T.; Kukull, W.A.; Foroud, T.; Haines, J.L.; Mayeux, R.P.; Pericak-Vance, M.A.; Schneider, J.A.; Trojanowski, J.Q.; Farrer, L.A.; Schellenberg, G.D.; Beecham, G.W.; Montine, T.J.; Jun, G.R.; Alzheimer’s Disease Genetics Consortium. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat. Commun. 2020, 11, 667. [Google Scholar] [CrossRef] [PubMed]
- Salvadó, G.; Grothe, M.J.; Groot, C.; Moscoso, A.; Schöll, M.; Gispert, J.D.; Ossenkoppele, R.; Alzheimer’s Disease Neuroimaging Initiative. Differential associations of APOE-ε2 and APOE-ε4 alleles with PET-measured amyloid-β and tau deposition in older individuals without dementia. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2212–2224. [Google Scholar] [CrossRef]
- Therriault, J.; Benedet, A.L.; Pascoal, T.A.; Mathotaarachchi, S.; Chamoun, M.; Savard, M.; Thomas, E.; Kang, M.S.; Lussier, F.; Tissot, C.; Parsons, M.; Qureshi, M.N.I.; Vitali, P.; Massarweh, G.; Soucy, J.P.; Rej, S.; Saha-Chaudhuri, P.; Gauthier, S.; Rosa-Neto, P. Association of Apolipoprotein E 4 With Medial Temporal Tau Independent of Amyloid-. JAMA Neurol. 2020, 77, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O’Loughlin, E.; Xu, Y.; Fanek, Z.; Greco, D.J.; Smith, S.T.; Tweet, G.; Humulock, Z.; Zrzavy, T.; Conde-Sanroman, P.; Gacias, M.; Weng, Z.; Chen, H.; Tjon, E.; Mazaheri, F.; Hartmann, K.; Madi, A.; Ulrich, J.D.; Glatzel, M.; Worthmann, A.; Heeren, J.; Budnik, B.; Lemere, C.; Ikezu, T.; Heppner, F.L.; Litvak, V.; Holtzman, D.M.; Lassmann, H.; Weiner, H.L.; Ochando, J.; Haass, C.; Butovsky, O. The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity 2017, 47, 566-81.e9. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, T.; Chen, F.; Sun, Y.; Wang, Y.; Cui, L. Interplay between microglia and Alzheimer’s disease-focus on the most relevant risks: APOE genotype, sex and age. Front. Aging Neurosci. 2021, 13, 631827. [Google Scholar] [CrossRef]
- Chung, W.S.; Verghese, P.B.; Chakraborty, C.; Joung, J.; Hyman, B.T.; Ulrich, J.D.; Holtzman, D.M.; Barres, B.A. Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 10186–10191. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, J.W.; Bula, M.; Davila-Velderrain, J.; Akay, L.A.; Zhu, L.; Frank, A.; Victor, M.B.; Bonner, J.M.; Mathys, H.; Lin, Y.T.; Ko, T.; Bennett, D.A.; Cam, H.P.; Kellis, M.; Tsai, L.H. Reconstruction of the human blood-brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat. Med. 2020, 26, 952–963. [Google Scholar] [CrossRef]
- Riphagen, J.M.; Ramakers, I.H.G.M.; Freeze, W.M.; Pagen, L.H.G.; Hanseeuw, B.J.; Verbeek, M.M.; Verhey, F.R.J.; Jacobs, H.I.L. Linking APOE-ε4, blood-brain barrier dysfunction, and inflammation to Alzheimer’s pathology. Neurobiol. Aging 2020, 85, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Strittmatter, W.J.; Saunders, A.M.; Schmechel, D.; Pericak-Vance, M.; Enghild, J.; Salvesen, G.S.; Roses, A.D. Apolipoprotein e: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 1977–1981. [Google Scholar] [CrossRef]
- Fagan, A.M.; Holtzman, D.M. Astrocyte lipoproteins, effects of ApoE on neuronal function, and role of ApoE in amyloid-beta deposition in vivo. Microsc. Res. Tech. 2000, 50, 297–304. [Google Scholar] [CrossRef]
- Tokuda, T.; Calero, M.; Matsubara, E.; Vidal, R.; Kumar, A.; Permanne, B.; Zlokovic, B.; Smith, J.D.; Ladu, M.J.; Rostagno, A.; Frangione, B.; Ghiso, J. Lipidation of apolipoprotein e influences its isoform-specific interaction with Alzheimer’s amyloid beta peptides. Biochem. J. 2002, 348, 359–365. [Google Scholar] [CrossRef]
- Deane, R.; Sagare, A.; Hamm, K.; Parisi, M.; Lane, S.; Finn, M.B.; Holtzman, D.M.; Zlokovic, B.V. ApoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J. Clin. Invest. 2008, 118, 4002–40013. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.M.; Kim, J.; Stewart, F.R.; Jiang, H.; DeMattos, R.B.; Patterson, B.W.; Fagan, A.M.; Morris, J.C.; Mawuenyega, K.G.; Cruchaga, C.; Goate, A.M.; Bales, K.R.; Paul, S.M.; Bateman, R.J.; Holtzman, D.M. Human ApoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci. Transl. Med. 2011, 3, 89ra57. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.A.; Zhou, B.; Wernig, M.; Sudhof, T.C. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and A-beta secretion. Cell 2017, 168, 427.e21–41.e21. [Google Scholar] [CrossRef] [PubMed]
- Sala Frigerio, C.; Wolfs, L.; Fattorelli, N.; Thrupp, N.; Voytyuk, I.; Schmidt, I.; Mancuso, R.; Chen, W.T.; Woodbury, M.E.; Srivastava, G.; Möller, T.; Hudry, E.; Das, S.; Saido, T.; Karran, E.; Hyman, B.; Perry, V.H.; Fiers, M.; De Strooper, B. The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Ab Plaques. Cell Rep. 2019, 27, 1293–306.e6. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Holtzman, D.M. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat. Rev. Immunol. 2018, 18, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Liu, C.C.; Van Ingelgom, A.J.; Linares, C.; Kurti, A.; Knight, J.A.; Heckman, M.G.; Diehl, N.N.; Shinohara, M.; Martens, Y.A.; Attrebi, O.N.; Petrucelli, L.; Fryer, J.D.; Wszolek, Z.K.; Graff-Radford, N.R.; Caselli, R.J.; Sanchez-Contreras, M.Y.; Rademakers, R.; Murray, M.E.; Koga, S.; Dickson, D.W.; Ross, O.A.; Bu, G. APOE ε2 is associated with increased tau pathology in primary tauopathy. Nat. Commun. 2018, 9, 4388. [Google Scholar] [CrossRef]
- Lozupone, M.; Panza, F. Impact of apolipoprotein E isoforms on sporadic Alzheimer’s disease: beyond the role of amyloid beta. Neural Regen Res. 2024, 19, 80–83. [Google Scholar] [CrossRef]
- Foraker, J.; Millard, S.P.; Leong, L.; Thomson, Z.; Chen, S.; Keene, C.D.; Bekris, L.M.; Yu, C.E. The APOE Gene is Differentially Methylated in Alzheimer’s Disease. J. Alzheimers Dis. 2015, 48, 745–55. [Google Scholar] [CrossRef]
- Rueter, J.; Rimbach, G.; Huebbe, P. Allelic variation within the major APOE CpG island affects its methylation in the brain of targeted replacement mice expressing human APOE. Biochim. Biophys. Acta Gene Regul. Mech. 2023, 1866, 194942. [Google Scholar] [CrossRef]
- Lefterov, I.; Fitz, N.F.; Lu, Y.; Koldamova, R. APOEε4 and risk of Alzheimer’s disease - time to move forward. Front. Neurosci. 2023, 17, 1195724. [Google Scholar] [CrossRef]
- Sullivan, P. M.; Mezdour, H.; Aratani, Y.; Knouff, C.; Najib, J.; Reddick, R. L.; Quarfordt, S.H.; Maeda, N. Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J. Biol. Chem. 1997, 272, 17972–17980. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; Costafreda, S.G.; Dias, A.; Fox, N.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Kivimäki, M.; Larson, E.B.; Ogunniyi, A.; Orgeta, V.; Ritchie, K.; Rockwood, K.; Sampson, E.L.; Samus, Q.; Schneider, L.S.; Selbæk, G.; Teri, L.; Mukadam, N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Reas, E.T.; Laughlin, G.A.; Bergstrom, J.; Kritz-Silverstein, D.; Barrett-Connor, E.; McEvoy, L.K. Effects of APOE on cognitive aging in community-dwelling older adults. Neuropsychology 2019, 33, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988, 240, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Siest, G.; Pillot, T.; Regis-Bailly, A.; Leininger-Muller, B.; Steinmetz, J.; Galteau, M.M.; Visvikis, S. Apolipoprotein E: An important gene and protein to follow in laboratory medicine. Clin. Chem. 1995, 41, 1068–1086. [Google Scholar] [CrossRef] [PubMed]
- Seripa, D.; Franceschi, M.; Matera, M.G.; Panza, F.; Kehoe, P.G.; Gravina, C.; Orsitto, G.; Solfrizzi, V.; Di Minno, G.; Dallapiccola, B.; Pilotto, A. Sex differences in the association of apolipoprotein e and angiotensin-converting enzyme gene polymorphisms with healthy aging and longevity: a population-based study from Southern Italy. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Seripa, D.; Panza, F.; Franceschi, M.; D’Onofrio, G.; Solfrizzi, V.; Dallapiccola, B.; Pilotto, A. Non-apolipoprotein E and apolipoprotein E genetics of sporadic Alzheimer’s disease. Ageing Res. Rev. 2009, 8, 214–236. [Google Scholar] [CrossRef] [PubMed]
- Brooks-Wilson, A.R. Genetics of healthy aging and longevity. Hum. Genet. 2013, 132, 1323–1338. [Google Scholar] [CrossRef]
- Sebastiani, P.; Gurinovich, A.; Nygaard, M.; Sasaki, T.; Sweigart, B.; Bae, H.; Andersen, S.L.; Villa, F.; Atzmon, G.; Christensen, K.; Arai, Y.; Barzilai, N.; Puca, A.; Christiansen, L.; Hirose, N.; Perls, T.T. APOE alleles and extreme human longevity. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 74, 44–51. [Google Scholar] [CrossRef]
- Smith, J.D. Apolipoproteins and aging: emerging mechanisms. Ageing Res. Rev. 2002, 1, 345–365. [Google Scholar] [CrossRef]
- Feng, J.; Xiang, L.; Wan, G.; Qi, K.; Sun, L.; Huang, Z.; Zheng, C.; Lv, Z.; Hu, C.; Yang, Z. Is APOE ε3 a favorable factor for the longevity: an association study in Chinese population. J. Genet. 2011, 90, 343–347. [Google Scholar] [CrossRef]
- Mahley, R.W.; Rall, S.C. Jr. Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 2000, 1, 507–537. [Google Scholar] [CrossRef]
- Yanagisawa, K. Cholesterol and pathological processes in Alzheimer’s disease. J. Neurosci. Res. 2002, 70, 361–366. [Google Scholar] [CrossRef]
- Ordovas, J.M.; Lopez-Miranda, J.; Mata, P.; Perez-Jimenez, F.; Lichtenstein, A.H.; Schaefer, E.J. Gene-diet interaction in determining plasma lipid response to dietary intervention. Atherosclerosis 1995, 118 (Suppl), S11–S27. [Google Scholar] [CrossRef]
- Grimm, M.O.W.; Michaelson, D.M.; Hartmann, T. Omega-3 fatty acids, lipids, and ApoE lipidation in Alzheimer’s disease: a rationale for multi-nutrient dementia prevention. J. Lipid Res. 2017, 58, 2083–2101. [Google Scholar] [CrossRef]
- Bos, M.M.; Noordam, R.; Blauw, G.J.; Slagboom, P.E.; Rensen, P.C.N.; van Heemst, D. The ApoE ε4 Isoform: Can the Risk of Diseases be Reduced by Environmental Factors? J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Paik, Y.K.; Chang, D.J.; Reardon, C.A.; Walker, M.D.; Taxman, E.; Taylor, J.M. Identification and characterization of transcriptional regulatory regions associated with expression of the human apolipoprotein E gene. J. Biol. Chem. 1988, 263, 13340–13349. [Google Scholar] [CrossRef]
- Mui, S.; Briggs, M.; Chung, H.; Wallace, R. B.; Gomez-Isla, T.; Rebeck, G. W.; Hyman, B.T. A newly identified polymorphism in the apolipoprotein E enhancer gene region is associated with Alzheimer’s disease and strongly with the epsilon 4 allele. Neurology 1996, 47, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J. C.; Berr, C.; Pasquier, F.; Delacourte, A.; Frigard, B.; Cottel, D.; Pérez-Tur, J.; Mouroux, V.; Mohr, M.; Cécyre, D.; Galasko, D.; Lendon, C.; Poirier, J.; Hardy, J.; Mann, D.; Amouyel, P.; Chartier-Harlin, M.C. Pronounced impact of Th1/E47cs mutation compared with-491 AT mutation on neural APOE gene expression and risk of developing Alzheimer’s disease. Hum. Mol. Genet. 1998, 7, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J. C.; Brousseau, T.; Defosse, V.; Evans, A.; Arveiler, D.; Ruidavets, J. B.; Haas, B.; Cambou, J.P.; Luc, G.; Ducimetière, P.; Cambien, F.; Chartier-Harlin, M.C.; Amouyel, P. Independent association of an APOE gene promoter polymorphism with increased risk of myocardial infarction and decreased APOE plasma concentrations-the ECTIM study. Hum. Mol. Genet. 2000, 9, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J. C.; Pasquier, F.; Cottel, D.; Frigard, B.; Amouyel, P.; Chartier-Harlin, M. C. A new polymorphism in the APOE promoter associated with risk of developing Alzheimer’s disease. Hum. Mol. Genet. 1998, 7, 533–540. [Google Scholar] [CrossRef]
- Lambert, J. C.; Perez-Tur, J.; Dupire, M. J.; Galasko, D.; Mann, D.; Amouyel, P.; Hardy, J.; Delacourte, A.; Chartier-Harlin, M.C. Distortion of allelic expression of apolipoprotein E in Alzheimer’s disease. Hum. Mol. Genet. 1997, 6, 2151–2154. [Google Scholar] [CrossRef]
- Bullido, M. A. J.; and Valdivieso, F. Apolipoprotein E gene promoter polymorphisms in Alzheimer’s disease. Microsc. Res. Tech. 2000, 50, 261–267. [Google Scholar] [CrossRef]
- Lumsden, A. L.; Mulugeta, A.; Zhou, A.; Hypponen, E. Apolipoprotein E (APOE) genotype-associated disease risks: a phenome-wide, registry-based, case-control study utilising the UK biobank. EBioMedicine 2020, 59, 102954. [Google Scholar] [CrossRef]
- Artiga, M. J.; Bullido, M. J.; Frank, A.; Sastre, I.; Recuero, M.; García, M. A.; Lendon, C.L.; Han, S.W.; Morris, J.C.; Vázquez, J.; Goate, A.; Valdivieso, F. Risk for Alzheimer’s disease correlates with transcriptional activity of the APOE gene. Hum. Mol. Genet. 1998, 7, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- Sims, R.; van der Lee, S. J.; Naj, A. C.; Bellenguez, C.; Badarinarayan, N.; Jakobsdottir, J.; Kunkle, B.W.; Boland, A.; Raybould, R.; Bis, J.C.; Martin, E.R.; Grenier-Boley, B.; Heilmann-Heimbach, S.; Chouraki, V.; Kuzma, A.B.; Sleegers, K.; Vronskaya, M.; Ruiz, A.; Graham, R.R.; Olaso, R.; Hoffmann, P.; Grove, M.L.; Vardarajan, B.N.; Hiltunen, M.; Nöthen, M.M.; White, C.C.; Hamilton-Nelson., K.L.; Epelbaum, J.; Maier, W.; Choi, S.H.; Beecham, G.W.; Dulary, C.; Herms, S.; Smith, A.V.; Funk, C.C.; Derbois, C.; Forstner, A.J.; Ahmad, S.; Li, H.; Bacq, D.; Harold, D.; Satizabal, C.L.; Valladares, O.; Squassina, A.; Thomas, R.; Brody, J.A.; Qu, L.; Sánchez-Juan, P.; Morgan, T.; Wolters, F.J.; Zhao, Y.; Garcia, F.S.; Denning, N.; Fornage, M.; Malamon, J.; Naranjo, M.C.D.; Majounie, E.; Mosley, T.H.; Dombroski, B.; Wallon, D.; Lupton, M.K.; Dupuis, J.; Whitehead, P.; Fratiglioni, L.; Medway, C.; Jian, X.; Mukherjee, S.; Keller, L.; Brown, K.; Lin, H.; Cantwell, L.B.; Panza, F.; McGuinness, B.; Moreno-Grau, S.; Burgess, J.D.; Solfrizzi, V.; Proitsi, P.; Adams, H.H.; Allen, M.; Seripa, D.; Pastor, P.; Cupples, L.A.; Price, N.D.; Hannequin, D.; Frank-García, A.; Levy, D.; Chakrabarty, P.; Caffarra, P.; Giegling, I.; Beiser, A.S.; Giedraitis, V.; Hampel, H.; Garcia, M.E.; Wang, X.; Lannfelt, L.; Mecocci, P.; Eiriksdottir, G.; Crane, PK.; Pasquier, F.; Boccardi, V.; Henández, I.; Barber, R.C.; Scherer, M.; Tarraga, L.; Adams, P.M.; Leber, M.; Chen, Y.; Albert, M.S.; Riedel-Heller, S.; Emilsson, V.; Beekly, D.; Braae, A.; Schmidt, R.; Blacker, D.; Masullo, C.; Schmidt, H.; Doody, R.S.; Spalletta, G.; Longstreth, W.T. Jr.; Fairchild, T.J.; Bossù, P.; Lopez, O.L.; Frosch, M.P.; Sacchinelli, E.; Ghetti, B.; Yang, Q.; Huebinger, R.M.; Jessen, F.; Li, S.; Kamboh, M.I.; Morris, J.; Sotolongo-Grau, O.; Katz, M.J.; Corcoran, C.; Dunstan, M.; Braddel, A.; Thomas, C.; Meggy, A.; Marshall, R.; Gerrish, A.; Chapman, J.; Aguilar, M.; Taylor, S.; Hill, M.; Fairén, M.D.; Hodges, A.; Vellas, B.; Soininen, H.; Kloszewska, I.; Daniilidou, M.; Uphill, J.; Patel, Y.; Hughes, J.T.; Lord, J.; Turton, J.; Hartmann, A.M.; Cecchetti, R.; Fenoglio, C.; Serpente, M.; Arcaro, M.; Caltagirone, C.; Orfei, M.D.; Ciaramella, A.; Pichler, S.; Mayhaus, M.; Gu, W.; Lleó, A.; Fortea, J.; Blesa, R.; Barber, I.S.; Brookes, K.; Cupidi, C.; Maletta, R.G.; Carrell, D.; Sorbi, S.; Moebus, S.; Urbano, M.; Pilotto, A.; Kornhuber, J.; Bosco, P.; Todd, S.; Craig, D.; Johnston, J.; Gill, M.; Lawlor, B.; Lynch, A.; Fox, N.C.; Hardy, J.; ARUK, Consortium; Albin, R.L.; Apostolova, L.G.; Arnold, S.E.; Asthana, S.; Atwood, C.S.; Baldwin, C.T.; Barnes, L.L.; Barral, S.; Beach, T.G.; Becker, J.T.; Bigio, E.H.; Bird, T.D.; Boeve, B.F.; Bowen, J.D.; Boxer, A.; Burke, J.R.; Burns, J.M.; Buxbaum, J.D.; Cairns, N.J.; Cao, C.; Carlson, C.S.; Carlsson, C.M.; Carney, R.M.; Carrasquillo, M.M.; Carroll, S.L.; Diaz, C.C.; Chui, H.C.; Clark, D.G.; Cribbs, D.H.; Crocco, E.A.; DeCarli, C.; Dick, M.; Duara, R.; Evans, D.A.; Faber, K.M.; Fallon, K.B.; Fardo, D.W.; Farlow, M.R.; Ferris, S.; Foroud, T.M.; Galasko, D.R.; Gearing, M.; Geschwind, D.H.; Gilbert, J.R.; Graff-Radford, N.R.; Green, R.C.; Growdon, J.H.; Hamilton, R.L.; Harrell, L.E.; Honig, L.S.: Huentelman, M.J.; Hulette, C.M.; Hyman, B.T.; Jarvik, G.P.; Abner, E.; Jin, L.W.; Jun, G.; Karydas, A.; Kaye, J.A.; Kim, R.; Kowall, N.W.; Kramer, J.H.; LaFerla, F.M.; Lah, J.J.; Leverenz, J.B.; Levey, A.I.; Li, G.; Lieberman, A.P.; Lunetta, K.L.; Lyketsos, C.G.; Marson, D.C.; Martiniuk, F.; Mash, D.C.; Masliah, E.; McCormick, W.C.; McCurry, S.M.; McDavid, A.N.; McKee, A.C.; Mesulam, M.; Miller, B.L.; Miller, C.A.; Miller, J.W.; Morris, J.C.; Murrell, J.R.; Myers, A.J.; O’Bryant, S.; Olichney, J.M.; Pankratz, V.S.; Parisi, J.E.; Paulson, H.L.; Perry, W.; Peskind, E.; Pierce, A.; Poon, W.W.; Potter, H.; Quinn, J.F.; Raj, A.; Raskind, M.; Reisberg, B.; Reitz, C.; Ringman, J.M.; Roberson, E.D.; Rogaeva, E.; Rosen, H.J.; Rosenberg, R.N.; Sager, M.A.; Saykin, A.J.; Schneider, J.A.; Schneider, L.S.; Seeley, W.W.; Smith, A.G.; Sonnen, J.A.; Spina, S.; Stern, R.A.; Swerdlow, R.H.; Tanzi, R.E.; Thornton-Wells, T.A.; Trojanowski, J.Q.; Troncoso, J.C.; Van Deerlin, V.M.; Van Eldik, L.J.; Vinters, H.V.; Vonsattel, J.P.; Weintraub, S.; Welsh-Bohmer, K.A.; Wilhelmsen, K.C.; Williamson, J.; Wingo, T.S.; Woltjer, R.L.; Wright, C.B.; Yu, C.E.; Yu, L.; Garzia, F.; Golamaully, F.; Septier, G.; Engelborghs, S.; Vandenberghe, R.; De Deyn, P.P.; Fernadez, C.M.; Benito, Y.A.; Thonberg, H.; Forsell, C.; Lilius, L.; Kinhult-Stählbom, A.; Kilander, L.; Brundin, R.; Concari, L.; Helisalmi, S.; Koivisto, A.M.; Haapasalo, A.; Dermecourt, V.; Fievet, N.; Hanon, O.; Dufouil, C.; Brice, A.; Ritchie, K.; Dubois, B.; Himali, J.J.; Keene, C.D.; Tschanz, J.; Fitzpatrick, A.L.; Kukull, W.A.; Norton, M.; Aspelund, T.; Larson, E.B.; Munger, R.; Rotter, J.I.; Lipton, R.B.; Bullido, M.J.; Hofman, A.; Montine, T.J.; Coto, E.; Boerwinkle, E.; Petersen, R.C.; Alvarez, V.; Rivadeneira, F.; Reiman, E.M.; Gallo, M.; O’Donnell, C.J.; Reisch, J.S.; Bruni, A.C.; Royall, D.R.; Dichgans, M.; Sano, M.; Galimberti, D.; St George-Hyslop, P.; Scarpini, E.; Tsuang, D.W.; Mancuso, M.; Bonuccelli, U.; Winslow, A.R.; Daniele, A.; Wu, C.K.; GERAD/PERADES; CHARGE; ADGC; EADI; Peters, O.; Nacmias, B.; Riemenschneider, M.; Heun, R.; Brayne, C.; Rubinsztein, D.C.; Bras, J.; Guerreiro, R.; Al-Chalabi, A.; Shaw, C.E.; Collinge, J.; Mann, D.; Tsolaki, M.; Clarimón, J.; Sussams, R.; Lovestone, S.; O’Donovan, M.C.; Owen, M.J.; Behrens, T.W.; Mead, S.; Goate, A.M.; Uitterlinden, A.G.; Holmes, C.; Cruchaga, C.; Ingelsson, M.; Bennett, D.A.; Powell, J.; Golde, T.E.; Graff, C.; De Jager, P.L.; Morgan, K.; Ertekin-Taner, N.; Combarros, O.; Psaty, B.M.; Passmore, P.; Younkin, S.G.; Berr, C.; Gudnason, V.; Rujescu, D.; Dickson, D.W.; Dartigues, J.F.; DeStefano, A.L.; Ortega-Cubero, S.; Hakonarson, H.; Campion, D.; Boada, M.; Kauwe, J.K.; Farrer, L.A.; Van Broeckhoven, C.; Ikram, M.A.; Jones, L.; Haines, J.L.; Tzourio, C.; Launer, L.J.; Escott-Price, V.; Mayeux, R.; Deleuze, J.F.; Amin, N.; Holmans, P.A.; Pericak-Vance, M.A.; Amouyel, P.; van Duijn, C.M.; Ramirez, A.; Wang, L.S.; Lambert, J.C.; Seshadri, S.; Williams, J.; Schellenberg, G.D. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 2017, 49, 1373–1384. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.G.; Tulloch, J.; Chen, S.; Leong, L.; Saxton, A. D.; Kraemer, B.; Darvas, M.; Keene, C.D.; Shutes-David, A.; Todd, K.; Millard, S.; Yu, C.E. Redefining transcriptional regulation of the APOE gene and its association with Alzheimer’s disease. PLoS One 2020, 15, e0227667. [Google Scholar] [CrossRef]
- Medvedeva, Y.A.; Fridman, M.V.; Oparina, N.J.; Malko, D.B.; Ermakova, E.O.; Kulakovskiy, I.V.; Heinzel, A.; Makeev, V.J. Intergenic, gene terminal, and intragenic CpG islands in the human genome. BMC Genomics 2010, 11, 48. [Google Scholar] [CrossRef]
- Maunakea, A.K.; Nagarajan, R.P.; Bilenky, M.; Ballinger, T.J.; D’Souza, C.; Fouse, S.D.; Johnson, B.E.; Hong, C.; Nielsen, C.; Zhao, Y.; Turecki, G.; Delaney, A.; Varhol, R.; Thiessen, N.; Shchors, K.; Heine, V.M.; Rowitch, D.H.; Xing, X.; Fiore, C.; Schillebeeckx, M.; Jones, S.J.; Haussler, D.; Marra, M.A.; Hirst, M.; Wang, T.; Costello, J.F. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010, 466, 253–257. [Google Scholar] [CrossRef]
- Gellersen, H.M.; Guell, X.; Sami, S. Differential vulnerability of the cerebellum in healthy ageing and Alzheimer’s disease. Neuroimage Clin. 2021, 30, 102605. [Google Scholar] [CrossRef]
- Yu, C.E.; Cudaback, E.; Foraker, J.; Thomson, Z.; Leong, L.; Lutz, F.; Gill, J.A.; Saxton, A.; Kraemer, B.; Navas, P.; Keene, C.D.; Montine, T.; Bekris, L.M. Epigenetic signature and enhancer activity of the human APOE gene. Hum. Mol. Genet. 2013, 22, 5036–5047. [Google Scholar] [CrossRef]
- Hendrich, B.; Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 1998, 18, 6538–47. [Google Scholar] [CrossRef] [PubMed]
- Cedar, H.; Bergman, Y. Programming of DNA methylation patterns. Annu. Rev. Biochem. 2012, 81, 97–117. [Google Scholar] [CrossRef]
- Ma, Y.; Smith, C.E.; Lai, C.Q.; Irvin, M.R.; Parnell, L.D.; Lee, Y.C.; Pham, L.; Aslibekyan, S.; Claas, S.A.; Tsai, M.Y.; Borecki, I.B.; Kabagambe, E.K.; Berciano, S.; Ordovás, J.M.; Absher, D.M.; Arnett, D.K. Genetic variants modify the effect of age on APOE methylation in the Genetics of Lipid Lowering Drugs and Diet Network study. Aging Cell 2015, 14, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Liu, X.; Cheng, X.; Li, Y.; Gearing, M.; Levey, A.; Huang, X.; Li, Y.; Jin, P.; Li, X. MicroRNA-650 Regulates the Pathogenesis of Alzheimer’s Disease Through Targeting Cyclin-Dependent Kinase 5. Mol. Neurobiol. 2023, 60, 2426–2441. [Google Scholar] [CrossRef] [PubMed]
- De Marco, M.; Clough, P.J.; Dyer, C.E.; Vince, R.V.; Waby, J.S.; Midgley, A.W.; Venneri, A. Apolipoprotein E epsilon allele modulates the immediate impact of acute exercise on prefrontal function. Behav. Genet. 2014, 45, 106–16. [Google Scholar] [CrossRef] [PubMed]
- Cook, C.J.; Fletcher, J.M. Can education rescue genetic liability for cognitive decline? Social Sci. Med. 2015, 127, 159–70. [Google Scholar] [CrossRef]
- Maddock, J.; Cavadino, A.; Power, C.; Hyppönen, E. 25-hydroxyvitamin D, APOE ɛ4 genotype and cognitive function: findings from the 1958 British birth cohort. Eur. J. Clin. Nutr. 2015, 69, 505-8. [Google Scholar] [CrossRef]
- Panza, F.; La Montagna, M.; Lampignano, L.; Zupo, R.; Bortone, I.; Castellana, F.; Sardone, R.; Borraccino, L.; Dibello, V.; Resta, E.; Altamura, M.; Daniele, A.; Lozupone, M. Vitamin D in the development and progression of alzheimer’s disease: implications for clinical management. Expert Rev. Neurother. 2021, 2, 287–301. [Google Scholar] [CrossRef]
- Suzuki, K.; Hirakawa, A.; Ihara, R.; Iwata, A.; Ishii, K.; Ikeuchi, T.; Sun, C.K.; Donohue, M.; Iwatsubo, T.; Alzheimer’s Disease Neuroimaging Initiative, Japanese Alzheimer’s Disease Neuroimaging Initiative. Effect of apolipoprotein E ε4 allele on the progression of cognitive decline in the early stage of Alzheimer’s disease. Alzheimers Dement. (NY) 2020, 6, e12007. [Google Scholar] [CrossRef]
- Wang, S.C.; Oelze, B.; Schumacher, A. Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 2008, 3, e2698. [Google Scholar] [CrossRef]
- Karlsson, I.K.; Ploner, A.; Wang, Y.; Gatz, M.; Pedersen, N.L.; Hagg, S. Apolipoprotein E DNA methylation and late-life disease. Int. J. Epidemiol. 2018, 47, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Shaw, M.; Todd, K.; Khrestian, M.; D’Aleo, G.; Barnard, P.J.; Zahratka, J.; Pillai, J.; Yu, C.E.; Keene, C.D.; Leverenz, J.B.; Bekris, L.M. DNA methyla- tion of TOMM40-APOE-APOC2 in Alzheimer’s disease. J. Hum. Genet. 2018, 63, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Mancera-Paez, O.; Estrada-Orozco, K.; Mahecha, M.F.; Cruz, F.; Bonilla-Vargas, K.; San- doval, N.; Guerrero, E.; Salcedo-Tacuma, D.; Melgarejo, J.D.; Vega, E.; Ortega-Ro- jas, J.; Roman, G.C.; Pardo-Turriago, R.; Arboleda, H. Differential methylation in APOE (Chr19; exon four; from 44,909,188 to 44,909,373/hg38) and increased apolipoprotein E plasma levels in subjects with mild cognitive impairment. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, W.; Ware, E.B.; Turner, S.T.; Mosley, T.H.; Smith, J.A. DNA methylation in the APOE genomic region is associated with cognitive function in African Americans. BMC Med. Genomics 2018, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Mur, J.; McCartney, D.L.; Walker, R.M.; Campbell, A.; Bermingham, M.L.; Morris, S.W.; Porteous, D.J.; McIntosh, A.M.; Deary, I.J.; Evans, K.L.; Marioni, R.E. DNA methylation in APOE: The relationship with Alzheimer’s and with cardiovascular health. Alzheimers Dement. (NY) 2020, 6, e12026. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Fein- stein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koisti- naho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigen- desch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef] [PubMed]
- Griseta, C.; Battista, P.; Castellana, F.; Colonna, I.; Sciarra, S.; Zupo, R.; Bortone, I.; Lampignano, L.; Tirelli, S.; Bernardino, G.; Mollica, A.; Lozupone, M.; Panza, F.; Fiore, P.; Minafra, B.; Sardone, R. Serum levels of IL-6 are associated with cognitive impairment in the salus in apulia population-based study. Heliyon 2023, 9, e13972. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Hernandez, D.G.; Chitrala, K.N.; Fanelli-Kuczmarski, M.T.; Noren Hooten, N.; Pacheco, N.L.; Mode, N.A.; Zonderman, A.B.; Ezike, N.; Evans, M.K. APOE gene region methylation is associated with cognitive performance in middle-aged urban adults. Neurobiol. Aging 2022, 116, 41–48. [Google Scholar] [CrossRef]
- Mur, J.; McCartney, D.L.; Walker, R.M.; Campbell, A.; Bermingham, M.L.; Morris, S.W.; Porteous, D.J.; McIntosh, A.M.; Deary, I.J.; Evans, K.L.; Marioni, R.E. DNA methylation in APOE: The relationship with Alzheimer’s and with cardiovascular health. Alzheimers Dement. (NY) 2020, 6, e12026. [Google Scholar] [CrossRef]
- Lozupone, M.; Imbimbo, B.P.; Balducci, C.; Lo Vecchio, F.; Bisceglia, P.; Latino, R.R.; Leone, M.; Dibello, V.; Solfrizzi, V.; Greco, A.; Daniele, A.; Watling, M.; Seripa, D.; Panza, F. Does the imbalance in the apolipoprotein E isoforms underlie the pathophysiological process of sporadic Alzheimer’s disease? Alzheimers Dement. (NY) 2023, 19, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Slooter, A. J. C.; Cruts, M.; Kalmijn, S.; Hofman, A.; Breteler, M.M.; Van Broeckhoven, C.; van Duijn, C.M. Risk estimates of dementia by apolipoprotein E genotypes from a population- based incidence study: The Rotterdam Study. Arch. Neurol. 1998, 55, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Reiman, E. M.; Arboleda-Velasquez, J.F.; Quiroz, Y.T.; Huentelman, M.J.; Beach, T.G.; Caselli, R.J.; Chen, Y.; Su, Y.; Myers, A.J.; Hardy, J.; Paul Vonsattel, J.; Younkin, S.G.; Bennett, D.A.; De Jager, P.L.; Larson, E.B.; Crane, P.K.; Keene, C.D.; Kamboh, M.I.; Kofler, J.K.; Duque, L.; Gilbert, J.R.; Gwirtsman, H.E.; Buxbaum, J.D.; Dickson, D.W.; Frosch, M.P.; Ghetti, B.F.; Lunetta, K.L.; Wang, L.S.; Hyman, B.T.; Kukull, W.A.; Foroud, T.; Haines, J..L; Mayeux, R.P.; Pericak-Vance, M.A.; Schneider, J.A.; Trojanowski, J.Q.; Farrer, L.A.; Schellenberg, G.D.; Beecham, G.W.; Montine, T.J.; Jun, G.R.; Alzheimer’s Disease Genetics Consortium. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat. Commun. 2020, 11, 667. [Google Scholar] [CrossRef] [PubMed]
- Pogribny, I.P.; Vanyushin, B.F. Age-related Genomic Hypomethylation. In: Tollefsbol TO, ed. Epigenetics of Aging: Springer 2009, 11-27.

|
APOE exons, promoter, and CGI | ||||
|---|---|---|---|---|
| Study | Study design | Sample size |
Age or mean age at death (years) | Principal findings |
| Lambert et al., 1998 [59] | Cross-sectional | AD: 573 Controls: 509 |
AD: 73.8±8.1 Controls: 70.4±7.9 |
Among three APOE promoter mutations (−491 AT, −427 CT and Th1/E47cs), the Th1/E47cs T allele was associated with an increased AD risk, while the −491 T allele was associated with a decreased risk, independently of the APOE ε2/ε3/ε4 polymorphism effect. The −427 CT polymorphism was not associated with AD. In addition to the qualitative effect of the APOE ε2/ε3/ε4 polymorphisms on the AD occurrence, the quantitative variation of expression of these alleles due to functional APOE promoter mutations, may be a key determinant of AD development |
| Lambert et al., 1998 [61] | Cross-sectional | AD: 310 Controls: 293 |
AD: 72-91 Controls: 75-102 |
The Th1/E47cs T allele was associated with an increased risk of developing AD (odds ratio, OR = 1.29) and the OR was 1.79 for individuals bearing at least one T allele |
| Yu et al., 2013 [71] | Cross-sectional | Frontal lobe AD: 9 Controls: 6 |
Frontal lobe AD: 86.8±6.9 Controls: 87.9±8.6 |
APOE CGI exhibited transcriptional enhancer/silencer activity and differentially modulates expression of genes at the APOE locus in a cell type-, DNA methylation- and ɛ2/ɛ3/ɛ4 allele-specific manner. These findings implicated a novel functional role for a 3′-exon CGI and supported a modified mechanism of action for APOE in disease risk, involving also an epigenetically regulated transcriptional program at the APOE locus driven by the APOE CGI |
| Lee et al., 2020 [67] | Cross-sectional | Frontal lobe AD: 44 Controls: 21 Cerebellum AD: 51 Controls: 25 |
Frontal lobe AD: 86.8±6.9 Controls: 87.9±8.6 Cerebellum AD: 74.6±9.3 Controls: 73.5±10.9 |
APOE has a single CpG island (CGI) that overlaps with its 3′-exon. In this study, the presence of APOE circular RNA (circRNA) was discovered and found that circRNA and full-length mRNA each constitute approximately one third of the total APOE RNA, with truncated mRNAs likely constituting some of the missing fraction. All APOE RNA species demonstrated significantly higher expression in AD frontal lobe than in control frontal lobe, suggesting a possible modified mechanism of gene action for APOE in AD involving also an epigenetically regulated transcriptional program driven by DNA methylation in the APOE CGI |
| Ma et al., 2015 [74] | Cross-sectional | 475 men and 518 women | 18-87 | The 13 APOE CpG sites were categorized into three groups: Group 1 showed hypermethylation (> 50%, in the promoter region), Group 2 exhibited hypomethylation (< 50%, in the first two exons and introns), and Group 3 showed hypermethylation (> 50%, in the exon 4. APOE methylation was significantly associated with age and plasma total cholesterol and APOE methylation patterns differed across APOE ε variants and the promoter variant rs405509, which further showed a significant interaction with age |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
