Submitted:
16 October 2023
Posted:
17 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Discussion
2.1. Reaction mechanism of reverse water gas conversion reaction
2.2. Overview of catalysts of different systems in reverse water gas conversion reaction
| Catalyst | Reaction gas ratio H₂ :CO2 : inert gas | temperature℃ | Reaction airspeed mL·gcat-¹ ·h-1 | CO2 conversion rate% | CO selectivity% |
|---|---|---|---|---|---|
| Cu/CeO₂ [25] | 3:1:0 | 600℃ | 400000 | 50 | 100 |
| Cu/SGS [26] | 4:1:0 | 550℃ | 3600 | 48 | 96 |
| Pt/CeO₂ [28] | 9:9:2 | 500℃ | 30000 | 30 | - |
| Pt-Re/SiO2 [29] | 4:1:5 | 400℃ | 60000 | 24.3 | 96.2 |
| Cu/MnOx [43] | 12:3:5 | 550℃ | 60000 | 55.5 | 100 |
| Ni/ZrO₂ [35] | 4:1:4 | 500℃ | 13500 | 27.6 | 100 |
| Ni/Ga₂O₂ [36] | 4:1:5 | 450℃ | 60000 | 40 | 95 |
| Fe-oxide [37] | 1:1:0 | 600℃ | 24000 | 38 | >85 |
| Cs/Fe,O [39] | 4:1:0 | 450℃ | 12000 | 58 | 75 |
| MoO3/TiAlC₂ [50] | 4:1:0 | 550℃ | 15000 | 30 | - |
| MoO3/FAU[47] | 12.5:12.5:10 | 500℃ | 7500 | 15 | 100 |
| Ru@MoO₃-x[49] | 9:3:88 | 250℃ | 100000 | 45 | >99 |
| Mo-P-Si2O[54] | 4:1:0 | 550 | 12000 | 18 | 100 |
| Cu-Cs-Mo2C[53] | 4:1:0 | 600 | 12000 | - | 100 |
2.3. Precious metal catalyst
2.3.1. Pt-based catalyst
2.3.2. Pd-based catalyst
2.3.3. Ru-based catalyst
2.3.4. Au-based catalyst
2.4. Non-precious metal catalysts
2.4.1. Ni-based catalyst
2.4.2. Fe based catalyst
2.4.3. Cu-based catalyst
2.4.4. Mo-based catalyst
2.5. Catalysts for other systems
2.5.1. Transition metal carbide catalyst
2.5.2. Perovskite type catalyst
2.6. Catalyst deactivation in reverse water gas conversion reaction
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tawalbeh, M.; Javed, R.M.N.; Al-Othman, A.; Almomani, F. The novel contribution of non-noble metal catalysts for intensified carbon dioxide hydrogenation: Recent challenges and opportunities. Energy Convers. Manag. 2023, 279. [Google Scholar] [CrossRef]
- Yao, X.; Zhong, P.; Zhang, X.; Zhu, L. Business model design for the carbon capture utilization and storage (CCUS) project in China. Energy Policy 2018, 121, 519–533. [Google Scholar] [CrossRef]
- Tapia, J. F. D.; Lee, J. Y.; Ooi, R. E.; Foo, D. C.; Tan, R. R. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustain. Prod. Consump. 2018, 13, 1. [Google Scholar] [CrossRef]
- Adelung, S.; Dietrich, R.-U. Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid fuel production cost. Fuel 2022, 317, 123440. [Google Scholar] [CrossRef]
- Atsbha, T.A.; Yoon, T.; Seongho, P.; Lee, C.-J. A review on the catalytic conversion of CO2 using H₂ for synthesis of CO, methanol, and hydrocarbons. J. CO2 Util. 2021, 44, 101413. [Google Scholar] [CrossRef]
- Lima, D.D.S.; Dias, Y. R.; Perez-Lopez, O.W. CO2 methanation over Ni-Al and Co-Al LDH-derived catalysts: the role of basicity. Sustain. Energ. Fuels 2020, 4, 5747. [Google Scholar] [CrossRef]
- Abdel-Mageed, A.M.; Wiese, K.; Parlinska-Wojtan, M.; Rabeah, J.; Brückner, A.; Behm, R.J. Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts. Appl. Catal. B: Environ. 2020, 270, 118846. [Google Scholar] [CrossRef]
- Dai, H.; Xiong, S.; Zhu, Y.; Zheng, J.; Huang, L.; Zhou, C.; Deng, J.; Zhang, X. NiCe bimetallic nanoparticles embedded in hexagonal mesoporous silica (HMS) for reverse water gas shift reaction. Chin. Chem. Lett. 2021, 33, 2590–2594. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, A.; Xiong, S.; Xiao, X.; Zhou, C.; Pan, Y. The Catalytic Performance of Ga2O3-CeO2 Composite Oxides over Reverse Water Gas Shift Reaction. ChemCatChem 2022, 14, e202200049. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, R.; Waterhouse, G.I.; Zhang, T. Selective photothermal CO2 reduction to CO, CH4, alkanes, alkenes over bimetallic alloy catalysts derived from layered double hydroxide nanosheets. Nano Energy 2022, 102. [Google Scholar] [CrossRef]
- Xie, B.; Lovell, E.; Tan, T.H.; Jantarang, S.; Yu, M.; Scott, J.; Amal, R. Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. J. Energy Chem. 2020, 59, 108–125. [Google Scholar] [CrossRef]
- Zeng, X.; Tu, Z.; Yuan, Y.; Liao, L.; Xiao, C.; Wen, Y.; Xiong, K. Two-Dimensional Transition Metal-Hexaaminobenzene Monolayer Single-Atom Catalyst for Electrocatalytic Carbon Dioxide Reduction. Nanomaterials 2022, 12, 4005. [Google Scholar] [CrossRef]
- Xue, R.; Ge, P.; Xie, J.; Hu, Z.; Wang, X.; Li, P. Controllable CO2 Reduction or Hydrocarbon Oxidation Driven by Entire Solar via Silver Quantum Dots Direct Photocatalysis. Small 2023, 19, e2207234. [Google Scholar] [CrossRef] [PubMed]
- Porosoff, M.D.; Yan, B.; Chen, J.G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ. Sci. 2015, 9, 62–73. [Google Scholar] [CrossRef]
- Portillo, E.; Gandara-Loe, J.; Reina, T.; Pastor-Pérez, L. Is the RWGS a viable route for CO2 conversion to added value products? A techno-economic study to understand the optimal RWGS conditions. Sci. Total. Environ. 2023, 857, 159394. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Galvan, C.; Lustemberg, P.G.; Oropeza, F.E.; Bashiller-Baeza, B.; Ospina, M.D.; Herranz, M.; Cebollada, J.; Collado, L.; Campos-Martin, J.M.; Pena-O’Shea, V.A.; Alonso, J.A.; Ganduglia-Pirovano, M.V. Highly active and stable Ni/La-doped ceria material for catalytic CO2 reduction by reverse water gas shift reaction. ACS Appl. Mater. Inter. 2022, 14, 50739. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, A.; Irankhah, A.; Aghamiri, S.F. Reverse water gas shift reaction and CO2 mitigation: nanocrystalline MgO as a support for nickel based catalysts. J. Environ. Chem. Eng. 2018, 6, 4945–4952. [Google Scholar] [CrossRef]
- Petersen, E.M.; Rao, R.G.; Vance, B.C.; Tessonnier, J.P. SiO2/SiC supports with tailored thermal conductivity to reveal the effect of surface temperature on Ru-catalyzed CO2 methanation. Appl. Catal. B-Environ. 2021, 286, 119904. [Google Scholar] [CrossRef]
- Li, S.; Liu, G.; Zhang, S.; An, K.; Ma, Z.; Wang, L.; Liu, Y. Cerium modified Ni-La₂O3/ZrO₂ for CO2 methanation. J. Energ. Chem. 2020, 43, 155. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Z.Y.; Chen, X.B.; Rui, N.; Betancourt, L.E.; Lin, L.L.; Xu, W.Q.; Sun, C.J.; Abeykoon, A.M.M.; Rodriguez, J.A.; Terzan, J.; Lorber, K.; Djinovic, P.; Senanayake, S.D. Effects of Zr doping into ceria for the dry reforming of methane over Ni/CeZrO₂ catalysts: in situ studies with XRD, XAFS, and AP-XPS. ACS Catal. 2020, 10, 3274. [Google Scholar] [CrossRef]
- Martin, O.; Antonio, J. M.; Cecilia, M.; Sharon, M.; Takuya, F. S.; Roland, H.; Charlotte, D.; Curulla-Ferré, D.; Javier, P.-R. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew. Chem. Int. Ed. 2016, 55, 6261. [Google Scholar] [CrossRef]
- Chen, K.; Li, H.; He, L. Advance and Prospective on CO2 Activation and Transformation Strategy. Chin. J. Org. Chem. 2020, 40, 2195–2207. [Google Scholar] [CrossRef]
- Panagiotopoulou, P. Hydrogenation of CO 2 over supported noble metal catalysts. Appl. Catal. A: Gen. 2017, 542, 63–70. [Google Scholar] [CrossRef]
- Ginés, M.; Marchi, A.; Apesteguía, C. Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts. Appl. Catal. A: Gen. 1997, 154, 155–171. [Google Scholar] [CrossRef]
- Wang, L.; Khazaneh, M.T.; Widmann, D.; Behm, R. TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst – A first step toward identifying a redox mechanism in the Reverse Water–Gas Shift reaction. J. Catal. 2013, 302, 20–30. [Google Scholar] [CrossRef]
- Liu, H.-X.; Li, S.Q.; Wang, W.W.; Yu, W.Z.; Zhang, W.J.; Ma, C.; Jia, C.J. Partially sintered copper-ceria as excellent catalyst forthe high temperature reverse water gas shift reaction. Nat. Commun. 2022, 13, 867. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Su, Q.; Ye, Q.; Wan, H.; He, Y.; Cui, X. Slag-based geopolymer microsphere-supported Cu: a low-cost and sustainable catalyst for CO2 hydrogenation. Sustain. Energy Fuels 2022, 6, 1436–1447. [Google Scholar] [CrossRef]
- Matsubu, J.C.; Zhang, S.; DeRita, L.; Marinkovic, N.S.; Chen, J.G.; Graham, G.W.; Pan, X.; Christopher, P. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 2016, 9, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Su, X.; Liang, B.; Yang, X.; Ren, X.; Duan, H.; Huang, Y.; Zhang, T. Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/CeO 2 catalysts. J. Energy Chem. 2016, 25, 1051–1057. [Google Scholar] [CrossRef]
- Liu, Y.X.; Li, L.W.; Zhang, R.Y.; Guo, Y.H.; Wang, H.; Ge, Q.F.; Zhu, X.L. Synergetic enhancement of activity and selectivity for reverse water gas shift reaction on Pt-Re/SiO₂ catalysts. J. CO2 Util. 2022, 63, 102128. [Google Scholar] [CrossRef]
- Ge, H.; Kuwahara, Y.; Kusu, K.; Kobayashi, H.; Yamashita, H. Enhanced visible-NIR absorption and oxygen vacancy generation of Pt/HxMoWOy by H-spillover to facilitate photothermal catalytic CO2 hydrogenation. J. Mater. Chem. A 2022, 10, 10854. [Google Scholar] [CrossRef]
- He, Y.; Huang, D. Single-Atom Platinum Catalyst for Efficient CO2 Conversion via Reverse Water Gas Shift Reaction. Molecules 2023, 28, 6630. [Google Scholar] [CrossRef]
- Nelson, N.C.; Chen, L.; Meira, D.; Kovarik, L.; Szanyi, J. In Situ Dispersion of Palladium on TiO2 During Reverse Water–Gas Shift Reaction: Formation of Atomically Dispersed Palladium. Angew. Chem. Int. Ed. 2020, 59, 17657–17663. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Zhu, Z.; Li, C.; Xiao, M.; Wu, Z.; Zhang, D.; Zhang, C.; Xiao, Y.; Chu, M.; Genest, A.; et al. Ru-Catalyzed Reverse Water Gas Shift Reaction with Near-Unity Selectivity and Superior Stability. ACS Mater. Lett. 2021, 3, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mageed, A.M.; Wiese, K.; Hauble, A.; Bansmann, J.; Rabeah, J.; Parlinska-Wojtan, M.; Brückner, A.; Behm, R.J. Steering the selectivity in CO2 reduction on highly active Ru/TiO2 catalysts: Support particle size effects. J. Catal. 2021, 401, 160–173. [Google Scholar] [CrossRef]
- Rabee, A.; Zhao, D.; Cisneros, S.; Kreyenschulte, C. R.; Kondratenko, V.; Bartling, S.; Kubis, C.; Kondratenko, E.V.; Brückner, A.; Rabeah, J. Role of interfacial oxygen vacancies in low loaded Au-based catalysts for the low temperature reverse water gas shift reaction. Applied Catalysis B: Environmental 2023, 321, 122083. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zang, Y.H.; Gao, F.; Qu, J.F.; Gu, J.F.; Lin, X.T. Enhanced catalytic activity of CO2 hydrogenation to CO over sulfur-containing Ni/ZrO₂ catalysts: support size effect. New, J. Chem. 2022, 46, 22332. [Google Scholar] [CrossRef]
- Gong, J.; Chu, M.Y.; Guan, W.H.; Liu, Y.; Zhong, Q.X.; Cao, M.H.; Xu, Y. Regulating the interfacial synergy of Ni/Ga₂O₃ for CO2 hydrogenation toward the reverse water gas shift reaction. Ind. Eng. Chem. Res. 2021, 60, 9448. [Google Scholar] [CrossRef]
- Kim, D.H.; Han, S.W.; Yoon, H.S.; Kim, Y.D. Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability. J. Ind. Eng. Chem. 2015, 23, 67–71. [Google Scholar] [CrossRef]
- Bogdan, V.I.; Koklin, A.E.; Kustov, A.L.; Pokusaeva, Y.A.; Bogdan, T.V.; Kustov, L.M. Carbon Dioxide Reduction with Hydrogen on Fe, Co Supported Alumina and Carbon Catalysts under Supercritical Conditions. Molecules 2021, 26, 2883. [Google Scholar] [CrossRef]
- Zhang, Q.; Pastor-Pérez, L.; Wang, Q.; Reina, T. R. Conversion of CO2 to added value products via rwgs using Fe-promoted catalysts: carbide, metallic Fe or a mixture? Energ. Chem. 2022, 66, 635. [Google Scholar] [CrossRef]
- Lin, Z.; Wan, W.; Yao, S.; Chen, J.G. Cobalt-modified molybdenum carbide as a selective catalyst for hydrodeoxygenation of furfural. Appl. Catal. B: Environ. 2018, 233, 160–166. [Google Scholar] [CrossRef]
- Zhuang, Y.; Currie, R.; McAuley, K.B.; Simakov, D.S. Highly-selective CO2 conversion via reverse water gas shift reaction over the 0.5wt% Ru-promoted Cu/ZnO/Al2O3 catalyst. Appl. Catal. A: Gen. 2019, 575, 74–86. [Google Scholar] [CrossRef]
- Liu, C.; Nauert, S.L.; Alsina, M.A.; Wang, D.; Grant, A.; He, K.; Weitz, E.; Nolan, M.; Gray, K.A.; Notestein, J.M. Role of surface reconstruction on Cu/TiO2 nanotubes for CO2 conversion. Appl. Catal. B: Environ. 2019, 255, 117754. [Google Scholar] [CrossRef]
- Gonzalez-arias, J.; Gonzalez-Castano, M.; Sanchez, M.E.; Cara-Jimenez, J.; Arellano-Garcia, H. Valorization of biomass-derived CO2 residues with Cu-MnOx catalysts for RWGS reaction. Renewable Energy 2022, 182, 443. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Kumar, A.; Khraisheh, M. Combustion synthesis of copper ceria solid solution for CO2 conversion to CO via reverse water gas shift reaction. Int. J. Hydrogen Energy 2022, 47, 41259–41267. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, J.; Sun, X.; Sun, J. Engineering nanointerfaces of Cu-based catalysts for balancing activity and stability of reverse water-gas-shift reaction. J. CO2 Util. 2023, 71. [Google Scholar] [CrossRef]
- Chen, W.; Maugé, F.; Van Gestel, J.; Nie, H.; Li, D.; Long, X. Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts. J. Cat. 2013, 304, 47. [Google Scholar] [CrossRef]
- Zhang, R.; Wei, A.; Zhu, M.; Wu, X.; Wang, H.; Zhu, X.; Ge, Q. Tuning reverse water gas shift and methanation reactions during CO2 reduction on Ni catalysts via surface modification by MoOx. J. CO2 Util. 2021, 52, 101678. [Google Scholar] [CrossRef]
- Okemoto, A.; Harada, M.R.; Ishizaka, T.; Hiyoshi, N.; Soto, K. Catalytic performance of MoO3/FAU zeolite catalysts modified by Cu for reverse water gas shift reaction. Appl. Catal. A-Gen. 2020, 592, 117415. [Google Scholar] [CrossRef]
- Dasireddy, V. D.; Vengust, D.; Likozar, B.; Kovač, J.; Mrzel, A. Production of syngas by CO2 reduction through reverse water gas shift (RWGS) over catalytically active molybdenum based carbide, nitride and composite nanowires. Renewable Energ. 2021, 176, 251. [Google Scholar] [CrossRef]
- Xin, H.; Lin, L.; Li, R.; Li, D.; Song, T.Y.; Mu, R.T.; Fu, Q.; Bao, X., H. Overturning CO2 hydrogenation selectivity with high activity via reaction induced strong metal support Interactions. J. Am. Chem. Soc. 2022, 144, 4874. [Google Scholar] [CrossRef] [PubMed]
- Ronda-lloret, M.; Yang, L.Q.Q.; Hammerton, M.; Marakatti, V.S.; Tromp, M.; Sofer, Z.; Sepulveda-Escribano, A.; Ramos-Fernandez, E.V.; Delgado, J.J.; Rothenberg, G.; Reina, T.R.; Shiju, N.R. Molybdenum oxide supported on Ti3AlC2 is an active reverse water gas shift catalyst. ACS Sustain. Chem. Eng. 2021, 9, 4957. [Google Scholar] [CrossRef] [PubMed]
- Kharaji, A.G.; Shariati, A.; Takassi, M.A. A Novel γ-Alumina Supported Fe-Mo Bimetallic Catalyst for Reverse Water Gas Shift Reaction. Chin. J. Chem. Eng. 2013, 21, 1007–1014. [Google Scholar] [CrossRef]
- Zhang, Q.; Pastor-Pérez, L.; Jin, W.; Gu, S.; Reina, T. Understanding the promoter effect of Cu and Cs over highly effective β-Mo2C catalysts for the reverse water-gas shift reaction. Appl. Catal. B: Environ. 2018, 244, 889–898. [Google Scholar] [CrossRef]
- Zhang, Q.; Bown, M.; Pastor-Pérez, L.; Duyar, M.S.; Reina, T.R. CO2 Conversion via Reverse Water Gas Shift Reaction Using Fully Selective Mo–P Multicomponent Catalysts. Ind. Eng. Chem. Res. 2022, 61, 12857–12865. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Qi, L.; Gao, Z.; Guo, T.; Zhai, D.; He, Y.; Ma, J.; Guo, Q. Performance Exploration of Ni-Doped MoS2 in CO2 Hydrogenation to Methanol. Molecules 2023, 28, 5796. [Google Scholar] [CrossRef] [PubMed]
- Pajares, A.; Prats, H.; Romero, A.; Viñes, F.; de la Piscina, P.R.; Sayós, R.; Homs, N.; Illas, F. Critical effect of carbon vacancies on the reverse water gas shift reaction over vanadium carbide catalysts. Appl. Catal. B: Environ. 2020, 267, 118719. [Google Scholar] [CrossRef]
- Juneau, M.; Yaffe, D.; Liu, R.; Agwara, J.N.; Porosoff, M.D. Establishing tungsten carbides as active catalysts for CO2 hydrogenation. Nanoscale 2022, 14, 16458–16466. [Google Scholar] [CrossRef]
- Morse, J.R.; Juneau, M.; Baldwin, J.W.; Porosoff, M.D.; Willauer, H.D. Alkali promoted tungsten carbide as a selective catalyst for the reverse water gas shift reaction. J. CO2 Util. 2019, 35, 38–46. [Google Scholar] [CrossRef]
- Reddy, K.P.; Dama, S.; Mhamane, N.B.; Ghosalya, M.K.; Raja, T.; Satyanarayana, C.V.; Gopinath, C.S. Molybdenum carbide catalyst for the reduction of CO2 to CO: surface science aspects by NAPPES and catalysis studies. Dalton Trans. 2019, 48, 12199–12209. [Google Scholar] [CrossRef]
- Marquart, W.; Raseale, S.; Prieto, G.; Zimina, A.; Fisher, N. CO2 reduction over Mo₂C-based catalysts. ACS Catal. 2021, 11, 1624. [Google Scholar] [CrossRef]
- Bhavani, A.G.; Kim, W.Y.; Lee, J.S. Barium Substituted Lanthanum Manganite Perovskite for CO2 Reforming of Methane. ACS Catal. 2013, 3, 1537–1544. [Google Scholar] [CrossRef]
- Royer, S.; Alamdari, H.; Duprez, D.; Kaliaguine, S. Oxygen storage capacity of La1-xA′BO₃ perovskites (with A'=Sr, Ce; B=Co, Mn) relation with catalytic activity in the CH4 oxidation reaction. Appl. Catal. B-Env. 2005, 58, 273. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, J.L.; Park, E.J.; Kim, Y.D.; Uhm, S. Dopant Effect of Barium Zirconate-Based Perovskite-Type Catalysts for the Intermediate-Temperature Reverse Water Gas Shift Reaction. ACS Catal. 2014, 4, 3117–3122. [Google Scholar] [CrossRef]
- Kopac, D.; Likozar, B.; Hus, M. How size matters: electronic, cooperative, and geometric effect in perovskite supported copper catalysts for CO2 reduction. ACS Catal. 2020, 10, 4102. [Google Scholar] [CrossRef]
- Yang, L.; Pastor-Pérez, L.; Gu, S.; Sepúlveda-Escribano, A.; Reina, T. Highly efficient Ni/CeO2-Al2O3 catalysts for CO2 upgrading via reverse water-gas shift: Effect of selected transition metal promoters. Appl. Catal. B: Environ. 2018, 232, 464–471. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, H.F.; Cai, J.Y.; Li, Z. Highly Efficient CO2 to CO transformation over Cu-based catalyst derived from a CuMgAl-Layered Double Hydroxide (LDH). ChemCatChem 2021, 13, 656. [Google Scholar] [CrossRef]
- Goguet, A.; Meunier, F.; Breen, J.; Burch, R.; Petch, M.; Faurghenciu, A. Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) reaction. J. Catal. 2004, 226, 382–392. [Google Scholar] [CrossRef]
- Goguet, A.; Meunier, F.C.; Tibiletti, D.; Breen, J.P.; Burch, R. Spectrokinetic Investigation of Reverse Water-Gas-Shift Reaction Intermediates over a Pt/CeO2 Catalyst. J. Phys. Chem. B 2004, 108, 20240–20246. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).