Submitted:
30 October 2023
Posted:
31 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Rice straw samples
2.2. Boiler and Sampling
2.4. Cleanup and Analysis
2.4.1. PCDD/Fs, PCBs and PAHs
2.4.2. Metals
2.5. Emission factors
3. Results
3.1. Biomass characterization
| Characteristics | Punjab | AJK | Sindh |
|---|---|---|---|
| Moisture on a dry basis % | 9.3 ± 0.3 | 9.6 ± 0.3 | 10.2 ± 0.4 |
| Ashes average % | 18.2 ± 0.2 | 17.1 ± 0.2 | 15.6 ± 0.2 |
| Highest Calorific Power (MJ/Kg) | 14.7 ± 0.4 | 14.5 ± 0.4 | 14.9 ± 0.4 |
| Lower Calorific Value (MJ/Kg) | 13.5 ± 0.4 | 13.4 ± 0.4 | 13.7 ± 0.4 |
| C % | 36.4 ± 0.2 | 38.3 ± 0.2 | 37.3 ± 0.2 |
| H % | 6.0 ± 0.1 | 5.6 ± 0.1 | 6.0 ± 0.1 |
| N % | 0.8 ± 0.2 | 0.7 ± 0.2 | 0.5 ± 0.2 |
| S % | 0.1 ± 0.2 | 0.1 ± 0.2 | 0.1 ± 0.2 |
| O % | 38.6 ± 0.4 | 38.4 ± 0.4 | 40.5 ± 0.4 |
3.2. Metals
3.3. PCDD/Fs, PCBs and PAHs
| Punjab | AJK | Sindh | |
|---|---|---|---|
| Sum PCDD/PCDF TEQ (pg/Nm3) | 1493 | 2594 | 856 |
| Sum PCB dioxin-like TEQ (pg/Nm3) | 38 | 41 | 30 |
| Sum PCDD/PCDF and PCB TEQ (pg/Nm3) |
1531 | 2635 | 886 |
| Sum c-PAH TEQ (ng/Nm3) | 15353 | 15207 | 18536 |
3.4. Emission Factors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Porichha, G. K.; Hu, Y.; Rao, K. T. V.; Xu, C. C. Crop Residue Management in India: Stubble Burning vs. Other Utilizations Including Bioenergy. Energies. 2021. [CrossRef]
- Mohidem, N. A.; Hashim, N.; Shamsudin, R.; Man, H. C. Rice for Food Security: Revisiting Its Production, Diversity, Rice Milling Process and Nutrient Content. Agriculture (Switzerland). 2022. [CrossRef]
- Van Hung, N.; Maguyon-Detras, M. C.; Migo, M. V.; Quilloy, R.; Balingbing, C.; Chivenge, P.; Gummert, M. Rice Straw Overview: Availability, Properties, and Management Practices. In Sustainable Rice Straw Management; 2020. [CrossRef]
- Dutta, A.; Patra, A.; Hazra, K. K.; Nath, C. P.; Kumar, N.; Rakshit, A. A State of the Art Review in Crop Residue Burning in India: Previous Knowledge, Present Circumstances and Future Strategies. Environ. Challenges, 2022, 8 (April), 100581. [CrossRef]
- Iqra Ilyas; Umair, A.; Sangi, A. Exploring Potential of Rice Exports from Pakistan Lead Researchers. 2022, 8–11.
- Ahmed, T.; Ahmad, B.; Ahmad, W. Why Do Farmers Burn Rice Residue? Examining Farmers’ Choices in Punjab, Pakistan. Land use policy, 2015, 47, 448–458. [CrossRef]
- Ishfaq, M.; Akbar, N.; Batool, Z.; Ibrahim, M. U.; Aslam, A.; Zulfiqar, U.; Anjum, S. A.; Akhtar, M. F.; Ahmad, M. Screening and Adaptability of Rice Varieties for Yield, Milling Recoveries, and Quality Traits under Dry Direct-Seeded Rice. Pakistan J. Agric. Sci., 2021, 58 (2). [CrossRef]
- Abdurrahman, M. I.; Chaki, S.; Saini, G. Stubble Burning: Effects on Health & Environment, Regulations and Management Practices. Environ. Adv., 2020, 2. [CrossRef]
- Martínez-Eixarch, M.; Alcaraz, C.; Viñas, M.; Noguerol, J.; Aranda, X.; Prenafeta-Boldú, F. X.; Català-Forner, M.; Fennessy, M. S.; Ibáñez, C. The Main Drivers of Methane Emissions Differ in the Growing and Flooded Fallow Seasons in Mediterranean Rice Fields. Plant Soil, 2021, 460 (1–2). [CrossRef]
- Junpen, A.; Pansuk, J.; Kamnoet, O.; Cheewaphongphan, P.; Garivait, S. Emission of Air Pollutants from Rice Residue Open Burning in Thailand, 2018. Atmosphere (Basel)., 2018, 9 (11). [CrossRef]
- Awasthi, A.; Bhaskar, T. Combustion of Lignocellulosic Biomass. In Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels; 2019. [CrossRef]
- Migo-Sumagang, M. V. P.; Van Hung, N.; Detras, M. C. M.; Alfafara, C. G.; Borines, M. G.; Capunitan, J. A.; Gummert, M. Optimization of a Downdraft Furnace for Rice Straw-Based Heat Generation. Renew. Energy, 2020. [CrossRef]
- Nair, M.; Bherwani, H.; Kumar, S.; Gulia, S.; Goyal, S.; Kumar, R. Assessment of Contribution of Agricultural Residue Burning on Air Quality of Delhi Using Remote Sensing and Modelling Tools. Atmos. Environ., 2020, 230. [CrossRef]
- Palma, A.; Paris, E.; Carnevale, M.; Vincenti, B.; Perilli, M.; Guerriero, E.; Cerasa, M.; Proto, A. R.; Papandrea, S. F.; Bonofiglio, R.; et al. Biomass Combustion: Evaluation of POPs Emissions (VOC, PAH, PCB, PCDD/F) from Three Different Biomass Prunings (Olive, Citrus and Grapevine). Atmosphere (Basel)., 2022, 13 (10). [CrossRef]
- Peng, Y.; Lu, S.; Li, X.; Yan, J.; Cen, K. Formation, Measurement, and Control of Dioxins from the Incineration of Municipal Solid Wastes: Recent Advances and Perspectives. Energy and Fuels. 2020. [CrossRef]
- Tipayarom, A.; Kim Oanh, N. T. Influence of Rice Straw Open Burning on Levels and Profiles of Semi-Volatile Organic Compounds in Ambient Air. Chemosphere, 2020, 243. [CrossRef]
- Akbari, M. Z.; Khamkaew, C.; Thepnuan, D.; Wiriya, W. A. N.; Chantara, S. Elemental Composition of Pm2 . 5 Emitted From Rice. 2017, No. October, 25–30.
- Alengebawy, A.; Abdelkhalek, S. T.; Qureshi, S. R.; Wang, M. Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics. 2021. [CrossRef]
- Khan, M. M.; Cheema, M. J. M.; Arshad, M.; Khaliq, T. Evaluation of Climate Change Adaptation Practices in the Agriculture Sector Using Satellite Imagery in Pakistan. Pakistan J. Agric. Sci., 2020, 57 (5). [CrossRef]
- Ansari, M. K. A.; Oztetik, E.; Ahmad, A.; Umar, S.; Iqbal, M.; Owens, G. Identification of the Phytoremediation Potential of Indian Mustard Genotypes for Copper, Evaluated from a Hydroponic Experiment. Clean - Soil, Air, Water, 2013, 41 (8). [CrossRef]
- Hidayatun, N.; Q. Diaz, M. G.; Ismail, A. M. Exploring Aluminum Tolerance at Seedling Stage in Rice (Oryza Sativa, Linn) by Using Modified Magnavaca Nutrient Solution. Bul. Plasma Nutfah, 2017, 23 (2). [CrossRef]
- Javaid, S. Heavy Metals Stress, Mechanism and Remediation Techniques in Rice (Oryza Sativa L.): A Review. Pure Appl. Biol., 2020, 9 (1). [CrossRef]
- Khan, M. I.; Shoukat, M. A.; Cheema, S. A.; Arif, H. N.; Niazi, N. K.; Azam, M.; Bashir, S.; Ashraf, I.; Qadri, R. Use, Contamination and Exposure of Pesticides in Pakistan: A Review. Pakistan J. Agric. Sci., 2020, 57 (1). [CrossRef]
- Palma, A.; Gallucci, F.; Papandrea, S.; Carnevale, M.; Paris, E.; Vincenti, B.; Salerno, M.; Di Stefano, V.; Proto, A. R. Experimental Study of the Combustion of and Emissions from Olive and Citrus Pellets in a Small Boiler. Fire, 2023, 6 (8), 1–12. [CrossRef]
- Carnevale, M.; Paris, E.; Vincenti, B.; Palma, A.; Salerno, M.; Guerriero, E.; Mancini, R.; Calcopietro, M.; Gallucci, F. Combustion and Emission Analysis of Spent Mushroom Compost and Forestry Woodchip for Management and Energy Production. Fire, 2023, 6 (1). [CrossRef]
- Mubeen, I.; Lin, X.; Buekens, A.; Cao, X.; Lu, S.; Tang, M.; Yan, J. PCDD / F Formation in Milled Fly Ash : Metal Chloride Catalysis. 2017, 2858–2866. [CrossRef]
- Anezaki, K.; Kashiwagi, N. Daily Variations and Factors of Atmospheric PCDD/Fs in Post-Harvest Paddy Fields: PCDD/F Source Estimation Using a Bayesian Semi-Factor Model. Chemosphere, 2021, 268, 129292. [CrossRef]
- Chakrabarti, S.; Khan, M. T.; Kishore, A.; Roy, D.; Scott, S. P. Risk of Acute Respiratory Infection from Crop Burning in India: Estimating Disease Burden and Economic Welfare from Satellite and National Health Survey Data for 250 000 Persons. Int. J. Epidemiol., 2019, 48 (4). [CrossRef]
- Yao, W.; Zhao, Y.; Chen, R.; Wang, M.; Song, W.; Yu, D. Emissions of Toxic Substances from Biomass Burning : A Review of Methods and Technical Influencing Factors. 2023.
- Zhang, H.; Zhang, X.; Wang, Y.; Bai, P.; Hayakawa, K.; Zhang, L.; Tang, N. Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review. International Journal of Environmental Research and Public Health. 2022. [CrossRef]
- Colantoni, A.; Paris, E.; Bianchini, L.; Ferri, S.; Marcantonio, V.; Carnevale, M.; Palma, A.; Civitarese, V.; Gallucci, F. Spent Coffee Ground Characterization, Pelletization Test and Emissions Assessment in the Combustion Process. Sci. Rep., 2021, 11 (1), 1–14. [CrossRef]
- Guerriero, E.; Mosca, S.; Torelli, G. N.; Tramontana, G.; Pomponio, S.; Rossetti, G.; Rotatori, M. Evaluation of a Simultaneous Sampling Method of PAHs, PCDD/Fs and Dl-PCBs in Ambient Air. J. Environ. Monit., 2010, 12 (5), 1092–1099. [CrossRef]
- Benedetti, P.; Guerriero, E.; Mosca, S.; Rotatori, M. Analysis of Polychlorodibenzo-p-Dioxins and Polychlorodibenzofurans in Stationary Source Emissions in GC–MS/MS Using Hydrogen as the Carrier Gas. J. Sep. Sci., 2017, 40 (17). [CrossRef]
- Zhang, M.; Buekens, A.; Olie, K.; Li, X. PCDD/F-Isomers Signature - Effect of Metal Chlorides and Oxides. Chemosphere, 2017, 184. [CrossRef]
- Rashid, A.; Schutte, B. J.; Ulery, A.; Deyholos, M. K.; Sanogo, S.; Lehnhoff, E. A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy. 2023. [CrossRef]
- Haslija, A.; Bakar, A.; Jia, C.; Carey1, N. Extraction of Silica from Rice Straw Using Alkaline Hydrolysis Pretreatment. IOP Conf. Ser. Mater. Sci. Eng., 2020. [CrossRef]
- Do, N. H.; Pham, H. H.; Le, T. M.; Lauwaert, J.; Diels, L.; Verberckmoes, A.; Do, N. H. N.; Tran, V. T.; Le, P. K. The Novel Method to Reduce the Silica Content in Lignin Recovered from Black Liquor Originating from Rice Straw. Sci. Rep., 2020, 10 (1). [CrossRef]
- Syazwanee, M.; Shaziera, A.; Izzati, M.; Azwady, A.; Muskhazli, M. Improvement of Delignification, Desilication and Cellulosic Content Availability in Paddy Straw via Physico-Chemical Pretreatments. Annu. Res. Rev. Biol., 2018, 26 (6). [CrossRef]
- Oladosu, Y.; Rafii, M. Y.; Abdullah, N.; Magaji, U.; Hussin, G.; Ramli, A.; Miah, G. Fermentation Quality and Additives: A Case of Rice Straw Silage. Biomed Res. Int., 2016, 2016. [CrossRef]
- Paris, E.; Carnevale, M.; Guerriero, E.; Palma, A.; Vincenti, B.; Khalid, A.; Rantica, E.; Proto, A. R.; Gallucci, F. Fixed Source Monitoring System for Marker Emission during Biomass Combustion. Renew. Energy, 2023, 208 (January), 597–603. [CrossRef]
- Zhang, C.; Bai, L.; Yao, Q.; Li, J.; Wang, H.; Shen, L.; Sippula, O.; Yang, J.; Zhao, J.; Liu, J.; et al. Emission Characteristics of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans from Industrial Combustion of Biomass Fuels. Environ. Pollut., 2022, 292 (PA), 118265. [CrossRef]
- Li, H.; Liu, W.; Tang, C.; Lei, R.; Zhu, W. Emission Profiles and Formation Pathways of 2,3,7,8-Substituted and Non-2,3,7,8-Substituted Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Secondary Copper Smelters. Sci. Total Environ., 2019, 649, 473–481. [CrossRef]
- Zieliński, M.; Kamińska, J.; Czerska, M.; Ligocka, D.; Urbaniak, M. Levels and Sources of PCDDs, PCDFs and Dl-PCBs in the Water Ecosystems of Central Poland — A Mini Review. International Journal of Occupational Medicine and Environmental Health. 2014. [CrossRef]
- Zhang, M.; Buekens, A.; Li, X. Dioxins from Biomass Combustion: An Overview. Waste and Biomass Valorization, 2017, 8 (1), 1–20. [CrossRef]
- Huang, H.; Buekens, A. On the Mechanisms of Dioxin Formation in Combustion Processes. Chemosphere, 1995, 31 (9). [CrossRef]
- Kreisz, S.; Hunsinger, H.; Vogg, H. Wet Scrubbers — A Potential PCDD/F Source? Chemosphere, 1996, 32 (1), 73–78. [CrossRef]
- R. E. Hester and R. M. Harrison. Air Pollution and Health. By R. E. Hester and R. M. Harrison, Eds., Royal Society of Chemistry, Cambridge, U.K., 1998. 129 Pp, 246 � 189 Mm, Price �22.50, ISBN 0-85404-245-8. Chem. Educ., 1998, 4 (2). [CrossRef]
- Zhang, Q.; Huang, J.; Yu, G. Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans Emissions from Open Burning of Crop Residues in China between 1997 and 2004. Environ. Pollut., 2008, 151 (1), 39–46. [CrossRef]
- Tame, N. W.; Dlugogorski, B. Z.; Kennedy, E. M. Conversion of Wood Pyrolysates to PCDD/F. Proc. Combust. Inst., 2009, 32 (1), 665–671. [CrossRef]
- Tame, N. W.; Dlugogorski, B. Z.; Kennedy, E. M. PCDD/F Formation from Heterogeneous Oxidation of Wood Pyrolysates. In Fire Safety Science; 2008. [CrossRef]
- Zhang, T.; Huang, J.; Deng, S.; Yu, G. Influence of Pesticides Contamination on the Emission of PCDD/PCDF to the Land from Open Burning of Corn Straws. Environ. Pollut., 2011, 159 (6), 1744–1748. [CrossRef]
- Vikelsøe, J.; Johansen, E. Estimation of Dioxin Emission from Fires in Chemicals. Chemosphere, 2000. [CrossRef]
- Wilhelm, J.; Stieglitz, L.; Dinjus, E.; Will, R. Mechanistic Studies on the Role of PAHs and Related Compounds in PCDD/F Formation on Model Fly Ashes. In Chemosphere; 2001; Vol. 42. [CrossRef]
- Sørmo, E.; Krahn, K. M.; Flatabø, G. Ø.; Hartnik, T.; Arp, H. P. H.; Cornelissen, G. Distribution of PAHs, PCBs, and PCDD/Fs in Products from Full-Scale Relevant Pyrolysis of Diverse Contaminated Organic Waste. J. Hazard. Mater., 2023. [CrossRef]
| Metals | Punjab (µg/Nm3) |
AJK (µg/Nm3) |
Sindh (µg/Nm3) |
|---|---|---|---|
| Mg | 321 ± 7 | 611 ± 10 | 691 ± 10 |
| Al | 82 ± 2 | 53 ± 2 | 98 ± 2 |
| Ca | 362 ± 7 | 486 ± 9 | 370 ± 7 |
| Cr | 4.9 ± 0.1 | 2.2 ± 0.1 | 4.3 ± 0.1 |
| Mn | 18.3 ± 0.4 | 30.4 ± 0.6 | 32.9 ± 0.7 |
| Fe | 113 ± 2 | 78 ± 2 | 106 ± 2 |
| Co | 1.3 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 |
| Ni | 11.1 ± 0.3 | 9.9 ± 0.3 | 6.2 ± 0.2 |
| Cu | 35 ± 1 | 48 ± 1 | 22 ± 1 |
| Zn | 134 ± 3 | 89 ± 2 | 93 ± 2 |
| Sr | 4.9 ± 0.2 | 22.2 ± 0.5 | 16.6 ± 0.4 |
| Ag | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 |
| Cd | 0.9 ± 0.1 | 0.8 ± 0.1 | 0.4 ± 0.1 |
| Ba | 1.9 ± 0.1 | 4.4 ± 0.1 | 3.8 ± 0.1 |
| Tl | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 |
| Pb | 13.5 ± 0.3 | 14.5 ± 0.3 | 14.4 ± 0.3 |
| Bi | 4 ± 0.1 | 7.2 ± 0.1 | 8.8 ± 0.2 |
| Punjab | AJK | Sindh | |||||
|---|---|---|---|---|---|---|---|
| Compound | I-TEF | pg/Nm3 | TEQ (pg/Nm3) | pg/Nm3 | TEQ (pg/Nm3) | pg/Nm3 | TEQ (pg/Nm3) |
| 2,3,7,8-TetraCDD | 1.000 | 7.3 | 7.34 | 86 | 86.07 | 8.0 | 7.97 |
| 1,2,3,7,8-PentaCDD | 0.500 | 127 | 63.48 | 931 | 465.35 | 19 | 9.43 |
| 1,2,3,4,7,8-HexaCDD | 0.100 | 3.2 | 0.32 | 51 | 5.11 | 4.9 | 0.49 |
| 1,2,3,6,7,8-HexaCDD | 0.100 | 6.4 | 0.64 | 652 | 65.16 | 1.6 | 0.16 |
| 1,2,3,7,8,9 Hexa-CDD | 0.100 | 3.2 | 0.32 | 21.9 | 2.19 | 1.6 | 0.16 |
| 1,2,3,4,6,7,8-HeptaCDD | 0.010 | 223 | 2.23 | 1240 | 12.40 | 504 | 5.04 |
| OctaCDD | 0.001 | 28722 | 28.71 | 127646 | 127.64 | 26675 | 26.66 |
| 2,3,7,8-Tetra CDF | 0.100 | 9647 | 964.27 | 8512 | 851.20 | 6472 | 646.89 |
| 1,2,3,7,8-PentaCDF | 0.050 | 4321 | 215.95 | 12833 | 641.62 | 2485 | 124.21 |
| 2,3,4,7,8-Penta CDF | 0.500 | 225 | 112.28 | 450 | 225.14 | 39 | 19.51 |
| 1,2,3,4,7,8-HexaCDF | 0.100 | 581 | 58.05 | 637 | 63.70 | 37 | 3.74 |
| 1,2,3,6,7,8-HexaCDF | 0.100 | 102 | 10.21 | 15 | 1.46 | 31 | 3.09 |
| 2,3,4,6,7,8-HexaCDF | 0.100 | 99 | 9.89 | 53 | 5.35 | 1.6 | 0.16 |
| 1,2,3,7,8,9-HexaCDF | 0.100 | 12.8 | 1.28 | 2.4 | 0.24 | 4.9 | 0.49 |
| 1,2,3,4,6,7,8-HeptaCDF | 0.010 | 1149 | 11.48 | 3525 | 35.25 | 797 | 7.97 |
| 1,2,3,4,7,8,9-HeptaCDF | 0.010 | 64 | 0.64 | 438 | 4.38 | 16.3 | 0.16 |
| OctaCDF | 0.001 | 5744 | 5.74 | 1702 | 1.70 | 325.3 | 0.33 |
| Sum PCDD/Fs | 51037 | 1492.82 | 158795 | 2593.97 | 37424 | 856.44 | |
| Punjab | AJK | Sindh | |||||
|---|---|---|---|---|---|---|---|
| Compounds | WHO TEF 2006 | pg/Nm3 | TEQ (pg/Nm3) |
pg/Nm3 | TEQ (pg/Nm3) |
pg/Nm3 | TEQ (pg/Nm3) |
| 3,4,4',5- TetraCB |
0.0003 | 153 | 0.046 | 340 | 0.1021 | 263 | 0.0790 |
| 3,3',4,4'-TetraCB | 0.0001 | 4018 | 0.401 | 2966 | 0.2966 | 1773 | 0.1772 |
| 2',3,4,4',5- PentaCB |
0.00003 | 405 | 0.012 | 2896 | 0.0868 | 867 | 0.0259 |
| 2,3',4,4',5- PentaCB |
0.00003 | 29258 | 0.878 | 33910 | 1.0172 | 44926 | 1.3471 |
| 2,3,4,4',5- PentaCB |
0.00003 | 683 | 0.021 | 652 | 0.0195 | 865 | 0.0259 |
| 2,3,3',4,4'- PentaCB |
0.00003 | 10292 | 0.308 | 8721 | 0.2616 | 7393 | 0.2216 |
| 3,3',4,4',5- PentaCB |
0.1000 | 351 | 35.088 | 1255 | 37.6853 | 263 | 26.337 |
| 2,3',4,4',5,5'-HexaCB | 0.00003 | 16046 | 0.481 | 23623 | 0.7086 | 30071 | 0.9017 |
| 2,3,3',4,4',5-HexaCB | 0.00003 | 466 | 0.013 | 2152 | 0.0645 | 529 | 0.0158 |
| 2,3,3',4,4',5'-HexaCB | 0.00003 | 124 | 0.003 | 238 | 0.0071 | 169 | 0.0050 |
| 3,3',4,4',5,5'-HexaCB | 0.03000 | 32 | 0.956 | 12 | 0.3646 | 13 | 0.3901 |
| 2,3,3',4,4',5,5'-HeptaCB | 0.00003 | 163 | 0.004 | 102 | 0.0030 | 122 | 0.0036 |
| ∑ dl-PCB | 61991 | 76867 | 87255 | ||||
| ∑PCB dioxin-likeTEQ | 38 | 41 | 30 | ||||
| Compounds | TEF | Punjab (ng/Nm3) |
AJK (ng/Nm3) |
Sindh (ng/Nm3) |
|---|---|---|---|---|
| Phenanthrene | 0.0005 | 112 | 123 | 114 |
| Anthracene | 0.0005 | 9 | 33 | 14 |
| Fluoranthene | 0.05 | 3452 | 2687 | 3398 |
| Pyrene | 0.001 | 53 | 36 | 56 |
| Benzo(a)anthracene | 0.005 | 69 | 74 | 84 |
| Chrysene | 0.03 | 1262 | 962 | 1222 |
| Benzo(b)fluoranthene | 0.1 | 731 | 576 | 699 |
| Benzo(k)fluoranthene | 0.1 | 262 | 188 | 207 |
| Benzo(e)pyrene | 0.002 | 16 | 13 | 21 |
| Benzo(a)pyrene | 1 | 6779 | 7300 | 10327 |
| Perylene | - | 0 | 0 | 0 |
| Indeno(1,2,3,c,d)pyrene | 0.1 | 540 | 839 | 518 |
| Dibenzo(a,h)anthracene | 1.1 | 1980 | 2285 | 1787 |
| Benzo(g,h,i)perylene | 0.02 | 89 | 91 | 88 |
| ∑ PAHs | 15353 | 15207 | 18536 |
| EF | Punjab | AJK | Sindh | Average |
| Sum PCDD/PCDF TEQ (pg/kg) | 71.3 | 160.7 | 68.6 | 100.2 |
| Sum PCB dioxin-like TEQ (pg/kg) | 1.8 | 2.5 | 2.4 | 2.2 |
| Sum PCDD/PCDF and PCB TEQ (pg/kg) | 73.1 | 163.2 | 71 | 102.4 |
| Sum c-PAH TEQ (µg/kg) | 733.2 | 941.7 | 1485.8 | 1053.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
