Preprint
Review

This version is not peer-reviewed.

The Impact of Apolipoprotein E (APOE) Epigenetics on Aging and Sporadic Alzheimer’s Disease

A peer-reviewed article of this preprint also exists.

Submitted:

02 November 2023

Posted:

03 November 2023

You are already at the latest version

Abstract
Sporadic Alzheimer’s disease (AD) derives from an interplay among environmental factors and genetic variants, while epigenetic modifications have been expected to affect the onset and progression of its complex etiopathology. Heterozygous carriers of the apolipoprotein E gene (APOE)4 allele have a 4-fold increased risk of developing AD, while APOE 4/4-carriers have a 12-fold increased risk in comparison with the APOE 3-carriers. The main longevity factor is the homozygous APOE ε3/ε3 genotype. In the present narrative review article, we summarized and described the role of APOE epigenetics in aging and AD pathophysiology. It is not fully understood how APOE variants may increase or decrease AD risk, but this gene is known to affect amyloid- and tau-mediated neurodegeneration directly or indirectly, also by affecting lipid metabolism and inflammation. For sporadic AD, epigenetic regulatory mechanisms may control and influence APOE expression in response to external insults. Diet, a major environmental factor, has been significant associated with physical exercise, cognitive function, and the methylation level of several cytosine-phosphate-guanine (CpG) dinucleotides sites of APOE.
Keywords: 
;  ;  ;  ;  ;  ;  ;  

1. Introduction

The study of complex diseases is based on the association among epigenetics, gene variants, and environmental factors [1,2]. The pathophysiology of Alzheimer’s disease (AD) is a mixture of many pathogenic pathways and gene expression networks. The current model of AD is based on the amyloid-β (Aβ) hypothesis, in which a series of deterministic events leads from Aβ and tau deposition to neurodegeneration and progressive decline of cognitive function. This conceptualization matches autosomal-dominant AD, defined as dominantly inherited AD with pathological confirmation, although it is less appropriate for sporadic AD. A probabilistic AD model connoted by three variants of the disease has been proposed: autosomal-dominant AD, apolipoprotein E (apolipoprotein E gene, APOE) ε4 allele-related sporadic AD, and APOE ε4 allele-unrelated sporadic AD [3]. These three variants suggested a reduced weight of the Aβ hypothesis, giving more importance to environmental factors and lower-risk genes [3].
There were epigenetic modifications also in AD [4]. From a genetic point of view, the known risk loci showed a low penetrance in causing AD, except for Aβ production-related genes, and none of them have been related to different AD pathogenic pathways. On the contrary, epigenetic alterations may modify transcriptional activity globally throughout different genes and multiple biological pathways. Epigenetic mechanisms may also explain the influence of environmental stimuli such as dietary patterns, harmful exposures, and lifestyle factors on phenotypic outcomes in individuals with the same genetic variants [5]. Additionally, genetic sequence and epigenetic code were linked in a clear way. In fact, some single nucleotide polymorphisms (SNPs) are considered a common epigenetic mark because of the rearranging of cytosine-phosphate-guanine (CpG) dinucleotides with C nucleotide methylation. These CpG-altering SNPs may modulate DNA methylation levels in a cis or trans manner or they may modify gene transcription at regions enhanced of CpG known as CpG islands [6,7,8].
Since early 90′s, many studies have showed that APOE could play a central role in AD neurodegeneration. For sporadic AD APOE allele ε4 is a key genetic risk factor [9,10,11], with a semidominant inheritance [12], and associated to the ApoE4 isoform. Conversely, in sporadic AD, the APOE allele ε2, associated to the ApoE2 isoform, could have a protective effect [13,14]. Although the increased risk for sporadic AD in APOE ε4-carriers, the presence of the APOE ε4 allele alone is not a causal factor for AD pathology [15]. In this context, epigenetics may represent a candidate for a point of overlapping among several AD genetic risk factors, such as the APOE ε4 allele, and the AD pathophysiological processes. Human ApoE is a glycoprotein of 299-amino acids, traditionally binding phospholipids and cholesterol. ApoE is produced in 3 common isoforms (ApoE2, ApoE3, and ApoE4) differing in two amino acid residues at positions 112 and 158, and one very uncommon isoform (ApoE3r) [16].
The APOE variants, respectively ε2 ε3, ε4 and ε3r, are determined by four haplotypes, derived from the allele association of 2 common SNPs rs429358 (C3,937T) and rs7412 (C4,075T) at the APOE locus (19q13.32), coding for the different protein isoforms [16]. These APOE four alleles [17], are considered the most investigated variants in human Caucasian genome. Remarkably, the APOE exon 4 region, encompassing the ε2/ε3/ε4 allele variants, is a well-defined CpG islands rich area. Moreover, the two common SNPs rs429358 and rs7412 are CpG-altering and modify the CpG content of this area. This APOE CpG islands rich area is a transcriptional enhancer with a specificity linked to the ε4 allele and cell-type [18]. In the present review article, we briefly summarized and highlighted the complex epigenetic regulation of APOE gene in aging and sporadic AD.

2. The role of apolipoprotein e in Alzheimer’s disease pathogenesis

For sporadic AD, APOE is the most important genetic risk factor as well as for the earlier stages of cognitive decline represented by mild cognitive impairment (MCI) [19], but its expression is poorly understood. Astrocytes and activated microglia produced the major amount of ApoE in the brain. Having one APOE ε4 allele conducts to a 4-fold increased risk of developing AD, while having two APOE ε4 alleles conducts to a 12-fold increased risk, compared to the APOE ε3-carriers. Conversely, the uncommon heterozygous carriers of the APOE ε2 allele have a risk 40% lower for AD and the homozygous carriers have a further reduced risk [20]. It was showed that APOE ε4-carriers with normal cognition displayed elevated Aβ and tau brain burden than APOE ε3-carriers; conversely, APOE ε2-carriers had reduced global Aβ burden, without differences in regional tau burden or accumulation over time [21]. The contribution in AD pathogenesis from APOE involves not only Aβ aggregation and its clearance, but also tau-mediated neurodegeneration [22], microglia impairment [23,24], astrocyte reactivity [25], and blood-brain barrier disruption [26,27].
The three ApoE isoforms bind and transport Aβ peptides with differential affinity during AD pathogenesis [28,29], being highest for ApoE4, intermediate for ApoE3, and lowest for ApoE2 [30,31]. Therefore, their effects are also different concerning Aβ aggregation and clearance, but not Aβ production [32,33]. ApoE also can affect tau-mediated neurodegeneration and tauopathy by modulating microglial responses to Aβ plaque pathology [34,35,36]. Thus, different ApoE isoforms may increase or reduce the risk for AD [29,31], based on different combined effects of ApoE isoforms on both Aβ deposition and neurofibrillary tangles [37]. APOE and its ε2/ε3/ε4 alleles have been connected by several genetic studies to multiple physiological conditions and disorders. Epigenetic alterations could explain the association between APOE and its associated diseases, considering that genetic signal associated with the disease also reflects a site’s sequence architecture for epigenetic code [18].

3. Apolipoprotein E, human longevity, and Alzheimer’s disease

There was a genetic association of APOE is with both human longevity and AD, but its mechanistic contribution in aging is largely under investigation. APOE pleiotropic roles may be explained by its exceptional epigenetic properties. In AD brain, these epigenetic changes could contribute to neural cell dysfunction. Additionally, several studies showed DNA methylation modifications on specific genes implicated in AD pathology such as APOE. In AD brain, it was showed that APOE CpG islands were differentially methylated in an APOE- and tissue-specific way [38]. In the brain of targeted replacement (TR) mice expressing human ApoE, allele variations within the major APOE CpG island may affect its methylation [39]. Epigenetic changes may link modified gene expression with environmental stimuli such as dietary patterns and physical exercise. In animal models, APOE alleles may have alterations in epigenetic regulation in response to external stimuli reported in studies on APOE TR mice [40].
The differences between mouse and human APOE gene clusters, the complexity of transcriptional control of human ApoE, and the structure of the targeting construct should be considered in the strategy for replacing mouse ApoE in the APOE TR models [41]. Moreover, lifestyle factors like education, alcohol consumption, smoking, and physical activity may attenuate genetic risk in the process of age-related cognitive decline and twelve modifiable risk factors might prevent or delay up to 40% of different dementias [42]. The complex interactions among age-related cognitive decline, genetics, and lifestyle may encourage behaviors maintaining cognitive health in older age [43]. At this regard, ApoE may be important for the pathophysiology of lipid metabolism [44] and central nervous system (CNS), although the role in healthy aging and longevity has seen its value growth [45,46,47].
Studies on longevity and healthy aging are related because subjects who live long tend to be healthy for a greater part of their lives [48]. Healthy aging can be defined as achieving older age maintaining intact cognition and/or mobility and without disabilities or multimorbidity. This last can be defined as the coexistence of two or more chronic diseases in the same subjects [49]. The detrimental effects of the APOE ε4 allele on longevity could influence the probability of a long human lifespan [48]. The APOE ε2 allele is more frequent in long-lived individuals than the ε4 allele [50]. Thus, the main longevity factor is the homozygous APOE ε3/ε3 genotype. The higher frequency of the ε3 allele in older individuals and their offspring than in controls derives from the greater amount of APOE ε3/ε3 genotype compared to the ε2/ε3 or ε3/ε4 genotypes [51].
In the pathophysiology of lipid metabolism, the role of ApoE may be related with normal/pathological aging, while its function in the pathophysiology of CNS needs further clarification [52]. In fact, in the CNS, there was about a quarter of total body cholesterol that may exert an important role in synaptic plasticity [53]. With advancing age, cholesterol metabolism may modify, and its related brain changes may be associated with the pathophysiology of AD [53]. So, in longevity and healthy aging, lipid and cholesterol maintenance are a critical factor also from an interventional point of view. The detrimental effects of APOE ε4 allele might be managed by dietary interventions [54], with a Mediterranean dietary pattern potentially including higher n-3 polyunsaturated fatty acid intakes [55,56].

4. Specific epigenetic modifications of apolipoprotein E in Alzheimer’s disease

In response to environmental stimuli, epigenetic marks and signals may enable temporal combination of regulatory events through mechanisms including DNA methylation, histone modification/chromatin conformation, and noncoding microRNAs (miRNAs). Several studies investigating DNA methylation in the APOE gene suggested an age-dependent flow and APOE DNA methylation specific for brain area. The APOE genomic sequence is approximately 4 kb in size (chromosome19:45408714-45412650, hg19) including its promoter. This region encompasses 172 CpG dinucleotides [57]. In the late 90s and early 2000s, polymorphic sites in the first intron and the proximal promoter the of APOE gene cluster (−1,019 to +407) affecting APOE expression have been identified [58,59,60,61,62,63,64] (Table 1). Notably, these polymorphisms have been related with a differential AD risk [65,66]. However, in AD, the association between these polymorphic sites and the variability of sequence in the proximal promoter with ApoE protein levels were not clearly understood. In fact, among different studies, findings on the levels of expression of APOE RNA and the relationship with the ApoE levels varied. In human postmortem brain, there was elevated methylation in AD frontal lobe of a 5′-C-phosphate-G-3′ (CpG) island overlapping with exon four and downstream [67]. Interestingly, APOE has a well-defined CpG island not residing in the promoter region and overlapping with the APOE 3′-exon. In the human genome, these 3′-CpG islands are very rare representing < 1% of total CpG islands and are also conserved in other mammals [68,69]. However, the APOE CpG island methylation level relates to the expression level of four known APOE transcripts. The majority of the total APOE mRNA, with higher expression in the AD frontal lobe than in the frontal lobe of control subjects, is constituted by circular RNAs, miRNAs, and truncated APOE transcripts. The findings of several studies suggested several changes in epigenome and the regulatory role of epigenomic elements associated with the risk or clinical presentation of different neurological diseases, although the exact clinical significance of these signatures in the quantities of RNA and methylation level of CGI in the APOE 3′-exon was still unclear [67] (Table 1).
At the level of the individual CpG site, epigenetic regulation was showed by up/down patterns in the methylation profiles between samples and tissues. Significant differences in the global methylation levels among several brain regions were discovered across postmortem brain tissues. In brain regions primary affected by AD such as frontal lobe, temporal lobe, and hippocampus, methylation levels were lower. Conversely, in the cerebellum, a region apparently lacking profound pathological changes in AD but with recent important findings, the highest methylation levels were observed, suggesting that a correlation may exist between the methylation levels of the APOE CpG islands and the vulnerability of brain AD regions [70]. In fact, age- and AD-related alterations in several cerebellar subregions may also impact numerous functional domains, especially those affecting cognitive processing [70].
Genetic variants, which consist of CpG-altering SNP, can modify DNA methylation levels. These genetic variations may act like regulatory elements connecting genetic changes with epigenetic variability [71] (Table 1). As previously described, the APOE ε2/ε3/ε4 alleles are produced by two CpG-altering SNPs (rs429358 and rs7412) residing within the core region of the APOE CpG islands. The APOE ε4 allele, if compared with ε2 or ε3 alleles, adds one more CpG, further saturating a small 12 bp region with 4 CpG sites. On the contrary, the APOE ε2 allele eliminates 1 CpG and opens a 33-bp CpG-free region. Therefore, these two SNPs may alter the regional CpG burden and probably influence global DNA methylation of the CpG islands. These CpG load changes might change the binding profiles of methyl CpG-binding domain proteins, connected specifically to methylated DNA through their exclusive amino acid pattern [72].
Furthermore, within the APOE CpG islands, there is evidence of indirect indicators of protein binding which consist of histone marks and a DNase I hypersensitivity cluster. These findings suggested that the APOE CpG islands (and exon 4) may be a site for chromatin remodeling and protein binding. Considering that environmental stimuli could influence DNA methylation gradually with aging, the differences in APOE CpG islands methylation between healthy individuals and AD increased with age [73]. Taken together, different methylation landscapes could be represented by inheritance of different ε2/ε3/ε4 alleles in the APOE CpG islands, which could accumulate or change continuously with age, also modified by environmental factors. Recent results showed that methylation levels for most CpG sites may be in the order of APOE ε4-carriers > APOE ε3/ε3-carriers > APOE ε2-carriers, considering that APOE e4-carriers have the greatest number of CpG sites, while APOE e2 carriers have the smallest number with ε3/ε3 in the middle [74] (Table 1). These changes could potentially alter protein binding, with some consequences on biological systems, even affecting the pathophysiological processes of multiple diseases and plasma lipids levels. APOE methylation could partially mediate the effects of age on plasma lipid (Figure 1).
In the epigenetic landscape, miRNAs are known to be small non-coding RNAs with a length of ~ 22 nucleotides They are also implicated in AD, as showed by the altered expression of miRNA 650 (miR-650) in AD brains [75]. Bioinformatic analysis showed that miR-650 may target the expression of three components associated to AD: APOE, presenilin 1 (PSEN1), and cyclin-dependent kinase 5 (CDK5), with recent findings confirming that miR-650 may reduce in vitro the expression of APOE, PSEN1, and CDK5 [75].

5. Epigenetics of apolipoprotein E and cognitive function: contrasting evidence in Alzheimer’s disease

Several lifestyle and environmental stimuli could explain the effects of APOE genotype on AD and cognitive functioning, such as exercise [76], education [77], and vitamin D status [78]. Among implications for the development and progression of AD, vitamin D supplementation may be another potential strategy to consider for the APOE ε4 allele-carriers. Some reports showed that higher vitamin D concentrations in APOE ε4 homozygous carriers allow to perform better at memory scores [79]. Then, compared to the APOE ε3/ε3-carriers, the APOE ε4-carriers showed earlier onset of cognitive impairment in AD. Although, after the disease onset, the effect of APOE genotype on the progression of cognitive impairment remained debated [80].
For this reason, epigenetic modifications of APOE such as DNA methylation have a central role in maintaining cognitive function in older age. Growing DNA methylation levels at the APOE promoter region were found on postmortem prefrontal cortex samples of sporadic AD individuals by mass spectrometry [81]. Numerous previous studies have investigated the association between APOE DNA methylation and AD or MCI [82,83,84]. Instead, the association between APOE DNA methylation and cognitive function in healthy subjects without cognitive impairment was evaluated by two studies with controversial findings [85,86]. Liu and colleagues found an inverse association between DNA methylation in the APOE gene region and delayed recall capacity among 289 older African Americans people with a mean age of 67 years during normal cognitive aging [85]. Conversely, the other study conducted in a large European cohort, observed no association between general cognitive functioning and APOE DNA methylation [86].
Many reports have suggested that neuroinflammation may have a key role in AD pathogenesis [87]. Dietary habits are known to influence systemic inflammation, neuroinflammation, and inflammaging [88]. A recent study conducted in a cohort of racially diverse middle-aged people (n = 411), pursued to identify DNA methylation sites associated with cognitive function in the genomic region of APOE. About inflammatory potential of the diet, among the dietary inflammatory index, cognitive performance, and the methylation level of several CpG sites have been detected significant relationships [89].
However, studies are contrasting at this regard, and if epigenetic biomarkers could be used for predicting AD is still unclear. In the APOE gene, DNA methylation at two CpG sites (3/13) that are known to show age-dependent changes, was related with the total cholesterol and high-density lipoprotein cholesterol ratio, but not with cognitive status, family history of AD, or the risk of cardiovascular disease in a blood-based DNA methylation study of 5828 people from the Generation Scotland cohort [90]. These findings supported that there is no evidence yet for considering APOE methylation as a biomarker for predicting AD or cardiovascular disease, although APOE methylation was associated with the blood levels of cholesterol [90].

6. Conclusions

In the panorama of current available evidence, the investigation of healthy aging and longevity is currently of remarkable interest. APOE could be considered an epigenetic mediator of senescence considering that different ApoE biochemical pathways in lipid metabolism, neuroinflammation and neurodegeneration may contribute to longevity and healthy aging. Nonetheless, such areas of investigation are still increasing, since ApoE function in neurodegenerative diseases such as AD cannot be uniquely explained by ApoE effects in lipid metabolism. Furthermore, the imbalance in the ApoE isoforms could explain the pathophysiological process of cognitive impairment linked to sporadic AD [91].
Stochastic factors (such environmental, diet, and pollution) may play a significant role in sporadic AD, despite the elevated lifetime risk linked to APOE ε3/ε4 and APOE ε4/ε4 genotypes. Indeed, according to the notion of stochastic risk or protective factors and although it is known that APOE ε4/ε4-carriers developed dementia about 10 years earlier than APOE ε2 carriers [92], there was still significant discrepancy in the age of onset for APOE ε4/ε4-carriers (standard deviation of 6 years) [93]. During the process of aging, the accumulation of molecular alterations driven by genetic and epigenetic events in the organism lead to a loss of phenotypic plasticity over time. Also, epigenetics may be altered during the process of aging, and it is particularly important as age is the greatest risk factor for developing AD [94].

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, formal consent is not required.

Conflicts of Interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

References

  1. Heyn, H. A symbiotic liaison between the genetic and epigenetic code. Front. Genet. 2014, 5, 113. [Google Scholar] [CrossRef]
  2. Mill, J.; Heijmans, B.T. From promises to practical strategies in epigenetic epidemiology. Nat. Rev. Genet. 2013, 14, 585–594. [Google Scholar] [CrossRef]
  3. Frisoni, G.B.; Altomare, D.; Thal, D.R.; Ribaldi, F.; van der Kant, R.; Ossenkoppele, R.; Blennow, K.; Cummings, J.; van Duijn, C.; Nilsson, P.M.; Dietrich, P.Y.; Scheltens, P.; Dubois, B. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat. Rev. Neurosci. 2022, 23, 53–66. [Google Scholar] [CrossRef] [PubMed]
  4. Coppieters, N.; Dragunow, M. Epigenetics in Alzheimer’s disease: A focus on DNA modifications. Curr. Pharm. Des. 2011, 17, 3398–3412. [Google Scholar] [CrossRef] [PubMed]
  5. Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 2019, 571, 489–499. [Google Scholar] [CrossRef] [PubMed]
  6. Zhang, D.; Cheng, L.; Badner, J.A.; Chen, C.; Chen, Q.; Luo, W.; Craig, D.W.; Redman, M.; Gershon, E.S.; Liu, C. Genetic control of individual differences in gene-specific methylation in human brain. Am. J. Hum. Genet. 2010, 86, 411–419. [Google Scholar] [CrossRef] [PubMed]
  7. Gibbs, J.R.; van der Brug, M.P.; Hernandez, D.G.; Traynor, B.J.; Nalls, M.A.; Lai, S.L.; Arepalli, S.; Dillman, A.; Rafferty, I.P.; Troncoso, J.; Johnson, R.; Zielke, H.R.; Ferrucci, L.; Longo, D.L.; Cookson, M.R.; Singleton, A.B. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 2010, 6, e1000952. [Google Scholar] [CrossRef] [PubMed]
  8. Shoemaker, R.; Deng, J.; Wang, W.; Zhang, K. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res. 2010, 20, 883–889. [Google Scholar] [CrossRef]
  9. Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein e type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef]
  10. Chartier-Harlin, M.C.; Parfitt, M.; Legrain, S.; Pérez-Tur, J.; Brousseau, T.; Evans, A.; Berr, C.; Odile, V.; Roques, P.; Gourlet, V.; Fruchart, J.C.; Delacourte, A.; Rossor, M.; Amouyel, P. Apolipoprotein E, epsilon 4 allele as a major risk factor for sporadic early and late-onset forms of alzheimer’s disease: analysis of the 19q13,2 chromosomal region. Hum. Mol. Genet. 1994, 3, 569–574. [Google Scholar] [CrossRef]
  11. Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein e genotype and alzheimer disease. a meta-analysis. APOE and Alzheimer disease meta- analysis consortium. JAMA 1997, 278, 1349–1356. [Google Scholar] [CrossRef]
  12. Genin, E.; Hannequin, D.; Wallon, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Bullido, M.J.; Engelborghs, S.; De Deyn, P.; Berr, C.; Pasquier, F.; Dubois, B.; Tognoni, G.; Fiévet, N.; Brouwers, N.; Bettens, K.; Arosio, B.; Coto, E.; Del Zompo, M.; Mateo, I.; Epelbaum, J.; Frank-Garcia, A.; Helisalmi, S.; Porcellini, E.; Pilotto, A.; Forti, P.; Ferri, R.; Scarpini, E.; Siciliano, G.; Solfrizzi, V.; Sorbi, S.; Spalletta, G.; Valdivieso, F.; Vepsäläinen, S.; Alvarez, V.; Bosco, P.; Mancuso, M.; Panza, F.; Nacmias, B.; Bossù, P.; Hanon, O.; Piccardi, P.; Annoni, G.; Seripa, D.; Galimberti, D.; Licastro, F.; Soininen, H.; Dartigues, J.F.; Kamboh, M.I.; Van Broeckhoven, C.; Lambert, J.C.; Amouyel, P.; Campion, D. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 2011, 16, 903–907. [Google Scholar] [CrossRef]
  13. Corder, E.H.; Saunders, A.M.; Risch, N.J.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C. Jr; Rimmler, J. B.; Locke, P. A.; Conneally, P. M.; Schmader, K. E.; Small, G. W.; Roses, A. D; Haines, J. L.; Pericak-Vance, M. A. Protective effect of apolipoprotein e type 2 allele for late onset Alzheimer disease. Nat. Genet. 1994, 7, 180–184. [Google Scholar] [CrossRef]
  14. Panza, F.; Solfrizzi, V.; Torres, F.; Mastroianni, F.; Colacicco, A.M.; Basile, A.M.; Capurso, C.; D’Introno, A.; Del Parigi, A.; Capurso, A. Apolipoprotein E in Southern Italy: protective effect of epsilon 2 allele in early- and late-onset sporadic Alzheimer’s disease. Neurosci. Lett. 2000, 292, 79–82. [Google Scholar] [CrossRef]
  15. Mayeux, R.; Saunders, A.M.; Shea, S.; Mirra, S.; Evans, D.; Roses, A.D.; Hyman, B.T.; Crain, B.; Tang, M.X.; Phelps, C.H. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s disease centers consortium on apolipoprotein E and Alzheimer’s disease. N. Engl. J. Med. 1998, 338, 506–511. [Google Scholar] [CrossRef] [PubMed]
  16. Seripa, D.; D’Onofrio, G.; Panza, F.; Cascavilla, L.; Masullo, C.; Pilotto, A. The genetics of the human APOE polymorphism. Rejuvenation Res. 2011, 14, 491–500. [Google Scholar] [CrossRef] [PubMed]
  17. Nickerson, D.A.; Taylor, S.L.; Fullerton, S.M.; Weiss, K.M.; Clark, A.G.; Stengård, J.H.; Salomaa, V.; Boerwinkle, E.; Sing, C.F. Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. Genome Res. 2000, 10, 1532–1545. [Google Scholar] [CrossRef]
  18. Yu, C.E.; Foraker, J. Epigenetic considerations of the APOE gene. Biomol. Concepts 2015, 6, 77–84. [Google Scholar] [CrossRef]
  19. Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021, 20, 68–80. [Google Scholar] [CrossRef]
  20. Reiman, E.M.; Arboleda-Velasquez, J.F.; Quiroz, Y.T.; Huentelman, M.J.; Beach, T.G.; Caselli, R.J.; Chen, Y.; Su, Y.; Myers, A.J.; Hardy, J.; Paul Vonsattel, J.; Younkin, S.G.; Bennett, D.A.; De Jager, P.L.; Larson, E.B.; Crane, P.K.; Keene, C.D.; Kamboh, M.I.; Kofler, J.K.; Duque, L.; Gilbert, J.R.; Gwirtsman, H.E.; Buxbaum, J.D.; Dickson, D.W.; Frosch, M.P.; Ghetti, B.F.; Lunetta, K.L.; Wang, L.S.; Hyman, B.T.; Kukull, W.A.; Foroud, T.; Haines, J.L.; Mayeux, R.P.; Pericak-Vance, M.A.; Schneider, J.A.; Trojanowski, J.Q.; Farrer, L.A.; Schellenberg, G.D.; Beecham, G.W.; Montine, T.J.; Jun, G.R.; Alzheimer’s Disease Genetics Consortium. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat. Commun. 2020, 11, 667. [Google Scholar] [CrossRef] [PubMed]
  21. Salvadó, G.; Grothe, M.J.; Groot, C.; Moscoso, A.; Schöll, M.; Gispert, J.D.; Ossenkoppele, R.; Alzheimer’s Disease Neuroimaging Initiative. Differential associations of APOE-ε2 and APOE-ε4 alleles with PET-measured amyloid-β and tau deposition in older individuals without dementia. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2212–2224. [Google Scholar] [CrossRef]
  22. Therriault, J.; Benedet, A.L.; Pascoal, T.A.; Mathotaarachchi, S.; Chamoun, M.; Savard, M.; Thomas, E.; Kang, M.S.; Lussier, F.; Tissot, C.; Parsons, M.; Qureshi, M.N.I.; Vitali, P.; Massarweh, G.; Soucy, J.P.; Rej, S.; Saha-Chaudhuri, P.; Gauthier, S.; Rosa-Neto, P. Association of Apolipoprotein E 4 With Medial Temporal Tau Independent of Amyloid-. JAMA Neurol. 2020, 77, 470–479. [Google Scholar] [CrossRef] [PubMed]
  23. Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O’Loughlin, E.; Xu, Y.; Fanek, Z.; Greco, D.J.; Smith, S.T.; Tweet, G.; Humulock, Z.; Zrzavy, T.; Conde-Sanroman, P.; Gacias, M.; Weng, Z.; Chen, H.; Tjon, E.; Mazaheri, F.; Hartmann, K.; Madi, A.; Ulrich, J.D.; Glatzel, M.; Worthmann, A.; Heeren, J.; Budnik, B.; Lemere, C.; Ikezu, T.; Heppner, F.L.; Litvak, V.; Holtzman, D.M.; Lassmann, H.; Weiner, H.L.; Ochando, J.; Haass, C.; Butovsky, O. The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity 2017, 47, 566-81.e9. [Google Scholar] [CrossRef]
  24. Chen, Y.; Hong, T.; Chen, F.; Sun, Y.; Wang, Y.; Cui, L. Interplay between microglia and Alzheimer’s disease-focus on the most relevant risks: APOE genotype, sex and age. Front. Aging Neurosci. 2021, 13, 631827. [Google Scholar] [CrossRef]
  25. Chung, W.S.; Verghese, P.B.; Chakraborty, C.; Joung, J.; Hyman, B.T.; Ulrich, J.D.; Holtzman, D.M.; Barres, B.A. Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 10186–10191. [Google Scholar] [CrossRef] [PubMed]
  26. Blanchard, J.W.; Bula, M.; Davila-Velderrain, J.; Akay, L.A.; Zhu, L.; Frank, A.; Victor, M.B.; Bonner, J.M.; Mathys, H.; Lin, Y.T.; Ko, T.; Bennett, D.A.; Cam, H.P.; Kellis, M.; Tsai, L.H. Reconstruction of the human blood-brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat. Med. 2020, 26, 952–963. [Google Scholar] [CrossRef]
  27. Riphagen, J.M.; Ramakers, I.H.G.M.; Freeze, W.M.; Pagen, L.H.G.; Hanseeuw, B.J.; Verbeek, M.M.; Verhey, F.R.J.; Jacobs, H.I.L. Linking APOE-ε4, blood-brain barrier dysfunction, and inflammation to Alzheimer’s pathology. Neurobiol. Aging 2020, 85, 96–103. [Google Scholar] [CrossRef] [PubMed]
  28. Strittmatter, W.J.; Saunders, A.M.; Schmechel, D.; Pericak-Vance, M.; Enghild, J.; Salvesen, G.S.; Roses, A.D. Apolipoprotein e: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 1977–1981. [Google Scholar] [CrossRef]
  29. Fagan, A.M.; Holtzman, D.M. Astrocyte lipoproteins, effects of ApoE on neuronal function, and role of ApoE in amyloid-beta deposition in vivo. Microsc. Res. Tech. 2000, 50, 297–304. [Google Scholar] [CrossRef]
  30. Tokuda, T.; Calero, M.; Matsubara, E.; Vidal, R.; Kumar, A.; Permanne, B.; Zlokovic, B.; Smith, J.D.; Ladu, M.J.; Rostagno, A.; Frangione, B.; Ghiso, J. Lipidation of apolipoprotein e influences its isoform-specific interaction with Alzheimer’s amyloid beta peptides. Biochem. J. 2002, 348, 359–365. [Google Scholar] [CrossRef]
  31. Deane, R.; Sagare, A.; Hamm, K.; Parisi, M.; Lane, S.; Finn, M.B.; Holtzman, D.M.; Zlokovic, B.V. ApoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J. Clin. Invest. 2008, 118, 4002–40013. [Google Scholar] [CrossRef] [PubMed]
  32. Castellano, J.M.; Kim, J.; Stewart, F.R.; Jiang, H.; DeMattos, R.B.; Patterson, B.W.; Fagan, A.M.; Morris, J.C.; Mawuenyega, K.G.; Cruchaga, C.; Goate, A.M.; Bales, K.R.; Paul, S.M.; Bateman, R.J.; Holtzman, D.M. Human ApoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci. Transl. Med. 2011, 3, 89ra57. [Google Scholar] [CrossRef] [PubMed]
  33. Huang, Y.A.; Zhou, B.; Wernig, M.; Sudhof, T.C. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and A-beta secretion. Cell 2017, 168, 427.e21–41.e21. [Google Scholar] [CrossRef] [PubMed]
  34. Sala Frigerio, C.; Wolfs, L.; Fattorelli, N.; Thrupp, N.; Voytyuk, I.; Schmidt, I.; Mancuso, R.; Chen, W.T.; Woodbury, M.E.; Srivastava, G.; Möller, T.; Hudry, E.; Das, S.; Saido, T.; Karran, E.; Hyman, B.; Perry, V.H.; Fiers, M.; De Strooper, B. The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Ab Plaques. Cell Rep. 2019, 27, 1293–306.e6. [Google Scholar] [CrossRef] [PubMed]
  35. Shi, Y.; Holtzman, D.M. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat. Rev. Immunol. 2018, 18, 759–772. [Google Scholar] [CrossRef] [PubMed]
  36. Zhao, N.; Liu, C.C.; Van Ingelgom, A.J.; Linares, C.; Kurti, A.; Knight, J.A.; Heckman, M.G.; Diehl, N.N.; Shinohara, M.; Martens, Y.A.; Attrebi, O.N.; Petrucelli, L.; Fryer, J.D.; Wszolek, Z.K.; Graff-Radford, N.R.; Caselli, R.J.; Sanchez-Contreras, M.Y.; Rademakers, R.; Murray, M.E.; Koga, S.; Dickson, D.W.; Ross, O.A.; Bu, G. APOE ε2 is associated with increased tau pathology in primary tauopathy. Nat. Commun. 2018, 9, 4388. [Google Scholar] [CrossRef]
  37. Lozupone, M.; Panza, F. Impact of apolipoprotein E isoforms on sporadic Alzheimer’s disease: beyond the role of amyloid beta. Neural Regen Res. 2024, 19, 80–83. [Google Scholar] [CrossRef]
  38. Foraker, J.; Millard, S.P.; Leong, L.; Thomson, Z.; Chen, S.; Keene, C.D.; Bekris, L.M.; Yu, C.E. The APOE Gene is Differentially Methylated in Alzheimer’s Disease. J. Alzheimers Dis. 2015, 48, 745–55. [Google Scholar] [CrossRef]
  39. Rueter, J.; Rimbach, G.; Huebbe, P. Allelic variation within the major APOE CpG island affects its methylation in the brain of targeted replacement mice expressing human APOE. Biochim. Biophys. Acta Gene Regul. Mech. 2023, 1866, 194942. [Google Scholar] [CrossRef]
  40. Lefterov, I.; Fitz, N.F.; Lu, Y.; Koldamova, R. APOEε4 and risk of Alzheimer’s disease - time to move forward. Front. Neurosci. 2023, 17, 1195724. [Google Scholar] [CrossRef]
  41. Sullivan, P. M.; Mezdour, H.; Aratani, Y.; Knouff, C.; Najib, J.; Reddick, R. L.; Quarfordt, S.H.; Maeda, N. Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J. Biol. Chem. 1997, 272, 17972–17980. [Google Scholar] [CrossRef] [PubMed]
  42. Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; Costafreda, S.G.; Dias, A.; Fox, N.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Kivimäki, M.; Larson, E.B.; Ogunniyi, A.; Orgeta, V.; Ritchie, K.; Rockwood, K.; Sampson, E.L.; Samus, Q.; Schneider, L.S.; Selbæk, G.; Teri, L.; Mukadam, N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
  43. Reas, E.T.; Laughlin, G.A.; Bergstrom, J.; Kritz-Silverstein, D.; Barrett-Connor, E.; McEvoy, L.K. Effects of APOE on cognitive aging in community-dwelling older adults. Neuropsychology 2019, 33, 406–416. [Google Scholar] [CrossRef] [PubMed]
  44. Mahley, R.W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988, 240, 622–630. [Google Scholar] [CrossRef] [PubMed]
  45. Siest, G.; Pillot, T.; Regis-Bailly, A.; Leininger-Muller, B.; Steinmetz, J.; Galteau, M.M.; Visvikis, S. Apolipoprotein E: An important gene and protein to follow in laboratory medicine. Clin. Chem. 1995, 41, 1068–1086. [Google Scholar] [CrossRef] [PubMed]
  46. Seripa, D.; Franceschi, M.; Matera, M.G.; Panza, F.; Kehoe, P.G.; Gravina, C.; Orsitto, G.; Solfrizzi, V.; Di Minno, G.; Dallapiccola, B.; Pilotto, A. Sex differences in the association of apolipoprotein e and angiotensin-converting enzyme gene polymorphisms with healthy aging and longevity: a population-based study from Southern Italy. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 918–923. [Google Scholar] [CrossRef] [PubMed]
  47. Seripa, D.; Panza, F.; Franceschi, M.; D’Onofrio, G.; Solfrizzi, V.; Dallapiccola, B.; Pilotto, A. Non-apolipoprotein E and apolipoprotein E genetics of sporadic Alzheimer’s disease. Ageing Res. Rev. 2009, 8, 214–236. [Google Scholar] [CrossRef] [PubMed]
  48. Brooks-Wilson, A.R. Genetics of healthy aging and longevity. Hum. Genet. 2013, 132, 1323–1338. [Google Scholar] [CrossRef]
  49. Sebastiani, P.; Gurinovich, A.; Nygaard, M.; Sasaki, T.; Sweigart, B.; Bae, H.; Andersen, S.L.; Villa, F.; Atzmon, G.; Christensen, K.; Arai, Y.; Barzilai, N.; Puca, A.; Christiansen, L.; Hirose, N.; Perls, T.T. APOE alleles and extreme human longevity. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 74, 44–51. [Google Scholar] [CrossRef]
  50. Smith, J.D. Apolipoproteins and aging: emerging mechanisms. Ageing Res. Rev. 2002, 1, 345–365. [Google Scholar] [CrossRef]
  51. Feng, J.; Xiang, L.; Wan, G.; Qi, K.; Sun, L.; Huang, Z.; Zheng, C.; Lv, Z.; Hu, C.; Yang, Z. Is APOE ε3 a favorable factor for the longevity: an association study in Chinese population. J. Genet. 2011, 90, 343–347. [Google Scholar] [CrossRef]
  52. Mahley, R.W.; Rall, S.C. Jr. Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 2000, 1, 507–537. [Google Scholar] [CrossRef]
  53. Yanagisawa, K. Cholesterol and pathological processes in Alzheimer’s disease. J. Neurosci. Res. 2002, 70, 361–366. [Google Scholar] [CrossRef]
  54. Ordovas, J.M.; Lopez-Miranda, J.; Mata, P.; Perez-Jimenez, F.; Lichtenstein, A.H.; Schaefer, E.J. Gene-diet interaction in determining plasma lipid response to dietary intervention. Atherosclerosis 1995, 118 (Suppl), S11–S27. [Google Scholar] [CrossRef]
  55. Grimm, M.O.W.; Michaelson, D.M.; Hartmann, T. Omega-3 fatty acids, lipids, and ApoE lipidation in Alzheimer’s disease: a rationale for multi-nutrient dementia prevention. J. Lipid Res. 2017, 58, 2083–2101. [Google Scholar] [CrossRef]
  56. Bos, M.M.; Noordam, R.; Blauw, G.J.; Slagboom, P.E.; Rensen, P.C.N.; van Heemst, D. The ApoE ε4 Isoform: Can the Risk of Diseases be Reduced by Environmental Factors? J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 99–107. [Google Scholar] [CrossRef] [PubMed]
  57. Paik, Y.K.; Chang, D.J.; Reardon, C.A.; Walker, M.D.; Taxman, E.; Taylor, J.M. Identification and characterization of transcriptional regulatory regions associated with expression of the human apolipoprotein E gene. J. Biol. Chem. 1988, 263, 13340–13349. [Google Scholar] [CrossRef]
  58. Mui, S.; Briggs, M.; Chung, H.; Wallace, R. B.; Gomez-Isla, T.; Rebeck, G. W.; Hyman, B.T. A newly identified polymorphism in the apolipoprotein E enhancer gene region is associated with Alzheimer’s disease and strongly with the epsilon 4 allele. Neurology 1996, 47, 196–201. [Google Scholar] [CrossRef] [PubMed]
  59. Lambert, J. C.; Berr, C.; Pasquier, F.; Delacourte, A.; Frigard, B.; Cottel, D.; Pérez-Tur, J.; Mouroux, V.; Mohr, M.; Cécyre, D.; Galasko, D.; Lendon, C.; Poirier, J.; Hardy, J.; Mann, D.; Amouyel, P.; Chartier-Harlin, M.C. Pronounced impact of Th1/E47cs mutation compared with-491 AT mutation on neural APOE gene expression and risk of developing Alzheimer’s disease. Hum. Mol. Genet. 1998, 7, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
  60. Lambert, J. C.; Brousseau, T.; Defosse, V.; Evans, A.; Arveiler, D.; Ruidavets, J. B.; Haas, B.; Cambou, J.P.; Luc, G.; Ducimetière, P.; Cambien, F.; Chartier-Harlin, M.C.; Amouyel, P. Independent association of an APOE gene promoter polymorphism with increased risk of myocardial infarction and decreased APOE plasma concentrations-the ECTIM study. Hum. Mol. Genet. 2000, 9, 57–61. [Google Scholar] [CrossRef] [PubMed]
  61. Lambert, J. C.; Pasquier, F.; Cottel, D.; Frigard, B.; Amouyel, P.; Chartier-Harlin, M. C. A new polymorphism in the APOE promoter associated with risk of developing Alzheimer’s disease. Hum. Mol. Genet. 1998, 7, 533–540. [Google Scholar] [CrossRef]
  62. Lambert, J. C.; Perez-Tur, J.; Dupire, M. J.; Galasko, D.; Mann, D.; Amouyel, P.; Hardy, J.; Delacourte, A.; Chartier-Harlin, M.C. Distortion of allelic expression of apolipoprotein E in Alzheimer’s disease. Hum. Mol. Genet. 1997, 6, 2151–2154. [Google Scholar] [CrossRef]
  63. Bullido, M. A. J.; and Valdivieso, F. Apolipoprotein E gene promoter polymorphisms in Alzheimer’s disease. Microsc. Res. Tech. 2000, 50, 261–267. [Google Scholar] [CrossRef]
  64. Lumsden, A. L.; Mulugeta, A.; Zhou, A.; Hypponen, E. Apolipoprotein E (APOE) genotype-associated disease risks: a phenome-wide, registry-based, case-control study utilising the UK biobank. EBioMedicine 2020, 59, 102954. [Google Scholar] [CrossRef]
  65. Artiga, M. J.; Bullido, M. J.; Frank, A.; Sastre, I.; Recuero, M.; García, M. A.; Lendon, C.L.; Han, S.W.; Morris, J.C.; Vázquez, J.; Goate, A.; Valdivieso, F. Risk for Alzheimer’s disease correlates with transcriptional activity of the APOE gene. Hum. Mol. Genet. 1998, 7, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
  66. Sims, R.; van der Lee, S. J.; Naj, A. C.; Bellenguez, C.; Badarinarayan, N.; Jakobsdottir, J.; Kunkle, B.W.; Boland, A.; Raybould, R.; Bis, J.C.; Martin, E.R.; Grenier-Boley, B.; Heilmann-Heimbach, S.; Chouraki, V.; Kuzma, A.B.; Sleegers, K.; Vronskaya, M.; Ruiz, A.; Graham, R.R.; Olaso, R.; Hoffmann, P.; Grove, M.L.; Vardarajan, B.N.; Hiltunen, M.; Nöthen, M.M.; White, C.C.; Hamilton-Nelson., K.L.; Epelbaum, J.; Maier, W.; Choi, S.H.; Beecham, G.W.; Dulary, C.; Herms, S.; Smith, A.V.; Funk, C.C.; Derbois, C.; Forstner, A.J.; Ahmad, S.; Li, H.; Bacq, D.; Harold, D.; Satizabal, C.L.; Valladares, O.; Squassina, A.; Thomas, R.; Brody, J.A.; Qu, L.; Sánchez-Juan, P.; Morgan, T.; Wolters, F.J.; Zhao, Y.; Garcia, F.S.; Denning, N.; Fornage, M.; Malamon, J.; Naranjo, M.C.D.; Majounie, E.; Mosley, T.H.; Dombroski, B.; Wallon, D.; Lupton, M.K.; Dupuis, J.; Whitehead, P.; Fratiglioni, L.; Medway, C.; Jian, X.; Mukherjee, S.; Keller, L.; Brown, K.; Lin, H.; Cantwell, L.B.; Panza, F.; McGuinness, B.; Moreno-Grau, S.; Burgess, J.D.; Solfrizzi, V.; Proitsi, P.; Adams, H.H.; Allen, M.; Seripa, D.; Pastor, P.; Cupples, L.A.; Price, N.D.; Hannequin, D.; Frank-García, A.; Levy, D.; Chakrabarty, P.; Caffarra, P.; Giegling, I.; Beiser, A.S.; Giedraitis, V.; Hampel, H.; Garcia, M.E.; Wang, X.; Lannfelt, L.; Mecocci, P.; Eiriksdottir, G.; Crane, PK.; Pasquier, F.; Boccardi, V.; Henández, I.; Barber, R.C.; Scherer, M.; Tarraga, L.; Adams, P.M.; Leber, M.; Chen, Y.; Albert, M.S.; Riedel-Heller, S.; Emilsson, V.; Beekly, D.; Braae, A.; Schmidt, R.; Blacker, D.; Masullo, C.; Schmidt, H.; Doody, R.S.; Spalletta, G.; Longstreth, W.T. Jr.; Fairchild, T.J.; Bossù, P.; Lopez, O.L.; Frosch, M.P.; Sacchinelli, E.; Ghetti, B.; Yang, Q.; Huebinger, R.M.; Jessen, F.; Li, S.; Kamboh, M.I.; Morris, J.; Sotolongo-Grau, O.; Katz, M.J.; Corcoran, C.; Dunstan, M.; Braddel, A.; Thomas, C.; Meggy, A.; Marshall, R.; Gerrish, A.; Chapman, J.; Aguilar, M.; Taylor, S.; Hill, M.; Fairén, M.D.; Hodges, A.; Vellas, B.; Soininen, H.; Kloszewska, I.; Daniilidou, M.; Uphill, J.; Patel, Y.; Hughes, J.T.; Lord, J.; Turton, J.; Hartmann, A.M.; Cecchetti, R.; Fenoglio, C.; Serpente, M.; Arcaro, M.; Caltagirone, C.; Orfei, M.D.; Ciaramella, A.; Pichler, S.; Mayhaus, M.; Gu, W.; Lleó, A.; Fortea, J.; Blesa, R.; Barber, I.S.; Brookes, K.; Cupidi, C.; Maletta, R.G.; Carrell, D.; Sorbi, S.; Moebus, S.; Urbano, M.; Pilotto, A.; Kornhuber, J.; Bosco, P.; Todd, S.; Craig, D.; Johnston, J.; Gill, M.; Lawlor, B.; Lynch, A.; Fox, N.C.; Hardy, J.; ARUK, Consortium; Albin, R.L.; Apostolova, L.G.; Arnold, S.E.; Asthana, S.; Atwood, C.S.; Baldwin, C.T.; Barnes, L.L.; Barral, S.; Beach, T.G.; Becker, J.T.; Bigio, E.H.; Bird, T.D.; Boeve, B.F.; Bowen, J.D.; Boxer, A.; Burke, J.R.; Burns, J.M.; Buxbaum, J.D.; Cairns, N.J.; Cao, C.; Carlson, C.S.; Carlsson, C.M.; Carney, R.M.; Carrasquillo, M.M.; Carroll, S.L.; Diaz, C.C.; Chui, H.C.; Clark, D.G.; Cribbs, D.H.; Crocco, E.A.; DeCarli, C.; Dick, M.; Duara, R.; Evans, D.A.; Faber, K.M.; Fallon, K.B.; Fardo, D.W.; Farlow, M.R.; Ferris, S.; Foroud, T.M.; Galasko, D.R.; Gearing, M.; Geschwind, D.H.; Gilbert, J.R.; Graff-Radford, N.R.; Green, R.C.; Growdon, J.H.; Hamilton, R.L.; Harrell, L.E.; Honig, L.S.: Huentelman, M.J.; Hulette, C.M.; Hyman, B.T.; Jarvik, G.P.; Abner, E.; Jin, L.W.; Jun, G.; Karydas, A.; Kaye, J.A.; Kim, R.; Kowall, N.W.; Kramer, J.H.; LaFerla, F.M.; Lah, J.J.; Leverenz, J.B.; Levey, A.I.; Li, G.; Lieberman, A.P.; Lunetta, K.L.; Lyketsos, C.G.; Marson, D.C.; Martiniuk, F.; Mash, D.C.; Masliah, E.; McCormick, W.C.; McCurry, S.M.; McDavid, A.N.; McKee, A.C.; Mesulam, M.; Miller, B.L.; Miller, C.A.; Miller, J.W.; Morris, J.C.; Murrell, J.R.; Myers, A.J.; O’Bryant, S.; Olichney, J.M.; Pankratz, V.S.; Parisi, J.E.; Paulson, H.L.; Perry, W.; Peskind, E.; Pierce, A.; Poon, W.W.; Potter, H.; Quinn, J.F.; Raj, A.; Raskind, M.; Reisberg, B.; Reitz, C.; Ringman, J.M.; Roberson, E.D.; Rogaeva, E.; Rosen, H.J.; Rosenberg, R.N.; Sager, M.A.; Saykin, A.J.; Schneider, J.A.; Schneider, L.S.; Seeley, W.W.; Smith, A.G.; Sonnen, J.A.; Spina, S.; Stern, R.A.; Swerdlow, R.H.; Tanzi, R.E.; Thornton-Wells, T.A.; Trojanowski, J.Q.; Troncoso, J.C.; Van Deerlin, V.M.; Van Eldik, L.J.; Vinters, H.V.; Vonsattel, J.P.; Weintraub, S.; Welsh-Bohmer, K.A.; Wilhelmsen, K.C.; Williamson, J.; Wingo, T.S.; Woltjer, R.L.; Wright, C.B.; Yu, C.E.; Yu, L.; Garzia, F.; Golamaully, F.; Septier, G.; Engelborghs, S.; Vandenberghe, R.; De Deyn, P.P.; Fernadez, C.M.; Benito, Y.A.; Thonberg, H.; Forsell, C.; Lilius, L.; Kinhult-Stählbom, A.; Kilander, L.; Brundin, R.; Concari, L.; Helisalmi, S.; Koivisto, A.M.; Haapasalo, A.; Dermecourt, V.; Fievet, N.; Hanon, O.; Dufouil, C.; Brice, A.; Ritchie, K.; Dubois, B.; Himali, J.J.; Keene, C.D.; Tschanz, J.; Fitzpatrick, A.L.; Kukull, W.A.; Norton, M.; Aspelund, T.; Larson, E.B.; Munger, R.; Rotter, J.I.; Lipton, R.B.; Bullido, M.J.; Hofman, A.; Montine, T.J.; Coto, E.; Boerwinkle, E.; Petersen, R.C.; Alvarez, V.; Rivadeneira, F.; Reiman, E.M.; Gallo, M.; O’Donnell, C.J.; Reisch, J.S.; Bruni, A.C.; Royall, D.R.; Dichgans, M.; Sano, M.; Galimberti, D.; St George-Hyslop, P.; Scarpini, E.; Tsuang, D.W.; Mancuso, M.; Bonuccelli, U.; Winslow, A.R.; Daniele, A.; Wu, C.K.; GERAD/PERADES; CHARGE; ADGC; EADI; Peters, O.; Nacmias, B.; Riemenschneider, M.; Heun, R.; Brayne, C.; Rubinsztein, D.C.; Bras, J.; Guerreiro, R.; Al-Chalabi, A.; Shaw, C.E.; Collinge, J.; Mann, D.; Tsolaki, M.; Clarimón, J.; Sussams, R.; Lovestone, S.; O’Donovan, M.C.; Owen, M.J.; Behrens, T.W.; Mead, S.; Goate, A.M.; Uitterlinden, A.G.; Holmes, C.; Cruchaga, C.; Ingelsson, M.; Bennett, D.A.; Powell, J.; Golde, T.E.; Graff, C.; De Jager, P.L.; Morgan, K.; Ertekin-Taner, N.; Combarros, O.; Psaty, B.M.; Passmore, P.; Younkin, S.G.; Berr, C.; Gudnason, V.; Rujescu, D.; Dickson, D.W.; Dartigues, J.F.; DeStefano, A.L.; Ortega-Cubero, S.; Hakonarson, H.; Campion, D.; Boada, M.; Kauwe, J.K.; Farrer, L.A.; Van Broeckhoven, C.; Ikram, M.A.; Jones, L.; Haines, J.L.; Tzourio, C.; Launer, L.J.; Escott-Price, V.; Mayeux, R.; Deleuze, J.F.; Amin, N.; Holmans, P.A.; Pericak-Vance, M.A.; Amouyel, P.; van Duijn, C.M.; Ramirez, A.; Wang, L.S.; Lambert, J.C.; Seshadri, S.; Williams, J.; Schellenberg, G.D. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 2017, 49, 1373–1384. [Google Scholar] [CrossRef] [PubMed]
  67. Lee, E.G.; Tulloch, J.; Chen, S.; Leong, L.; Saxton, A. D.; Kraemer, B.; Darvas, M.; Keene, C.D.; Shutes-David, A.; Todd, K.; Millard, S.; Yu, C.E. Redefining transcriptional regulation of the APOE gene and its association with Alzheimer’s disease. PLoS One 2020, 15, e0227667. [Google Scholar] [CrossRef]
  68. Medvedeva, Y.A.; Fridman, M.V.; Oparina, N.J.; Malko, D.B.; Ermakova, E.O.; Kulakovskiy, I.V.; Heinzel, A.; Makeev, V.J. Intergenic, gene terminal, and intragenic CpG islands in the human genome. BMC Genomics 2010, 11, 48. [Google Scholar] [CrossRef]
  69. Maunakea, A.K.; Nagarajan, R.P.; Bilenky, M.; Ballinger, T.J.; D’Souza, C.; Fouse, S.D.; Johnson, B.E.; Hong, C.; Nielsen, C.; Zhao, Y.; Turecki, G.; Delaney, A.; Varhol, R.; Thiessen, N.; Shchors, K.; Heine, V.M.; Rowitch, D.H.; Xing, X.; Fiore, C.; Schillebeeckx, M.; Jones, S.J.; Haussler, D.; Marra, M.A.; Hirst, M.; Wang, T.; Costello, J.F. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010, 466, 253–257. [Google Scholar] [CrossRef]
  70. Gellersen, H.M.; Guell, X.; Sami, S. Differential vulnerability of the cerebellum in healthy ageing and Alzheimer’s disease. Neuroimage Clin. 2021, 30, 102605. [Google Scholar] [CrossRef]
  71. Yu, C.E.; Cudaback, E.; Foraker, J.; Thomson, Z.; Leong, L.; Lutz, F.; Gill, J.A.; Saxton, A.; Kraemer, B.; Navas, P.; Keene, C.D.; Montine, T.; Bekris, L.M. Epigenetic signature and enhancer activity of the human APOE gene. Hum. Mol. Genet. 2013, 22, 5036–5047. [Google Scholar] [CrossRef]
  72. Hendrich, B.; Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 1998, 18, 6538–47. [Google Scholar] [CrossRef] [PubMed]
  73. Cedar, H.; Bergman, Y. Programming of DNA methylation patterns. Annu. Rev. Biochem. 2012, 81, 97–117. [Google Scholar] [CrossRef]
  74. Ma, Y.; Smith, C.E.; Lai, C.Q.; Irvin, M.R.; Parnell, L.D.; Lee, Y.C.; Pham, L.; Aslibekyan, S.; Claas, S.A.; Tsai, M.Y.; Borecki, I.B.; Kabagambe, E.K.; Berciano, S.; Ordovás, J.M.; Absher, D.M.; Arnett, D.K. Genetic variants modify the effect of age on APOE methylation in the Genetics of Lipid Lowering Drugs and Diet Network study. Aging Cell 2015, 14, 49–59. [Google Scholar] [CrossRef] [PubMed]
  75. Lin, L.; Liu, X.; Cheng, X.; Li, Y.; Gearing, M.; Levey, A.; Huang, X.; Li, Y.; Jin, P.; Li, X. MicroRNA-650 Regulates the Pathogenesis of Alzheimer’s Disease Through Targeting Cyclin-Dependent Kinase 5. Mol. Neurobiol. 2023, 60, 2426–2441. [Google Scholar] [CrossRef] [PubMed]
  76. De Marco, M.; Clough, P.J.; Dyer, C.E.; Vince, R.V.; Waby, J.S.; Midgley, A.W.; Venneri, A. Apolipoprotein E epsilon allele modulates the immediate impact of acute exercise on prefrontal function. Behav. Genet. 2014, 45, 106–16. [Google Scholar] [CrossRef] [PubMed]
  77. Cook, C.J.; Fletcher, J.M. Can education rescue genetic liability for cognitive decline? Social Sci. Med. 2015, 127, 159–70. [Google Scholar] [CrossRef]
  78. Maddock, J.; Cavadino, A.; Power, C.; Hyppönen, E. 25-hydroxyvitamin D, APOE ɛ4 genotype and cognitive function: findings from the 1958 British birth cohort. Eur. J. Clin. Nutr. 2015, 69, 505-8. [Google Scholar] [CrossRef]
  79. Panza, F.; La Montagna, M.; Lampignano, L.; Zupo, R.; Bortone, I.; Castellana, F.; Sardone, R.; Borraccino, L.; Dibello, V.; Resta, E.; Altamura, M.; Daniele, A.; Lozupone, M. Vitamin D in the development and progression of alzheimer’s disease: implications for clinical management. Expert Rev. Neurother. 2021, 2, 287–301. [Google Scholar] [CrossRef]
  80. Suzuki, K.; Hirakawa, A.; Ihara, R.; Iwata, A.; Ishii, K.; Ikeuchi, T.; Sun, C.K.; Donohue, M.; Iwatsubo, T.; Alzheimer’s Disease Neuroimaging Initiative, Japanese Alzheimer’s Disease Neuroimaging Initiative. Effect of apolipoprotein E ε4 allele on the progression of cognitive decline in the early stage of Alzheimer’s disease. Alzheimers Dement. (NY) 2020, 6, e12007. [Google Scholar] [CrossRef]
  81. Wang, S.C.; Oelze, B.; Schumacher, A. Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 2008, 3, e2698. [Google Scholar] [CrossRef]
  82. Karlsson, I.K.; Ploner, A.; Wang, Y.; Gatz, M.; Pedersen, N.L.; Hagg, S. Apolipoprotein E DNA methylation and late-life disease. Int. J. Epidemiol. 2018, 47, 899–907. [Google Scholar] [CrossRef] [PubMed]
  83. Shao, Y.; Shaw, M.; Todd, K.; Khrestian, M.; D’Aleo, G.; Barnard, P.J.; Zahratka, J.; Pillai, J.; Yu, C.E.; Keene, C.D.; Leverenz, J.B.; Bekris, L.M. DNA methyla- tion of TOMM40-APOE-APOC2 in Alzheimer’s disease. J. Hum. Genet. 2018, 63, 459–471. [Google Scholar] [CrossRef] [PubMed]
  84. Mancera-Paez, O.; Estrada-Orozco, K.; Mahecha, M.F.; Cruz, F.; Bonilla-Vargas, K.; San- doval, N.; Guerrero, E.; Salcedo-Tacuma, D.; Melgarejo, J.D.; Vega, E.; Ortega-Ro- jas, J.; Roman, G.C.; Pardo-Turriago, R.; Arboleda, H. Differential methylation in APOE (Chr19; exon four; from 44,909,188 to 44,909,373/hg38) and increased apolipoprotein E plasma levels in subjects with mild cognitive impairment. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [PubMed]
  85. Liu, J.; Zhao, W.; Ware, E.B.; Turner, S.T.; Mosley, T.H.; Smith, J.A. DNA methylation in the APOE genomic region is associated with cognitive function in African Americans. BMC Med. Genomics 2018, 11, 43. [Google Scholar] [CrossRef] [PubMed]
  86. Mur, J.; McCartney, D.L.; Walker, R.M.; Campbell, A.; Bermingham, M.L.; Morris, S.W.; Porteous, D.J.; McIntosh, A.M.; Deary, I.J.; Evans, K.L.; Marioni, R.E. DNA methylation in APOE: The relationship with Alzheimer’s and with cardiovascular health. Alzheimers Dement. (NY) 2020, 6, e12026. [Google Scholar] [CrossRef] [PubMed]
  87. Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Fein- stein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koisti- naho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigen- desch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef] [PubMed]
  88. Griseta, C.; Battista, P.; Castellana, F.; Colonna, I.; Sciarra, S.; Zupo, R.; Bortone, I.; Lampignano, L.; Tirelli, S.; Bernardino, G.; Mollica, A.; Lozupone, M.; Panza, F.; Fiore, P.; Minafra, B.; Sardone, R. Serum levels of IL-6 are associated with cognitive impairment in the salus in apulia population-based study. Heliyon 2023, 9, e13972. [Google Scholar] [CrossRef] [PubMed]
  89. Shen, B.; Hernandez, D.G.; Chitrala, K.N.; Fanelli-Kuczmarski, M.T.; Noren Hooten, N.; Pacheco, N.L.; Mode, N.A.; Zonderman, A.B.; Ezike, N.; Evans, M.K. APOE gene region methylation is associated with cognitive performance in middle-aged urban adults. Neurobiol. Aging 2022, 116, 41–48. [Google Scholar] [CrossRef]
  90. Mur, J.; McCartney, D.L.; Walker, R.M.; Campbell, A.; Bermingham, M.L.; Morris, S.W.; Porteous, D.J.; McIntosh, A.M.; Deary, I.J.; Evans, K.L.; Marioni, R.E. DNA methylation in APOE: The relationship with Alzheimer’s and with cardiovascular health. Alzheimers Dement. (NY) 2020, 6, e12026. [Google Scholar] [CrossRef]
  91. Lozupone, M.; Imbimbo, B.P.; Balducci, C.; Lo Vecchio, F.; Bisceglia, P.; Latino, R.R.; Leone, M.; Dibello, V.; Solfrizzi, V.; Greco, A.; Daniele, A.; Watling, M.; Seripa, D.; Panza, F. Does the imbalance in the apolipoprotein E isoforms underlie the pathophysiological process of sporadic Alzheimer’s disease? Alzheimers Dement. (NY) 2023, 19, 353–368. [Google Scholar] [CrossRef] [PubMed]
  92. Slooter, A. J. C.; Cruts, M.; Kalmijn, S.; Hofman, A.; Breteler, M.M.; Van Broeckhoven, C.; van Duijn, C.M. Risk estimates of dementia by apolipoprotein E genotypes from a population- based incidence study: The Rotterdam Study. Arch. Neurol. 1998, 55, 964–968. [Google Scholar] [CrossRef] [PubMed]
  93. Reiman, E. M.; Arboleda-Velasquez, J.F.; Quiroz, Y.T.; Huentelman, M.J.; Beach, T.G.; Caselli, R.J.; Chen, Y.; Su, Y.; Myers, A.J.; Hardy, J.; Paul Vonsattel, J.; Younkin, S.G.; Bennett, D.A.; De Jager, P.L.; Larson, E.B.; Crane, P.K.; Keene, C.D.; Kamboh, M.I.; Kofler, J.K.; Duque, L.; Gilbert, J.R.; Gwirtsman, H.E.; Buxbaum, J.D.; Dickson, D.W.; Frosch, M.P.; Ghetti, B.F.; Lunetta, K.L.; Wang, L.S.; Hyman, B.T.; Kukull, W.A.; Foroud, T.; Haines, J..L; Mayeux, R.P.; Pericak-Vance, M.A.; Schneider, J.A.; Trojanowski, J.Q.; Farrer, L.A.; Schellenberg, G.D.; Beecham, G.W.; Montine, T.J.; Jun, G.R.; Alzheimer’s Disease Genetics Consortium. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat. Commun. 2020, 11, 667. [Google Scholar] [CrossRef] [PubMed]
  94. Pogribny, I.P.; Vanyushin, B.F. Age-related Genomic Hypomethylation. In: Tollefsbol TO, ed. Epigenetics of Aging: Springer 2009, 11-27.
Figure 1. Despite the high lifetime risk linked to the presence of the apolipoprotein E (APOE) ε3/ε4 and APOE ε4/ε4 genotypes (the greatest risk factor for developing Alzheimer’s Disease, AD), stochastic factors (such as environment, diet, physical exercise, and ageing), may play a significant role. APOE pleiotropic roles may be explained by its exceptional epigenetic properties. The APOE ε2/ε3/ε4 alleles are produced by two cytosine-phosphate-guanine (CpG)-altering SNPs (rs429358 and rs7412) residing within the core region of the APOE CpG islands. APOE ε4 carriers have the greatest number of CpG dinucleotides sites, while APOE ε2 carriers have the smallest number, so methylation levels for most CpG sites are in the order of APOE ε4 carriers > APOE ε3/ε3 > APOE ε2 carriers. The role of APOE in AD pathogenesis involves not only amyloid-β (ab) aggregation and clearance, but also tau-mediated neurodegeneration, microglia dysfunction, astrocyte reactivity, and blood-brain barrier disruption.
Figure 1. Despite the high lifetime risk linked to the presence of the apolipoprotein E (APOE) ε3/ε4 and APOE ε4/ε4 genotypes (the greatest risk factor for developing Alzheimer’s Disease, AD), stochastic factors (such as environment, diet, physical exercise, and ageing), may play a significant role. APOE pleiotropic roles may be explained by its exceptional epigenetic properties. The APOE ε2/ε3/ε4 alleles are produced by two cytosine-phosphate-guanine (CpG)-altering SNPs (rs429358 and rs7412) residing within the core region of the APOE CpG islands. APOE ε4 carriers have the greatest number of CpG dinucleotides sites, while APOE ε2 carriers have the smallest number, so methylation levels for most CpG sites are in the order of APOE ε4 carriers > APOE ε3/ε3 > APOE ε2 carriers. The role of APOE in AD pathogenesis involves not only amyloid-β (ab) aggregation and clearance, but also tau-mediated neurodegeneration, microglia dysfunction, astrocyte reactivity, and blood-brain barrier disruption.
Preprints 89512 g001
Table 1. Overview of studies illustrating epigenetic signatures of apolipoprotein E gene (APOE) in aging and Alzheimer’s disease (AD).
Table 1. Overview of studies illustrating epigenetic signatures of apolipoprotein E gene (APOE) in aging and Alzheimer’s disease (AD).
APOE exons, promoter, and CGI
Study Study design Sample
size
Age or mean age at death (years) Principal findings
Lambert et al., 1998 [59] Cross-sectional AD: 573
Controls: 509
AD: 73.8±8.1
Controls: 70.4±7.9
Among three APOE promoter mutations (−491 AT, −427 CT and Th1/E47cs), the Th1/E47cs T allele was associated with an increased AD risk, while the −491 T allele was associated with a decreased risk, independently of the APOE ε2/ε3/ε4 polymorphism effect. The −427 CT polymorphism was not associated with AD. In addition to the qualitative effect of the APOE ε2/ε3/ε4 polymorphisms on the AD occurrence, the quantitative variation of expression of these alleles due to functional APOE promoter mutations, may be a key determinant of AD development
Lambert et al., 1998 [61] Cross-sectional AD: 310
Controls: 293
AD: 72-91
Controls: 75-102
The Th1/E47cs T allele was associated with an increased risk of developing AD (odds ratio, OR = 1.29) and the OR was 1.79 for individuals bearing at least one T allele
Yu et al., 2013 [71] Cross-sectional Frontal lobe
AD: 9
Controls: 6

Frontal lobe
AD: 86.8±6.9
Controls: 87.9±8.6
APOE CGI exhibited transcriptional enhancer/silencer activity and differentially modulates expression of genes at the APOE locus in a cell type-, DNA methylation- and ɛ2/ɛ3/ɛ4 allele-specific manner. These findings implicated a novel functional role for a 3′-exon CGI and supported a modified mechanism of action for APOE in disease risk, involving also an epigenetically regulated transcriptional program at the APOE locus driven by the APOE CGI
Lee et al., 2020 [67] Cross-sectional Frontal lobe
AD: 44
Controls: 21

Cerebellum
AD: 51
Controls: 25
Frontal lobe
AD: 86.8±6.9
Controls: 87.9±8.6

Cerebellum
AD: 74.6±9.3
Controls: 73.5±10.9
APOE has a single CpG island (CGI) that overlaps with its 3′-exon. In this study, the presence of APOE circular RNA (circRNA) was discovered and found that circRNA and full-length mRNA each constitute approximately one third of the total APOE RNA, with truncated mRNAs likely constituting some of the missing fraction. All APOE RNA species demonstrated significantly higher expression in AD frontal lobe than in control frontal lobe, suggesting a possible modified mechanism of gene action for APOE in AD involving also an epigenetically regulated transcriptional program driven by DNA methylation in the APOE CGI
Ma et al., 2015 [74] Cross-sectional 475 men and 518 women 18-87 The 13 APOE CpG sites were categorized into three groups: Group 1 showed hypermethylation (> 50%, in the promoter region), Group 2 exhibited hypomethylation (< 50%, in the first two exons and introns), and Group 3 showed hypermethylation (> 50%, in the exon 4. APOE methylation was significantly associated with age and plasma total cholesterol and APOE methylation patterns differed across APOE ε variants and the promoter variant rs405509, which further showed a significant interaction with age
 
CGI: 5′-C-phosphate-G-3′ (CpG) island; CpG: cytosine-phosphate-guanine.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated