Submitted:
21 October 2023
Posted:
24 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Culture
2.3. Antibiotic susceptibility test
3. Results
3.1. Bacterial Isolation and Identification
3.2. Antibiotic Susceptibility Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brenner D.J., Krieg N.R., Staley J.T. and Garrity G.M., (Eds.) (2005) Bergey’s Manual of Systematic Bacteriology, 2nd Edition, Vol. 2 (The Proteobacteria), Springer, New York. [CrossRef]
- Bonnedahl, J.; Järhult, J.D. Antibiotic resistance in wild birds. Upsala J. Med Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef]
- Martín-Maldonado, B.; Rodríguez-Alcázar, P.; Fernández-Novo, A.; González, F.; Pastor, N.; López, I.; Suárez, L.; Moraleda, V.; Aranaz, A. Urban Birds as Antimicrobial Resistance Sentinels: White Storks Showed Higher Multidrug-Resistant Escherichia coli Levels Than Seagulls in Central Spain. Animals 2022, 12, 2714. [Google Scholar] [CrossRef]
- Georgopoulou, I.; Tsiouris, V. The potential role of migratory birds in the transmission of zoonoses. Vet Ital. 2008, 44, 671–677. [Google Scholar]
- Elsohaby, I.; Samy, A.; Elmoslemany, A.; Alorabi, M.; Alkafafy, M.; Aldoweriej, A.; Al-Marri, T.; Elbehiry, A.; Fayez, M. Migratory Wild Birds as a Potential Disseminator of Antimicrobial-Resistant Bacteria around Al-Asfar Lake, Eastern Saudi Arabia. Antibiotics 2021, 10, 260. [Google Scholar] [CrossRef]
- Etayeb, K.; Galidana, A.; Berbash, A.; Eisa, A.; Kordi, A.; Helali, E.; Abuhajar, M.; Alswyeb, A.; Abdulqader, H.; Azabi, N.; et al. Results of the eighteenth winter waterbird census in Libya (IWC), January 2022. Open Veter- J. 2023, 13, 407–418. [Google Scholar] [CrossRef]
- Zeballos-Gross, D.; Rojas-Sereno, Z.; Salgado-Caxito, M.; Poeta, P.; Torres, C.; Benavides, J.A. The Role of Gulls as Reservoirs of Antibiotic Resistance in Aquatic Environments: A Scoping Review. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966, 45, 493–496 PMID: 5325707. [Google Scholar] [CrossRef] [PubMed]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef]
- Piccolomini, R.; Di Girolamo, A.; Catamo, G.; Cellini, L.; Allocati, N.; Ravagnan, G. Enterosistem 18-R: description and comparative evaluation with conventional methods for identification of members of the family Enterobacteriaceae. J. Clin. Microbiol. 1991, 29, 2300–2304. [Google Scholar] [CrossRef] [PubMed]
- Bissong, M.E.A.; Mbah, C.; Foka, F.E.T.; Kamga, H.-L. Spectrum of Uropathogens and Antimicrobial Susceptibility in Clinically Diagnosed Cases of Urinary Tract Infection in the Bamenda Regional Hospital, Cameroon. Am. J. Heal. Res. 2017, 5, 19. [Google Scholar] [CrossRef]
- Vittecoq, M.; Brazier, L.; Elguero, E.; Bravo, I.G.; Renaud, N.; Manzano-Marín, A.; Prugnolle, F.; Godreuil, S.; Blanchon, T.; Roux, F.; et al. Multiresistant Enterobacteriaceae in yellow-legged gull chicks in their first weeks of life. Ecol. Evol. 2022, 12, e8974. [Google Scholar] [CrossRef] [PubMed]
- Nabil, N.M.; Erfan, A.M.; Tawakol, M.M.; Haggag, N.M.; Naguib, M.M.; Samy, A. Wild Birds in Live Birds Markets: Potential Reservoirs of Enzootic Avian Influenza Viruses and Antimicrobial Resistant Enterobacteriaceae in Northern Egypt. Pathogens 2020, 9, 196. [Google Scholar] [CrossRef]
- Fournier, C.; Poirel, L.; Despont, S.; Kessler, J.; Nordmann, P. Increasing Trends of Association of 16S rRNA Methylases and Carbapenemases in Enterobacterales Clinical Isolates from Switzerland, 2017–2020. Microorganisms 2022, 10, 615. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.P.; Pace, A.; Varriale, L.; Borrelli, L.; Gargiulo, A.; Pompameo, M.; Fioretti, A.; Dipineto, L. Prevalence and Antimicrobial Resistance of Enteropathogenic Bacteria in Yellow-Legged Gulls (Larus michahellis) in Southern Italy. Animals 2021, 11, 275. [Google Scholar] [CrossRef] [PubMed]
- Liakopoulos, A.; Olsen, B.; Geurts, Y.; Artursson, K.; Berg, C.; Mevius, D.J.; Bonnedahl, J. Molecular Characterization of Extended-Spectrum-Cephalosporin-Resistant Enterobacteriaceae from Wild Kelp Gulls in South America. Antimicrob. Agents Chemother. 2016, 60, 6924–6927. [Google Scholar] [CrossRef]
- Badger, J.L.; Stins, M.F.; Kim, K.S. Citrobacter freundii Invades and Replicates in Human Brain Microvascular Endothelial Cells. Infect. Immun. 1999, 67, 4208–4215. [Google Scholar] [CrossRef]
- Wanger, A., Chavez, V., Huang, R., Wahed, A., Dasgupta, A., & Actor, J. K. (2017). Microbiology and molecular diagnosis in pathology: a comprehensive review for board preparation, certification and clinical practice. .
- Ahmed, T.; Islam, S.; Haider, N.; Elton, L.; Hasan, B.; Nuruzzaman, M.; Rahman, T.; Kabir, S.M.L.; Khan, S.R. Phenotypic and Genotypic Characteristics of Antimicrobial Resistance in Citrobacter freundii Isolated from Domestic Ducks (Anas platyrhynchos domesticus) in Bangladesh. Antibiotics 2023, 12, 769. [Google Scholar] [CrossRef]
- Andersson, A.M.; Weiss, N.; Rainey, F.; Salkinoja-Salonen, M.S. Dust-borne bacteria in animal sheds, schools and children's day care centres. J. Appl. Microbiol. 1999, 86, 622–634. [Google Scholar] [CrossRef]
- Monier, J.-M.; Lindow, S. Aggregates of Resident Bacteria Facilitate Survival of Immigrant Bacteria on Leaf Surfaces. Microb. Ecol. 2005, 49, 343–352. [Google Scholar] [CrossRef]
- Ulloa-Gutierrez, R.; Moya, T.; Avila-Aguero, M.L. Pantoea agglomerans and Thorn-Associated Suppurative Arthritis. Pediatr. Infect. Dis. J. 2004, 23, 690. [Google Scholar] [CrossRef]
- Cruz, A.T.; Cazacu, A.C.; Allen, C.H. Pantoea agglomerans, a Plant Pathogen Causing Human Disease. J. Clin. Microbiol. 2007, 45, 1989–1992. [Google Scholar] [CrossRef] [PubMed]
- Giorgio, A.; De Bonis, S.; Balestrieri, R.; Rossi, G.; Guida, M. The Isolation and Identification of Bacteria on Feathers of Migratory Bird Species. Microorganisms 2018, 6, 124. [Google Scholar] [CrossRef] [PubMed]
- Nowaczek, A.; Dec, M.; Stępień-Pyśniak, D.; Urban-Chmiel, R.; Marek, A.; Różański, P. Antibiotic Resistance and Virulence Profiles of Escherichia coli Strains Isolated from Wild Birds in Poland. Pathogens 2021, 10, 1059. [Google Scholar] [CrossRef]
- Islam, S.; Nayeem, M.H.; Sobur, A.; Ievy, S.; Islam, A.; Rahman, S.; Kafi, A.; Ashour, H.M.; Rahman, T. Virulence Determinants and Multidrug Resistance of Escherichia coli Isolated from Migratory Birds. Antibiotics 2021, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef]
- Buckle, J. (2016). Clinical Aromatherapy. Essential oils in healthcare. 432.
- Annavajhala, M.K.; Gomez-Simmonds, A.; Uhlemann, A.-C. Multidrug-Resistant Enterobacter cloacae Complex Emerging as a Global, Diversifying Threat. Front. Microbiol. 2019, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, N.; Zhou, C.; Lin, Y.; Zhang, Y.; Wang, L.; Zheng, X.; Zhou, T.; Wang, Z. Molecular Mechanisms and Epidemiology of Carbapenem-Resistant Enterobacter cloacae Complex Isolated from Chinese Patients During 2004–2018. Infect. Drug Resist. 2021, 14, 3647–3658. [Google Scholar] [CrossRef]
- Giacopello, C.; Foti, M.; Mascetti, A.; Grosso, F.; Ricciardi, D.; Fisichella, V.; Piccolo, F.L. Antimicrobial resistance patterns of Enterobacteriaceae in European wild bird species admitted in a wildlife rescue centre. Vet Ital. 2016, 52, 139–144. [Google Scholar] [CrossRef]
- Kuehnert, M.J.; Basavaraju, S.V. (2015). Transfusion-and Transplantation-Transmitted Infections. In Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases (pp. 3351-3360). WB Saunders.
- Othman, B.; Talat, D.; Ibrahim, M. Individual Samples from Quail Harboring Diverse Bacterial populations and different serotypes of E. coli. Damanhour Journal of Veterinary Sciences 2023, 10, 17–24. [Google Scholar]
- Schaffer, J.N.; Pearson, M.M. Proteus mirabilisand Urinary Tract Infections. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef]
- Mo, L.; Wang, J.; Qian, J.; Peng, M. Antibiotic Sensitivity of Proteus mirabilis Urinary Tract Infection in Patients with Urinary Calculi. Int. J. Clin. Pr. 2022, 2022, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.; Lopes, E.; Albuquerque, A.; Horn, R.; Bezerra, W.; Siqueira, R.; Lopes, I.; Nunes, F.; Teixeira, R.; Cardoso, W. Isolation and Antimicrobial Resistance Profiles of Enterobacteria from Nestling Grey-Breasted Parakeets (Pyrrhura Griseipectus). Braz. J. Poult. Sci. 2018, 20, 103–110. [Google Scholar] [CrossRef]
- Kim, Y.A.; Park, Y.S.; Youk, T.; Lee, H.; Lee, K. Correlation of Aminoglycoside Consumption and Amikacin- or Gentamicin-Resistant Pseudomonas aeruginosa in Long-Term Nationwide Analysis: Is Antibiotic Cycling an Effective Policy for Reducing Antimicrobial Resistance? Ann Lab Med 2018, 38, 176–178. [Google Scholar] [CrossRef]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High prevalence and diversity of extended-spectrum β-lactamase and emergence of OXA-48 producing Enterobacterales in wildlife in Catalonia. PLOS ONE 2019, 14, e0210686. [Google Scholar] [CrossRef] [PubMed]
- Raphael, E.; Riley, L.W. Infections Caused by Antimicrobial Drug-Resistant Saprophytic Gram-Negative Bacteria in the Environment. Front. Med. 2017, 4, 183–183. [Google Scholar] [CrossRef] [PubMed]
- Dutkiewicz, J.; Mackiewicz, B.; Lemieszek, M.K.; Golec, M.; Milanowski, J. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Annals of Agricultural and Environmental Medicine 2016, 23. [Google Scholar] [CrossRef]
- Tardón, A.; Bataller, E.; Llobat, L.; Jiménez-Trigos, E. Bacteria and antibiotic resistance detection in fractures of wild birds from wildlife rehabilitation centres in Spain. Comp. Immunol. Microbiol. Infect. Dis. 2021, 74, 101575. [Google Scholar] [CrossRef]
- Tao, S.; Chen, H.; Li, N.; Wang, T.; Liang, W. The spread of antibiotic resistance genes in vivo model. Canadian Journal of Infectious Diseases and Medical Microbiology 2022, 2022. [Google Scholar] [CrossRef]
- Chiș, A.A.; Rus, L.L.; Morgovan, C.; Arseniu, A.M.; Frum, A.; Vonica-Țincu, A.L.; Gligor, F.G.; Mureșan, M.L.; Dobrea, C.M. Microbial Resistance to Antibiotics and Effective Antibiotherapy. Biomedicines 2022, 10, 1121. [Google Scholar] [CrossRef]
- Bundy, G. The Birds of Libya: An Annotated Check-list; BOU Check-list No. 1; British Ornithologists’ Union: London, UK, 1976. [Google Scholar]
- Isenmann P., Hering J., Brehme S., Essghaier M., Etayeb K., Bourass E. & Azafzaf H., 2016. Oiseaux de Libye - Birds of Libya. SEOF, 302 pp.
- Etayeb, K.S.; Berbash, A.; Bashimam, W.; Bouzainen, M.; Galidana, A.; Saied, M.; Yahia, J.; Bourass, E. Results of the eighth winter waterbird census in Libya in January 2012. Biodiversity Journal 2015, 6, 253–262. [Google Scholar]
- Benyezza, E.; Shanan, T.; Berbash, A.; Etayeb, K. The diversity of aquatic birds and breeding of some species in Al-Mallaha, Tripoli. Vogelwelt 2017, 137, 143–148. [Google Scholar]
| Name of bacteria | No. of identified bacteria | Percentage (%) |
|---|---|---|
| Citrobacter freundii | 17 | 53.125 |
| Pantoea agglomerans | 10 | 31.25 |
| E. coli | 2 | 6.25 |
| Enterobacter cloacae | 1 | 3.125 |
| Serratia liquifaciens | 1 | 3.125 |
| Proteus mirabilis | 1 | 3.125 |
| Total | 32 | 100 |
| Antibiotic | Code | Sensitive | Intermediate | Resistant | |
|---|---|---|---|---|---|
| No. of bacteria (%) | Bacterial species | ||||
| Gentamicin | CN | 32 (100%) | 0 | 0 | None |
| Ciprofloxacin | CIP | 32 (100%) | 0 | 0 | None |
| Azithromycin | AZM | 27 (84.4%) | 3 (9.4%) | 2 (6.3%) | Citrobacter freundii |
| Ceftriaxone | CRO | 27 (84.4%) | 4 (12.5%) | 1 (3.1%) | Enterobacter cloacae |
| Ampicillin | AMP | 27 (84.4%) | 3 (9.4%) | 2 (6.3%) |
Enterobacter agglomerans Proteus mirabilis |
| Cefoxitin | FOX | 18 (56.3%) | 3 (9.4%) | 11 (43.4%) |
Citrobacter freundii Enterobacter agglomerans Enterobacter cloacae Serratia liquifaciens |
| No. | Bacterial species | Resistance to antibiotics | MAR Index |
|---|---|---|---|
| 1 | Citrobacter freundii | AZM, FOX | 0.33 |
| 2 | Enterobacter agglomerans | AMP, FOX | 0.33 |
| 3 | Enterobacter cloacae | CRO, FOX | 0.33 |
| 4 | Serratia liquifaciens | FOX | 0.17 |
| 5 | Proteus mirabilis | AMP | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
