Submitted:
18 October 2023
Posted:
20 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Site and Monitoring of Environmental Variables under Agroforestry Systems
2.2. Determination of Soil Hydraulic Characteristics and Properties
2.3. Modelo Hydrus-1D
2.4. Data Analysis
3. Results
3.1. Micrometeorological Conditions and Soil Water Content under Agroforestry Systems
3.2. Soil Water Properties
3.3. Hydrus-1D Calibration and Validation Model
4. Discussion
4.1. Microclimatic Conditions, water Content and Soil Properties under Agroforestry Systems
4.2. Hydrological Properties of the Soil
4.3. Hydrus-1D Calibration and Validation Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seki K, Ackerer P, Lehmann F. Sequential estimation of hydraulic parameters in layered soil using limited data. Geoderma. 2015 Jun 1;247–248:117–28.
- Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, et al. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Rev. 2010 May 1;99(3–4):125–61. 1 May.
- Vereecken H, Huisman JA, Pachepsky Y, Montzka C, van der Kruk J, Bogena H, et al. On the spatio-temporal dynamics of soil moisture at the field scale. J Hydrol. 2014 Aug 4;516:76–96.
- Vanderlinden K, Vereecken H, Hardelauf H, Herbst M, Martínez G, Cosh MH, et al. Temporal Stability of Soil Water Contents: A Review of Data and Analyses. Vadose Zo J. 2012 Nov 1;11(4):vzj2011.0178.
- Wang T, Wedin DA, Franz TE, Hiller J. Effect of vegetation on the temporal stability of soil moisture in grass-stabilized semi-arid sand dunes. J Hydrol. 2015 Feb 1;521:447–59.
- Bodner G, Scholl P, Loiskandl W, Kaul HP. Environmental and management influences on temporal variability of near saturated soil hydraulic properties. Geoderma. 2013 Aug 1;204–205:120–9.
- Köhler M, Hanf A, Barus H, Hendrayanto, Hölscher D. Cacao trees under different shade tree shelter: effects on water use. Agrofor Syst [Internet]. 2014 Feb 24 [cited 2019 Jun 19];88(1):63–73. Available from: http://link.springer.com/10.1007/s10457-013-9656-3.
- Siles P, Harmand JM, Vaast P. Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agrofor Syst [Internet]. 2010 Jun 28 [cited 2021 Aug 16];78(3):269–86. Available from: https://link.springer.com/article/10.1007/s10457-009-9241-y.
- Siles P, Vaast P, Dreyer E, Harmand JM. Rainfall partitioning into throughfall, stemflow and interception loss in a coffee (Coffea arabica L.) monoculture compared to an agroforestry system with Inga densiflora. J Hydrol. 2010 Dec 6;395(1–2):39–48.
- Van Kanten R, Vaast P. Transpiration of arabica coffee and associated shade tree species in sub-optimal, low-altitude conditions of Costa Rica. Agrofor Syst. 2006;67(2):187–202.
- Fu T, Chen H, Zhang W, Nie Y, Wang K. Vertical distribution of soil saturated hydraulic conductivity and its influencing factors in a small karst catchment in Southwest China. Environ Monit Assess [Internet]. 2015 Feb 7 [cited 2021 Aug 16];187(3):1–13. Available from: https://link.springer.com/article/10.1007/s10661-015-4320-1.
- Ugarte Nano CC, Nicolardot B, Ubertosi M. Near-saturated hydraulic conductivity measured on a swelling silty clay loam for three integrated weed management based cropping systems. Soil Tillage Res. 2015 Jul 1;150:192–200.
- Schwen A, Zimmermann M, Bodner G. Vertical variations of soil hydraulic properties within two soil profiles and its relevance for soil water simulations. J Hydrol. 2014 Aug 4;516:169–81.
- Schwendenmann L, Veldkamp E, Moser G, Hölscher D, Köhler M, Clough Y, et al. Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Glob Chang Biol [Internet]. 2010 May 1 [cited 2020 Jul 5];16(5):1515–30. Available from: http://doi.wiley.com/10.1111/j.1365-2486.2009.02034.x.
- Cresswell H, Smiles D, Williams J. Soil structure, soil hydraulic properties and the soil water balance. Soil Res [Internet]. 1992 [cited 2021 Aug 16];30(3):265–83. Available from: https://www.publish.csiro.au/sr/sr9920265.
- Es HM van, Ogden CB, Hill RL, Schindelbeck RR, Tsegaye T. Integrated Assessment of Space, Time, and Management-Related Variability of Soil Hydraulic Properties. Soil Sci Soc Am J [Internet]. 1999 Nov 1 [cited 2021 Aug 16];63(6):1599–608. Available from: https://acsess.onlinelibrary.wiley.com/doi/full/10.2136/sssaj1999.6361599x.
- Roger-Estrade J, Richard G, Dexter AR, Boizard H, De Tourdonnet S, Bertrand M, et al. Integration of soil structure variations with time and space into models for crop management. A review. Agron Sustain Dev 2009 291 [Internet]. 2009 Jan [cited 2021 Aug 16];29(1):135–42. Available from: https://link.springer.com/article/10.1051/agro:2008052.
- Dane J., Topp G. Methods of Soil Analysis. Part 4. SSSA Book Ser. 5. SSSA, Madison, WI. In: Methods of Soil Analysis Part 4 Part 4 SSSA Book Ser 5 SSSA, Madison, WI. 2002.
- Hopmans J., Šimunek J, Romano N, Durner W. Inverse methods. In: Dane J., Topp GC, editors. Methods of Soil Analysis Part 4 Part 4 SSSA Book Ser 5 SSSA, Madison, WI. 2002. p. 963–1008.
- Schaap MG, Leij FJ, Van Genuchten MT. rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol. 2001 Oct 1;251(3–4):163–76.
- Martínez-Fernández J, González-Zamora A, Sánchez N, Gumuzzio A. A soil water based index as a suitable agricultural drought indicator. J Hydrol. 2015 Mar 1;522:265–73.
- Shi J, Li S, Zuo Q, Ben-Gal A. An index for plant water deficit based on root-weighted soil water content. J Hydrol. 2015 Mar 1;522:285–94.
- Purcell LC, Sinclair TR, McNew RW. Drought Avoidance Assessment for Summer Annual Crops Using Long-Term Weather Data. Agron J [Internet]. 2003 Nov 1 [cited 2021 Aug 16];95(6):1566–76. Available from: https://acsess.onlinelibrary.wiley.com/doi/full/10.2134/agronj2003.1566.
- Suárez JC, Ngo Bieng MA, Melgarejo LM, Di Rienzo JA, Casanoves F. First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability. Struik PC, editor. PLoS One [Internet]. 2018 Feb 5 [cited 2019 Jun 19];13(2):e0191003. Available from: https://dx.plos.org/10.1371/journal.pone.0191003.
- Suárez JC, Casanoves F, Bieng MAN, Melgarejo LM, Di Rienzo JA, Armas C. Prediction model for sap flow in cacao trees under different radiation intensities in the western Colombian Amazon. 2021 [cited 2021 Jun 10];11(1). Available from: http://www.nature.com/articles/s41598-021-89876-z.
- Ordoñez C, Suárez JC, Rangel, Saavedra Mora D. Los sistemas agroforestales y la incidencia sobre el estatus hídrico en árboles de cacao. Biotecnol en el Sect Agropecu y Agroindustrial [Internet]. 2020 [cited 2021 Feb 16];19(1):256–67. Available from: https://doi.org/10.18684/BSAA.
- Niinemets Ü, Botany TK-E and E, 2014 undefined. Photosynthetic responses to stress in Mediterranean evergreens: mechanisms and models. Elsevier [Internet]. 2018 [cited 2021 Aug 27]; Available from: https://www.sciencedirect.com/science/article/pii/S0098847213001925.
- Ramalho JC, Zlatev ZS, Leitão AE, Pais IP, Fortunato AS, Lidon FC. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. Plant Biol. 2014 Jan;16(1):133–46.
- Zuidema P, Leffelaar P, Gerritsma W, … LM-A, 2005 undefined. A physiological production model for cocoa (Theobroma cacao): model presentation, validation and application. Elsevier [Internet]. [cited 2021 Aug 27]; Available from: https://www.sciencedirect.com/science/article/pii/S0308521X04001325.
- Lima ALS, DaMatta F, Pinheiro HA, Totola MR, Loureiro ME. Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Exp Bot. 2002 May 1;47(3):239–47.
- Carr MK V., Lockwood G. The water relations and irrigation requirements of cocoa (Theobroma cacao L.): A review. Exp Agric [Internet]. 2011 Oct 27 [cited 2019 Jun 19];47(4):653–76. Available from: https://www.cambridge.org/core/product/identifier/S0014479711000421/type/journal_article.
- Moser G, Leuschner C, Hertel D, Hölscher D, Köhler M, Leitner D, et al. Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia production of cocoa beans. Agroforest Syst [Internet]. 2010 [cited 2020 Dec 7];79:171–87. Available from: https://link.springer.com/content/pdf/10.1007/s10457-010-9303-1.
- Köhler M, Schwendenmann L, Hölscher D. Throughfall reduction in a cacao agroforest: tree water use and soil water budgeting. Agric For Meteorol [Internet]. 2010 Jul 15 [cited 2019 Jun 19];150(7–8):1079–89. Available from: https://www.sciencedirect.com/science/article/pii/S0168192310001012.
- Allen RG, Pereira LS, Raes D, Smith M. Evapotranspiración del cultivo. Guías para la Determ los requerimientos agua los Cultiv Estud FAO Riego y Dren. 2006;56.
- Allen, R G; Pereira, L. S; Raes, D; Smith M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 [Internet]. Vol. 300, Fao, Rome. 1998 [cited 2021 Aug 27]. D05109 p. Available from: http://www.avwatermaster.org/filingdocs/195/70653/172618e_5xAGWAx8.
- Šimůnek J, Genuchten MT van, Šejna M. The HYDRUS-1D software package for simulating the one-dimensional movement of water,heat, and multiple solutes in variably-saturated media, Version 4.0. Department of Environmental Sciences, University of California Riverside, Riverside, California, USA. 2013.
- van Genuchten MT. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci Soc Am J [Internet]. 1980 Sep 1 [cited 2021 Aug 27];44(5):892–8. Available from: https://acsess.onlinelibrary.wiley.com/doi/full/10.2136/sssaj1980.03615995004400050002x.
- Cannavo P, Sansoulet J, Harmand JM, Siles P, Dreyer E, Vaast P. Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agric Ecosyst Environ. 2011 Jan 30;140(1–2):1–13.
- Suárez JC, Melgarejo LM, Durán Bautista EH, Di Rienzo JA, Casanoves F. Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.). Sci Hortic (Amsterdam). 2018;229.
- Zambrano M. hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series. R Packag version 03-8. 2014.
- R Development Core Team. R version 4.2.0 (2022-04-22) -- “Vigorous Calisthenics” Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit). 2023; Available from: https://www.r-project.
- Di Rienzo J., Casanoves F, Balzarini M., Gonzalez L, Tablada M, Robledo CW. InfoStat versión 2021. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar. 2021.
- Niether W, Armengot L, Andres C, Schneider M, Gerold G. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Ann For Sci [Internet]. 2018 Jun 1 [cited 2020 Jul 5];75(2):1–16. Available from: https://doi.org/10.1007/s13595-018-0723-9.
- Gerlach MD, Lozano-Baez SE, Castellini M, Guzman N, Gomez WA, Medina B. Low Cost and Easy to Implement Physical and Hydrological Soil Assessment of Shade-Grown Coffee in Santa Rosa, Guatemala. L 2023, Vol 12, Page 390 [Internet]. 2023 Jan 31 [cited 2023 Sep 4];12(2):390. Available from: https://www.mdpi.com/2073-445X/12/2/390/htm.
- Cocoletzi Vásquez E, Hipólito-Romero E, Ricaño-Rodríguez J, Ramos-Prado JM, Cocoletzi Vásquez E, Hipólito-Romero E, et al. Ecophysiological plasticity of Theobroma cacao L. clones in response to the structure and microclimate of agroforestry systems in Mexico. Bot Sci [Internet]. 2022 Oct 1 [cited 2023 Sep 4];100(4):960–76. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-42982022000400960&lng=es&nrm=iso&tlng=en.
- Fraga Junior LS, Vellame LM, de Oliveira AS, da Silva Paz VP. Transpiration of young cocoa trees under soil water restriction. Sci Agric [Internet]. 2020 [cited 2020 Jul 5];78(2). Available from: https://www.scielo.br/scielo.php?pid=S0103-90162021000200503&script=sci_arttext.
- Suárez JC, Melgarejo LM, Casanoves F, Di Rienzo JA, DaMatta F, Armas C. Photosynthesis limitations in cacao leaves under different agroforestry systems in the Colombian Amazon. Lambreva MD, editor. 2018 Nov 1 [cited 2019 Jun 19];13(11):e0206149. Available from: http://dx.plos.org/10.1371/journal.pone.0206149.
- Suárez JC, Gelpud C, Noriega JE, Ortiz-Morea FA. How do different cocoa genotypes deal with increased radiation? An analysis of water relation, diffusive and biochemical components at the leaf level. Agronomy [Internet]. 2021 [cited 2021 Aug 27];11(7). Available from: https://www.mdpi.com/2073-4395/11/7/1422.
- Balasimha D, Apshara E, Jose C. Genotypic variations in chlorophyll fluorescence and stomatal conductance of cocoa in relation to drought tolerance Genetic resources management of cocoa View project Statistical investigation on plantation crops View project. J Plant Crop [Internet]. 2013 [cited 2019 Jun 19];41(1):40–5. Available from: https://www.researchgate.net/publication/293133790.
- Padovan MP, Cortez VJ, Navarrete LF, Navarrete ED, Deffner AC, Centeno LG, et al. Root distribution and water use in coffee shaded with Tabebuia rosea Bertol. and Simarouba glauca DC. compared to full sun coffee in sub-optimal environmental conditions. Agrofor Syst [Internet]. 2015 Oct 22 [cited 2023 Sep 17];89(5):857–68. Available from: https://link.springer.com/article/10.1007/s10457-015-9820-z.
- Sala OE, Gherardi LA, Peters DPC. Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions. Clim Change [Internet]. 2015 Jul 1 [cited 2023 Sep 17];131(2):213–27. Available from: https://link.springer.com/article/10.1007/s10584-015-1389-z.
- Sala OE, Lauenroth WK, Parton WJ. Long-term soil water dynamics in the shortgrass steppe. Ecology [Internet]. 1992 Aug 1 [cited 2023 Sep 17];73(4):1175–81. Available from: https://onlinelibrary.wiley.com/doi/full/10.2307/1940667.
- Kulasekera PB, Parkin GW, von Bertoldi P. Using Soil Water Content Sensors to Characterize Tillage Effects on Preferential Flow. Vadose Zo J. 2011 May 1;10(2):683–96.
- Perrin AS, Fujisaki K, Petitjean C, Sarrazin M, Godet M, Garric B, et al. Conversion of forest to agriculture in Amazonia with the chop-and-mulch method: Does it improve the soil carbon stock? Agric Ecosyst Environ. 2014 Feb 1;184:101–14.
- Müller MW, Gama-Rodrigues AC. Cacao agroforestry systems. In: Valle RR, editor. Science, technology and management of cacao tree CEPLAC/CEPEC, Ilhéus. 2012. p. 246–71.
- Rico A A, Suárez S JC, Rico A A, Suárez S JC. Biomasa de raíces finas en arreglos agroforestales con cacao en la amazonia occidental colombiana. Rev Ciencias Agrícolas [Internet]. 2018 Jun 26 [cited 2023 Sep 17];35(1):26–35. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-01352018000100026&lng=en&nrm=iso&tlng=es.
- Nambiar EKS, Sands R. Effects of compaction and simulated root channels in the subsoil on root development, water uptake and growth of radiata pine. Tree Physiol [Internet]. 1992 Apr 1 [cited 2023 Sep 17];10(3):297–306. Available from: https://dx.doi.org/10.1093/treephys/10.3.297.
- Claus A, George E. Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. https://doi.org/101139/x05-079 [Internet]. 2011 Jul [cited 2023 Sep 17];35(7):1617–25. Available from: https://cdnsciencepub.com/doi/10.1139/x05-079.
- Zhou T, Han C, Qiao L, Ren C, Wen T, Zhao C. Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau. J Arid Land [Internet]. 2021 Oct 1 [cited 2023 Sep 17];13(10):1015–25. Available from: https://link.springer.com/article/10.
- Jiménez F, Alfaro R, Jiménez F, Beer J. Available soil water in coffea arabica-Erythrina pueppigiana, C-arabica-Eucalyptus deglupta and C. arabica-monoculture plantation. In: International Symposium on Multi-Strata Agroforestry Systems with Perennial Crops, Turrialba (Costa Rica). 1999. p. 27.
- Morales E, Beer J. Distribución de raíces finas de Coffea arabica y Eucalyptus deglupta en cafetales del Valle Central de Costa Rica. Agroforestería en las Américas [Internet]. 1998 [cited 2023 Sep 17];5(17–18). Available from: http://bco.catie.ac.cr:8087/portal-revistas/index.
- Arévalo-Gardini E, Canto M, Alegre J, Loli O, Julca A, Baligar V. Changes in Soil Physical and Chemical Properties in Long Term Improved Natural and Traditional Agroforestry Management Systems of Cacao Genotypes in Peruvian Amazon. PLoS One [Internet]. 2015 Jul 16 [cited 2023 Sep 17];10(7):e0132147. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132147.
- Persson M, Berndtsson R, Nasri S, Albergel J, Zante P, Yumegaki Y. Solute transport and water content measurements in clay soils using time domain reflectometry. https://doi.org/101080/02626660009492387 [Internet]. 2009 [cited 2023 Sep 17];45(6):833–47. Available from: https://www.tandfonline.com/doi/abs/10.1080/02626660009492387.
- Merdun H. Effects of different factors on water flow and solute transport investigated by time domain reflectometry in sandy clay loam field soil. Water Air Soil Pollut [Internet]. 2012 Sep 24 [cited 2023 Sep 17];223(8):4905–23. Available from: https://link.springer.com/article/10.1007/s11270-012-1246-x.
- Horel Á, Tóth E, Gelybó G, Kása I, Bakacsi Z, Farkas C. Effects of Land Use and Management on Soil Hydraulic Properties. Open Geosci [Internet]. 2015 Nov 24 [cited 2023 Sep 17];7(1):1442–54. Available from: https://www.degruyter.com/document/doi/10.1515/geo-2015-0053/html.
- Ndulue E, Mante AA, Ranjan RS. HYDRUS-1D Simulation of Soil Water Dynamics and Response of Different ETo Models to Crop Evapotranspiration (ETc) Under a Rainfed Condition in Southern Manitoba. 2021 Oct 5 [cited 2023 Sep 17]; Available from: https://www.researchsquare.
- Çakir R. Water holding properties and soil water types in fine textured Vertisol soils of Thrace region in Turkey. Polish J Soil Sci [Internet]. 2019 Nov 21 [cited 2023 Sep 17];52(2):247. Available from: https://journals.umcs.pl/pjss/article/view/8531.
- Zhang P, Chen G, Wu J, Wang C, Zheng S, Yu Y, et al. The Application and Improvement of Soil–Water Characteristic Curves through In Situ Monitoring Data in the Plains. Water 2022, Vol 14, Page 4012 [Internet]. 2022 Dec 8 [cited 2023 Sep 17];14(24):4012. Available from: https://www.mdpi.com/2073-4441/14/24/4012/htm.
- Moret-Fernández D, Latorre B, López M V., Pueyo Y, Tormo J, Nicolau JM. Hydraulic properties characterization of undisturbed soil cores from upward infiltration measurements. CATENA. 2021 Jan 1;196:104816.
- Rawls WJ, Pachepsky YA, Ritchie JC, Sobecki TM, Bloodworth H. Effect of soil organic carbon on soil water retention. Geoderma. 2003 Sep 1;116(1–2):61–76.
- Ojeda G, Perfect E, Alcañiz JM, Ortiz O. Fractal analysis of soil water hysteresis as influenced by sewage sludge application. Geoderma. 2006 Oct 1;134(3–4):386–401.
- Moret-Fernández D, Latorre B. A novel double disc method to determine soil hydraulic properties from drainage experiments with tension gradients. J Hydrol. 2022 Dec 1;615:128625.
- Bachmann J, Van Der Ploeg RR. A review on recent developments in soil water retention theory: Interfacial tension and temperature effects. In: Journal of Plant Nutrition and Soil Science [Internet]. 2002 [cited 2023 Sep 17]. p. 468–78. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/1522-2624(200208)165:4%3C468::AID-JPLN468%3E3.0.
- Maqsoud A, Bussière B, Mbonimpa M, Aubertin M. Hysteresis effects on the water retention curve: a comparison between laboratory results and predictive models. 2004.
- Moret-Fernández D, Arrúe JL, Pérez V, López M V. A TDR-pressure cell design for measuring the soil-water retention curve. Soil Tillage Res. 2008 Jul 1;100(1–2):114–9.
- Tao G, Li J, Zhuang X, Xiao H, Cui X, Xu W. Determination of the residual water content of SWCC based on the soil moisture evaporation properties and micro pore characteristics. Yantu Lixue/Rock Soil Mech. 2018;39:1256–1262.
- Jirků V, Kodešová R, Nikodem A, Mühlhanselová M, Žigová A. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma. 2013 Aug 1;204–205:43–58.
- Carsel RF, Parrish RS. Developing joint probability distributions of soil water retention characteristics. Water Resour Res [Internet]. 1988 May 1 [cited 2023 Sep 17];24(5):755–69. Available from: https://onlinelibrary.wiley.com/doi/full/10.1029/WR024i005p00755.
- Chen C, Liu W, Jiang X, Wu J. Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use. Geoderma [Internet]. 2017 Aug 1 [cited 2019 Jul 27];299:13–24. Available from: https://www.sciencedirect.com/science/article/pii/S0016706117300769.
- Jiang XJ, Liu W, Chen C, Liu J, Yuan ZQ, Jin B, et al. Effects of three morphometric features of roots on soil water flow behavior in three sites in China. Geoderma. 2018 Jun 15;320:161–71.
- Jiang XJ, Chen C, Zhu X, Zakari S, Singh AK, Zhang W, et al. Use of dye infiltration experiments and HYDRUS-3D to interpret preferential flow in soil in a rubber-based agroforestry systems in Xishuangbanna, China. CATENA. 2019 Jul 1;178:120–31.
- Da Silva GS, Da Silva JS, De Carvalho Pereira FA, Santana RA, Firmo RS, Sobrinho OPL. Spatial variability of the saturated hydraulic conductivity of soil in cocoa farming in RecÔncavo Baiano. Rev Caatinga [Internet]. 2019 Jul 1 [cited 2023 Sep 17];32(3):786–94. Available from: https://www.scielo.br/j/rcaat/a/SLpDsG8m56PSm9ZcqFjxkZK/?
- Monroe PHM, Gama-Rodrigues EF, Gama-Rodrigues AC, Marques JRB. Soil carbon stocks and origin under different cacao agroforestry systems in Southern Bahia, Brazil. Agric Ecosyst Environ [Internet]. 2016 Apr 1 [cited 2019 Jul 27];221:99–108. Available from: https://www.sciencedirect.com/science/article/pii/S0167880916300342.
- Mainuri ZG, Owino JO. Effects of land use and management on aggregate stability and hydraulic conductivity of soils within River Njoro Watershed in Kenya. Int Soil Water Conserv Res. 2013 Sep 1;1(2):80–7.
- Hidayat Y, Purwakusuma W, Wahjunie ED, Baskoro DPT, Rachman LM, Yusuf SM, et al. Characteristics of Soil Hydraulic Conductivity in Natural Forest, Agricultural Land, and Green Open Space Area. J Pengelolaan Sumberd Alam dan Lingkung (Journal Nat Resour Environ Manag [Internet]. 2022 Jul 5 [cited 2023 Sep 17];12(2):352–62. Available from: https://journal.ipb.ac.id/index.php/jpsl/article/view/40527.
- Fasinmirin JT. Saturated Hydraulic Conductivity (K θs ) of a Sub-Tropical Ultisol under different Tillage Systems Capacity Lecture Theatre Hall, Ilorin, Kwara State-Nigeria View project ASSESSMENT AND FORECASTING OF THE IMPACT OF CLIMATE CHANGE ON AGRICULTURAL AND HYDROLOGICAL DROUGHT IN NIGERIA View project. 2015 [cited 2023 Sep 17];3(4):1000. Available from: https://www.researchgate.net/publication/317014864.
- Okamoto K, Sakai K, Nakamura S, Cho H, Nakandakari T, Ootani S. Optimal Choice of Soil Hydraulic Parameters for Simulating the Unsaturated Flow: A Case Study on the Island of Miyakojima, Japan. Water 2015, Vol 7, Pages 5676-5688 [Internet]. 2015 Oct 20 [cited 2023 Sep 17];7(10):5676–88. Available from: https://www.mdpi.com/2073-4441/7/10/5676/htm.
- Lopes Da Silva JR, Antônio De Assunção Montenegro A, Luiz A, Monteiro N, De Paula V, Junior S. Modelagem da dinâmica de umidade do solo em diferentes condições de cobertura no semiárido pernambucano. Rev Bras Ciências Agrárias [Internet]. 2015 Jun 30 [cited 2023 Sep 17];10(2):293–303. Available from: http://www.agraria.pro.br/ojs32/index.php/RBCA/article/view/v10i2a4219.
- Er-Raki S, Ezzahar J, Merlin O, Amazirh A, Hssaine BA, Kharrou MH, et al. Performance of the HYDRUS-1D model for water balance components assessment of irrigated winter wheat under different water managements in semi-arid region of Morocco. Agric Water Manag. 2021 Feb 1;244:106546.
- Grecco KL, Miranda JH d., Silveira LK, van Genuchten MT. HYDRUS-2D simulations of water and potassium movement in drip irrigated tropical soil container cultivated with sugarcane. Agric Water Manag. 2019 Jul 20;221:334–47.
- Rezaei M, Seuntjens P, Shahidi R, Joris I, Boënne W, Al-Barri B, et al. The relevance of in-situ and laboratory characterization of sandy soil hydraulic properties for soil water simulations. J Hydrol. 2016 Mar 1;534:251–65.
- Mohammed E, Abid-Alziz AL-Qassab S, Salih AL-Wazan FA, Mohammed E, Abid-Alziz AL-Qassab S, Salih AL-Wazan FA. Using Inverse Modeling by HYDRUS-1D to Predict Some Soil Hydraulic Parameters from Soil Water Evaporation. Colomb For [Internet]. 2022 Jan 1 [cited 2023 Sep 17];25(1):21–35. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-07392022000100021&lng=en&nrm=iso&tlng=en.
- Samani JMV, Fathi P. Estimation of unsaturated soil hydrodynamic parameters using inverse problem technique. J Agric Sci Technol [Internet]. 2009 [cited 2023 Sep 17];11(2):199–210. Available from: https://www.sid.ir/EN/VEWSSID/J_pdf/84820090205.
- Oliver YM, Smettem KRJ, Oliver YM, Smettem KRJ. Predicting water balance in a sandy soil: model sensitivity to the variability of measured saturated and near saturated hydraulic properties. Soil Res [Internet]. 2005 Feb 17 [cited 2023 Sep 17];43(1):87–96. Available from: https://www.publish.csiro.au/sr/SR03146.
- Brocca L, Ciabatta L, Massari C, Camici S, Tarpanelli A. Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water 2017, Vol 9, Page 140 [Internet]. 2017 Feb 20 [cited 2023 Sep 17];9(2):140. Available from: https://www.mdpi.com/2073-4441/9/2/140/htm.



| Depth (cm) | ρb (g cm-3) | θf (cm3 cm-3) | Equation of water retention parameters (van Genuchten Model) | |||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| θr (cm3 cm-3) | θs (cm3 cm-3) | α(cm) | n | ks (cm d-1) | k0 (cm d-1) | |||||||||||||||||||||||||||
| Mean | S.E. | Mean | S.E. | Mean | S.E. | Mean | S.E. | Mean | S.E. | Mean | S.E. | Mean | S.E. | Mean | S.E. | |||||||||||||||||
| 0-20 | 1.37 | ± | 0.02 | cd | 0.286 | ± | 0.014 | ab | 0.074 | ± | 0.004 | a | 0.438 | ± | 0.007 | a | 1.83 | ± | 0.05 | ab | 1.6 | ± | 0.04 | bc | 1.28 | ± | 0.05 | b | 0.68 | ± | 0.07 | c |
| 20-40 | 1.29 | ± | 0.01 | a | 0.356 | ± | 0.014 | d | 0.082 | ± | 0.001 | bc | 0.459 | ± | 0.002 | c | 2.01 | ± | 0.03 | d | 1.8 | ± | 0.05 | d | 1.26 | ± | 0.03 | b | 0.45 | ± | 0.03 | ab |
| 40-60 | 1.32 | ± | 0.01 | ab | 0.326 | ± | 0.013 | cd | 0.077 | ± | 0.003 | ab | 0.447 | ± | 0.006 | abc | 1.95 | ± | 0.04 | cd | 1.7 | ± | 0.06 | cd | 1.27 | ± | 0.04 | b | 0.54 | ± | 0.05 | ab |
| 60-80 | 1.35 | ± | 0.02 | bc | 0.303 | ± | 0.012 | bc | 0.084 | ± | 0.001 | bc | 0.454 | ± | 0.003 | bc | 1.87 | ± | 0.04 | bc | 1.5 | ± | 0.07 | b | 1.19 | ± | 0.02 | ab | 0.58 | ± | 0.03 | bc |
| 80-100 | 1.41 | ± | 0.01 | d | 0.258 | ± | 0.005 | a | 0.084 | ± | 0.002 | c | 0.445 | ± | 0.004 | ab | 1.75 | ± | 0.01 | a | 1.3 | ± | 0.02 | a | 1.17 | ± | 0.02 | a | 0.7 | ± | 0.02 | c |
| p-value | <0.0001 | <0.0001 | 0.0212 | 0.0333 | 0.0001 | <0.0001 | 0.01 | 0.0018 | ||||||||||||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
