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Abstract: Sporadic Alzheimer’s disease (AD) derives from an interplay among environmental 

factors and genetic variants, while epigenetic modifications have been expected to affect the onset 

and progression of its complex etiopathology. Heterozygous carriers of the apolipoprotein E gene 

(APOE)ε4 allele have a 4-fold increased risk of developing AD, while APOE ε4/ε4-carriers have a 

12-fold increased risk in comparison with the APOE ε3-carriers. The main longevity factor is the 

homozygous APOE ε3/ε3 genotype. In the present narrative review article, we summarized and 

described the role of APOE epigenetics in aging and AD pathophysiology. It is not fully understood 

how APOE variants may increase or decrease AD risk, but this gene is known to affect amyloid- and 

tau-mediated neurodegeneration directly or indirectly, also by affecting lipid metabolism and 

inflammation. For sporadic AD, epigenetic regulatory mechanisms may control and influence 

APOE expression in response to external insults. Diet, a major environmental factor, has been 

significant associated with physical exercise, cognitive function, and the methylation level of several 

cytosine-phosphate-guanine (CpG) dinucleotides sites of APOE.  

Keywords: apolipoprotein E; Alzheimer’s disease; methylation; dementia; epigenetics; tau protein; 

amyloid-β; longevity 

 

1. Introduction 

The study of complex diseases is based on the association among epigenetics, gene variants, and 

environmental factors [1,2]. The pathophysiology of Alzheimer’s disease (AD) is a mixture of many 

pathogenic pathways and gene expression networks. The current model of AD is based on the 

amyloid-β (Aβ) hypothesis, in which a series of deterministic events leads from Aβ and tau 

deposition to neurodegeneration and progressive decline of cognitive function. This 

conceptualization matches autosomal-dominant AD, defined as dominantly inherited AD with 

pathological confirmation, although it is less appropriate for sporadic AD. A probabilistic AD model 

connoted by three variants of the disease has been proposed: autosomal-dominant AD, 

apolipoprotein E (apolipoprotein E gene, APOE) ε4 allele-related sporadic AD, and APOE ε4 allele-
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unrelated sporadic AD [3]. These three variants suggested a reduced weight of the Aβ hypothesis, 

giving more importance to environmental factors and lower-risk genes [3]. 

There were epigenetic modifications also in AD [4]. From a genetic point of view, the known 

risk loci showed a low penetrance in causing AD, except for Aβ production-related genes, and none 

of them have been related to different AD pathogenic pathways. On the contrary, epigenetic 

alterations may modify transcriptional activity globally throughout different genes and multiple 

biological pathways. Epigenetic mechanisms may also explain the influence of environmental stimuli 

such as dietary patterns, harmful exposures, and lifestyle factors on phenotypic outcomes in 

individuals with the same genetic variants [5]. Additionally, genetic sequence and epigenetic code 

were linked in a clear way. In fact, some single nucleotide polymorphisms (SNPs) are considered a 

common epigenetic mark because of the rearranging of cytosine-phosphate-guanine (CpG) 

dinucleotides with C nucleotide methylation. These CpG-altering SNPs may modulate DNA 

methylation levels in a cis or trans manner or they may modify gene transcription at regions enhanced 

of CpG known as CpG islands [6–8].  

Since early 90’s, many studies have showed that APOE could play a central role in AD 

neurodegeneration. For sporadic AD APOE allele ε4 is a key genetic risk factor [9–11], with a 

semidominant inheritance [12], and associated to the ApoE4 isoform. Conversely, in sporadic AD, 

the APOE allele ε2, associated to the ApoE2 isoform, could have a protective effect [13,14]. Although 

the increased risk for sporadic AD in APOE ε4-carriers, the presence of the APOE ε4 allele alone is 

not a causal factor for AD pathology [15]. In this context, epigenetics may represent a candidate for a 

point of overlapping among several AD genetic risk factors, such as the APOE ε4 allele, and the AD 

pathophysiological processes. Human ApoE is a glycoprotein of 299-amino acids, traditionally 

binding phospholipids and cholesterol. ApoE is produced in 3 common isoforms (ApoE2, ApoE3, 

and ApoE4) differing in two amino acid residues at positions 112 and 158, and one very uncommon 

isoform (ApoE3r) [16]. 

The APOE variants, respectively ε2 ε3, ε4 and ε3r, are determined by four haplotypes, derived 

from the allele association of 2 common SNPs rs429358 (C3,937 → T) and rs7412 (C4,075 → T) at the APOE 

locus (19q13.32), coding for the different protein isoforms [16]. These APOE four alleles [17], are 

considered the most investigated variants in human Caucasian genome. Remarkably, the APOE exon 

4 region, encompassing the ε2/ε3/ε4 allele variants, is a well-defined CpG islands rich area. Moreover, 

the two common SNPs rs429358 and rs7412 are CpG-altering and modify the CpG content of this 

area. This APOE CpG islands rich area is a transcriptional enhancer with a specificity linked to the ε4 

allele and cell-type [18]. In the present review article, we briefly summarized and highlighted the 

complex epigenetic regulation of APOE gene in aging and sporadic AD.  

2. The role of apolipoprotein e in Alzheimer’s disease pathogenesis 

For sporadic AD, APOE is the most important genetic risk factor as well as for the earlier stages 

of cognitive decline represented by mild cognitive impairment (MCI) [19], but its expression is poorly 

understood. Astrocytes and activated microglia produced the major amount of ApoE in the brain. 

Having one APOE ε4 allele conducts to a 4-fold increased risk of developing AD, while having two 

APOE ε4 alleles conducts to a 12-fold increased risk, compared to the APOE ε3-carriers. Conversely, 

the uncommon heterozygous carriers of the APOE ε2 allele have a risk 40% lower for AD and the 

homozygous carriers have a further reduced risk [20]. It was showed that APOE ε4-carriers with 

normal cognition displayed elevated Aβ and tau brain burden than APOE ε3-carriers; conversely, 

APOE ε2-carriers had reduced global Aβ burden, without differences in regional tau burden or 

accumulation over time [21]. The contribution in AD pathogenesis from APOE involves not only Aβ 

aggregation and its clearance, but also tau-mediated neurodegeneration [22], microglia impairment 

[23,24], astrocyte reactivity [25], and blood-brain barrier disruption [26,27]. 

The three ApoE isoforms bind and transport Aβ peptides with differential affinity during AD 

pathogenesis [28,29], being highest for ApoE4, intermediate for ApoE3, and lowest for ApoE2 [30,31]. 

Therefore, their effects are also different concerning Aβ aggregation and clearance, but not Aβ 

production [32,33]. ApoE also can affect tau-mediated neurodegeneration and tauopathy by 
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modulating microglial responses to Aβ plaque pathology [34–36]. Thus, different ApoE isoforms may 

increase or reduce the risk for AD [29,31], based on different combined effects of ApoE isoforms on 

both Aβ deposition and neurofibrillary tangles [37]. APOE and its ε2/ε3/ε4 alleles have been 

connected by several genetic studies to multiple physiological conditions and disorders. Epigenetic 

alterations could explain the association between APOE and its associated diseases, considering that 

genetic signal associated with the disease also reflects a site’s sequence architecture for epigenetic 

code [18]. 

3. Apolipoprotein E, human longevity, and Alzheimer’s disease 

There was a genetic association of APOE is with both human longevity and AD, but its 

mechanistic contribution in aging is largely under investigation. APOE pleiotropic roles may be 

explained by its exceptional epigenetic properties. In AD brain, these epigenetic changes could 

contribute to neural cell dysfunction. Additionally, several studies showed DNA methylation 

modifications on specific genes implicated in AD pathology such as APOE. In AD brain, it was 

showed that APOE CpG islands were differentially methylated in an APOE- and tissue-specific way 

[38]. In the brain of targeted replacement (TR) mice expressing human ApoE, allele variations within 

the major APOE CpG island may affect its methylation [39]. Epigenetic changes may link modified 

gene expression with environmental stimuli such as dietary patterns and physical exercise. In animal 

models, APOE alleles may have alterations in epigenetic regulation in response to external stimuli 

reported in studies on APOE TR mice [40].  

The differences between mouse and human APOE gene clusters, the complexity of 

transcriptional control of human ApoE, and the structure of the targeting construct should be 

considered in the strategy for replacing mouse ApoE in the APOE TR models [41]. Moreover, lifestyle 

factors like education, alcohol consumption, smoking, and physical activity may attenuate genetic 

risk in the process of age-related cognitive decline and twelve modifiable risk factors might prevent 

or delay up to 40% of different dementias [42]. The complex interactions among age-related cognitive 

decline, genetics, and lifestyle may encourage behaviors maintaining cognitive health in older age 

[43]. At this regard, ApoE may be important for the pathophysiology of lipid metabolism [44] and 

central nervous system (CNS), although the role in healthy aging and longevity has seen its value 

growth [45–47].  

Studies on longevity and healthy aging are related because subjects who live long tend to be 

healthy for a greater part of their lives [48]. Healthy aging can be defined as achieving older age 

maintaining intact cognition and/or mobility and without disabilities or multimorbidity. This last can 

be defined as the coexistence of two or more chronic diseases in the same subjects [49]. The 

detrimental effects of the APOE ε4 allele on longevity could influence the probability of a long human 

lifespan [48]. The APOE ε2 allele is more frequent in long-lived individuals than the ε4 allele [50]. 

Thus, the main longevity factor is the homozygous APOE ε3/ε3 genotype. The higher frequency of 

the ε3 allele in older individuals and their offspring than in controls derives from the greater amount 

of APOE ε3/ε3 genotype compared to the ε2/ε3 or ε3/ε4 genotypes [51].  

In the pathophysiology of lipid metabolism, the role of ApoE may be related with 

normal/pathological aging, while its function in the pathophysiology of CNS needs further 

clarification [52]. In fact, in the CNS, there was about a quarter of total body cholesterol that may 

exert an important role in synaptic plasticity [53]. With advancing age, cholesterol metabolism may 

modify, and its related brain changes may be associated with the pathophysiology of AD [53]. So, in 

longevity and healthy aging, lipid and cholesterol maintenance are a critical factor also from an 

interventional point of view. The detrimental effects of APOE ε4 allele might be managed by dietary 

interventions [54], with a Mediterranean dietary pattern potentially including higher n-3 

polyunsaturated fatty acid intakes [55,56].  

4. Specific epigenetic modifications of apolipoprotein E in Alzheimer’s disease 

In response to environmental stimuli, epigenetic marks and signals may enable temporal 

combination of regulatory events through mechanisms including DNA methylation, histone 
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modification/chromatin conformation, and noncoding microRNAs (miRNAs). Several studies 

investigating DNA methylation in the APOE gene suggested an age-dependent flow and APOE DNA 

methylation specific for brain area. The APOE genomic sequence is approximately 4 kb in size 

(chromosome19:45408714-45412650, hg19) including its promoter. This region encompasses 172 CpG 

dinucleotides [57]. In the late 90s and early 2000s, polymorphic sites in the first intron and the 

proximal promoter the of APOE gene cluster (−1,019 to +407) affecting APOE expression have been 

identified [58–64] (Table 1). Notably, these polymorphisms have been related with a differential AD 

risk [65,66]. However, in AD, the association between these polymorphic sites and the variability of 

sequence in the proximal promoter with ApoE protein levels were not clearly understood. In fact, 

among different studies, findings on the levels of expression of APOE RNA and the relationship with 

the ApoE levels varied. In human postmortem brain, there was elevated methylation in AD frontal 

lobe of a 5’-C-phosphate-G-3’ (CpG) island overlapping with exon four and downstream [67]. 

Interestingly, APOE has a well-defined CpG island not residing in the promoter region and 

overlapping with the APOE 3′-exon. In the human genome, these 3′-CpG islands are very rare 

representing < 1% of total CpG islands and are also conserved in other mammals [68,69]. However, 

the APOE CpG island methylation level relates to the expression level of four known APOE 

transcripts. The majority of the total APOE mRNA, with higher expression in the AD frontal lobe 

than in the frontal lobe of control subjects, is constituted by circular RNAs, miRNAs, and truncated 

APOE transcripts. The findings of several studies suggested several changes in epigenome and the 

regulatory role of epigenomic elements associated with the risk or clinical presentation of different 

neurological diseases, although the exact clinical significance of these signatures in the quantities of 

RNA and methylation level of CGI in the APOE 3′-exon was still unclear [67] (Table 1). 

At the level of the individual CpG site, epigenetic regulation was showed by up/down patterns 

in the methylation profiles between samples and tissues. Significant differences in the global 

methylation levels among several brain regions were discovered across postmortem brain tissues. In 

brain regions primary affected by AD such as frontal lobe, temporal lobe, and hippocampus, 

methylation levels were lower. Conversely, in the cerebellum, a region apparently lacking profound 

pathological changes in AD but with recent important findings, the highest methylation levels were 

observed, suggesting that a correlation may exist between the methylation levels of the APOE CpG 

islands and the vulnerability of brain AD regions [70]. In fact, age- and AD-related alterations in 

several cerebellar subregions may also impact numerous functional domains, especially those 

affecting cognitive processing [70]. 

Genetic variants, which consist of CpG-altering SNP, can modify DNA methylation levels. These 

genetic variations may act like regulatory elements connecting genetic changes with epigenetic 

variability [71] (Table 1). As previously described, the APOE ε2/ε3/ε4 alleles are produced by two 

CpG-altering SNPs (rs429358 and rs7412) residing within the core region of the APOE CpG islands. 

The APOE ε4 allele, if compared with ε2 or ε3 alleles, adds one more CpG, further saturating a small 

12 bp region with 4 CpG sites. On the contrary, the APOE ε2 allele eliminates 1 CpG and opens a 33-

bp CpG-free region. Therefore, these two SNPs may alter the regional CpG burden and probably 

influence global DNA methylation of the CpG islands. These CpG load changes might change the 

binding profiles of methyl CpG-binding domain proteins, connected specifically to methylated DNA 

through their exclusive amino acid pattern [72].  

Furthermore, within the APOE CpG islands, there is evidence of indirect indicators of protein 

binding which consist of histone marks and a DNase I hypersensitivity cluster. These findings 

suggested that the APOE CpG islands (and exon 4) may be a site for chromatin remodeling and 

protein binding. Considering that environmental stimuli could influence DNA methylation 

gradually with aging, the differences in APOE CpG islands methylation between healthy individuals 

and AD increased with age [73]. Taken together, different methylation landscapes could be 

represented by inheritance of different ε2/ε3/ε4 alleles in the APOE CpG islands, which could 

accumulate or change continuously with age, also modified by environmental factors. Recent results 

showed that methylation levels for most CpG sites may be in the order of APOE ε4-carriers > APOE 

ε3/ε3-carriers > APOE ε2-carriers, considering that APOE e4-carriers have the greatest number of 
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CpG sites, while APOE e2 carriers have the smallest number with ε3/ε3 in the middle [74] (Table 1). 

These changes could potentially alter protein binding, with some consequences on biological systems, 

even affecting the pathophysiological processes of multiple diseases and plasma lipids levels. APOE 

methylation could partially mediate the effects of age on plasma lipid (Figure 1). 

Table 1. Overview of studies illustrating epigenetic signatures of apolipoprotein E gene (APOE) in 

aging and Alzheimer’s disease (AD).                                     . 

APOE exons, promoter, and CGI 

 

Study 
Study 

design 

Sample 

size 

Age or 

mean age at 

death 

(years) 

Principal findings 

Lambert et al., 

1998 [59] 

Cross-

sectional 

AD: 573 

Controls: 

509 

AD: 73.8±8.1 

Controls: 

70.4±7.9 

 

Among three APOE promoter mutations 

(−491 AT, −427 CT and Th1/E47cs), the 

Th1/E47cs T allele was associated with an 

increased AD risk, while the −491 T allele 

was associated with a decreased risk, 

independently of the APOE ε2/ε3/ε4 

polymorphism effect. The −427 CT 

polymorphism was not associated with AD. 

In addition to the qualitative effect of the 

APOE ε2/ε3/ε4 polymorphisms on the AD 

occurrence, the quantitative variation of 

expression of these alleles due to functional 

APOE promoter mutations, may be a key 

determinant of AD development 

 

Lambert et al., 

1998 [61] 

Cross-

sectional 

AD: 310 

Controls: 

293 

AD: 72-91 

Controls: 75-

102 

 

The Th1/E47cs T allele was associated with 

an increased risk of developing AD (odds 

ratio, OR = 1.29) and the OR was 1.79 for 

individuals bearing at least one T allele 

 

Yu et al., 2013 

[71] 

Cross-

sectional 

Frontal 

lobe 

AD: 9 

Controls: 6 

 

 

Frontal lobe 

AD: 86.8±6.9 

Controls: 

87.9±8.6 

APOE CGI exhibited transcriptional 

enhancer/silencer activity and differentially 

modulates expression of genes at the APOE 

locus in a cell type-, DNA methylation- and 

ɛ2/ɛ3/ɛ4 allele-specific manner. These 

findings implicated a novel functional role 

for a 3′-exon CGI and supported a modified 

mechanism of action for APOE in disease 

risk, involving also an epigenetically 

regulated transcriptional program at the 

APOE locus driven by the APOE CGI 

 

Lee et al., 2020 

[67] 

Cross-

sectional 

Frontal 

lobe 

AD: 44 

Controls: 

21 

 

Cerebellum 

AD: 51 

Controls: 

25 

Frontal lobe 

AD: 86.8±6.9 

Controls: 

87.9±8.6 

 

Cerebellum 

AD: 74.6±9.3 

Controls: 

73.5±10.9 

  APOE has a single CpG island (CGI) that 

overlaps with its 3’-exon. In this study, the 

presence of APOE circular RNA (circRNA) 

was discovered and found that circRNA and 

full-length mRNA each constitute 

approximately one third of the total APOE 

RNA, with truncated mRNAs likely 

constituting some of the missing fraction. All 

APOE RNA species demonstrated 

significantly higher expression in AD frontal 

lobe than in control frontal lobe, suggesting 

a possible modified mechanism of gene 
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action for APOE in AD involving also an 

epigenetically regulated transcriptional 

program driven by DNA methylation in the 

APOE CGI 

 

Ma et al., 2015 

[74] 

Cross-

sectional 

475 men 

and 518 

women 

18-87   The 13 APOE CpG sites were categorized 

into three groups: Group 1 showed 

hypermethylation (> 50%, in the promoter 

region), Group 2 exhibited hypomethylation 

(< 50%, in the first two exons and introns), 

and Group 3 showed hypermethylation (> 

50%, in the exon 4. APOE methylation was 

significantly associated with age and plasma 

total cholesterol and APOE methylation 

patterns differed across APOE ε variants and 

the promoter variant rs405509, which further 

showed a significant interaction with age 

 

 

CGI: 5’-C-phosphate-G-3’ (CpG) island; CpG: cytosine-phosphate-guanine. 

 

Figure 1. Despite the high lifetime risk linked to the presence of the apolipoprotein E (APOE) ε3/ε4 

and APOE ε4/ε4 genotypes (the greatest risk factor for developing Alzheimer’s Disease, AD), 

stochastic factors (such as environment, diet, physical exercise, and ageing), may play a significant 

role. APOE pleiotropic roles may be explained by its exceptional epigenetic properties. The APOE 

ε2/ε3/ε4 alleles are produced by two cytosine-phosphate-guanine (CpG)-altering SNPs (rs429358 and 

rs7412) residing within the core region of the APOE CpG islands. APOE ε4 carriers have the greatest 

number of CpG dinucleotides sites, while APOE ε2 carriers have the smallest number, so methylation 

levels for most CpG sites are in the order of APOE ε4 carriers > APOE ε3/ε3 > APOE ε2 carriers. The 

role of APOE in AD pathogenesis involves not only amyloid-β (ab) aggregation and clearance, but 

also tau-mediated neurodegeneration, microglia dysfunction, astrocyte reactivity, and blood-brain 

barrier disruption. 

In the epigenetic landscape, miRNAs are known to be small non-coding RNAs with a length of 

~ 22 nucleotides They are also implicated in AD, as showed by the altered expression of miRNA 650 
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(miR-650) in AD brains [75]. Bioinformatic analysis showed that miR-650 may target the expression 

of three components associated to AD: APOE, presenilin 1 (PSEN1), and cyclin-dependent kinase 5 

(CDK5), with recent findings confirming that miR-650 may reduce in vitro the expression of APOE, 

PSEN1, and CDK5 [75]. 

5. Epigenetics of apolipoprotein E and cognitive function: contrasting evidence in Alzheimer’s 

disease 

Several lifestyle and environmental stimuli could explain the effects of APOE genotype on AD 

and cognitive functioning, such as exercise [76], education [77], and vitamin D status [78]. Among 

implications for the development and progression of AD, vitamin D supplementation may be another 

potential strategy to consider for the APOE ε4 allele-carriers. Some reports showed that higher 

vitamin D concentrations in APOE ε4 homozygous carriers allow to perform better at memory scores 

[79]. Then, compared to the APOE ε3/ε3-carriers, the APOE ε4-carriers showed earlier onset of 

cognitive impairment in AD. Although, after the disease onset, the effect of APOE genotype on the 

progression of cognitive impairment remained debated [80].  

For this reason, epigenetic modifications of APOE such as DNA methylation have a central role 

in maintaining cognitive function in older age. Growing DNA methylation levels at the APOE 

promoter region were found on postmortem prefrontal cortex samples of sporadic AD individuals by 

mass spectrometry [81]. Numerous previous studies have investigated the association between APOE 

DNA methylation and AD or MCI [82–84]. Instead, the association between APOE DNA methylation 

and cognitive function in healthy subjects without cognitive impairment was evaluated by two 

studies with controversial findings [85,86]. Liu and colleagues found an inverse association between 

DNA methylation in the APOE gene region and delayed recall capacity among 289 older African 

Americans people with a mean age of 67 years during normal cognitive aging [85]. Conversely, the 

other study conducted in a large European cohort, observed no association between general cognitive 

functioning and APOE DNA methylation [86]. 

Many reports have suggested that neuroinflammation may have a key role in AD pathogenesis 

[87]. Dietary habits are known to influence systemic inflammation, neuroinflammation, and 

inflammaging [88]. A recent study conducted in a cohort of racially diverse middle-aged people (n = 

411), pursued to identify DNA methylation sites associated with cognitive function in the genomic 

region of APOE. About inflammatory potential of the diet, among the dietary inflammatory index, 

cognitive performance, and the methylation level of several CpG sites have been detected significant 

relationships [89].  

However, studies are contrasting at this regard, and if epigenetic biomarkers could be used for 

predicting AD is still unclear. In the APOE gene, DNA methylation at two CpG sites (3/13) that are 

known to show age-dependent changes, was related with the total cholesterol and high-density 

lipoprotein cholesterol ratio, but not with cognitive status, family history of AD, or the risk of 

cardiovascular disease in a blood-based DNA methylation study of 5828 people from the Generation 

Scotland cohort [90]. These findings supported that there is no evidence yet for considering APOE 

methylation as a biomarker for predicting AD or cardiovascular disease, although APOE methylation 

was associated with the blood levels of cholesterol [90]. 

6. Conclusions 

In the panorama of current available evidence, the investigation of healthy aging and longevity 

is currently of remarkable interest. APOE could be considered an epigenetic mediator of senescence 

considering that different ApoE biochemical pathways in lipid metabolism, neuroinflammation and 

neurodegeneration may contribute to longevity and healthy aging. Nonetheless, such areas of 

investigation are still increasing, since ApoE function in neurodegenerative diseases such as AD 

cannot be uniquely explained by ApoE effects in lipid metabolism. Furthermore, the imbalance in the 

ApoE isoforms could explain the pathophysiological process of cognitive impairment linked to 

sporadic AD [91].  
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Stochastic factors (such environmental, diet, and pollution) may play a significant role in 

sporadic AD, despite the elevated lifetime risk linked to APOE ε3/ε4 and APOE ε4/ε4 genotypes. 

Indeed, according to the notion of stochastic risk or protective factors and although it is known that 

APOE ε4/ε4-carriers developed dementia about 10 years earlier than APOE ε2 carriers [92], there was 

still significant discrepancy in the age of onset for APOE ε4/ε4-carriers (standard deviation of 6 years) 

[93]. During the process of aging, the accumulation of molecular alterations driven by genetic and 

epigenetic events in the organism lead to a loss of phenotypic plasticity over time. Also, epigenetics 

may be altered during the process of aging, and it is particularly important as age is the greatest risk 

factor for developing AD [94]. 
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