Submitted:
10 October 2023
Posted:
12 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and methods
2.1. Experimental Sites
2.2. Sample collection and processing of forage legumes
2.3. Chemical analyses
2.4. Carbohydrate and protein fractionation
- a)
- CA: rapidly degradable CHO including sugars.
- b)
- CB1: intermediately degradable starch and pectin.
- c)
- CB2: slowly degradable cell wall.
- d)
- CC: unavailable/lignin bound cell wall.
2.5. Dry matter intake, digestibility and energy calculations
2.6. Estimation of minerals
2.7. Donor animals and inoculum preparation
2.8. In vitro incubations
2.9. Methane measurements
2.10. Statistical analysis
3. Results
3.1. Chemical composition
3.2. Protein and carbohydrate fractions
| Legumes | Carbohydrate and its fractions | Protein fractions | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tCHO | SC | NSC | CA | CB1 | CB2 | CC | PA | PB1 | PB2 | PB3 | PC | |
| AG | 730e | 424bc | 306ghi | 470f | 71g | 127bc | 315gh | 223de | 394fg | 161cd | 116cd | 98.8d |
| AH | 739f | 430bcd | 309ghi | 439ef | 57e | 282gh | 221a | 228de | 374ef | 224e | 92.8bc | 81.5c |
| CP | 705c | 457cde | 248def | 459ef | 48cd | 153cd | 349def | 214cd | 185b | 305g | 202ef | 93.7d |
| DB | 781i | 683h | 976a | 143a | 52d | 551j | 253a | 324h | 123a | 300g | 118cd | 134fg |
| CT-w | 725de | 500f | 225cd | 429ef | 37a | 121bc | 428g | 211c | 437h | 91.5b | 208f | 52.9a |
| SSe | 823L | 561g | 261ef | 358c | 43b | 208def | 391fg | 184b | 352e | 172d | 178e | 113e |
| SH | 802k | 589g | 213bc | 278b | 61e | 365i | 297bc | 277g | 232c | 346h | 60.8a | 83.7c |
| SSc | 780j | 483ef | 296gh | 406de | 37a | 332hi | 224a | 236ef | 182b | 292g | 139d | 150h |
| SSco | 773i | 454cde | 319hi | 431ef | 58e | 251efg | 260ab | 238ef | 194b | 179d | 246g | 142gh |
| SV | 797k | 464de | 333i | 414de | 65f | 277fgh | 243a | 214cd | 265d | 138c | 254g | 129f |
| MA | 689b | 415b | 274fg | 478f | 85h | 70b | 367ef | 165a | 430h | 252f | 78.3ab | 75.2cd |
| AS | 759h | 367a | 392i | 589g | 43b | 4.3a | 364def | 250f | 205bc | 99.1b | 330h | 116e |
| DV | 721d | 458cde | 263ef | 410de | 49cd | 296gh | 245a | 215cd | 281d | 310g | 110cd | 82.9c |
| RM | 749g | 516f | 233cd | 375cd | 45bc | 254efg | 326cde | 210c | 418gh | 25.2a | 245g | 1015d |
| CT-b | 708c | 453cde | 254def | 450ef | 42b | 187cde | 321cd | 205c | 477i | 33.8a | 213f | 71.6b |
| LLP | 676a | 484ef | 191b | 356b | 33a | 388i | 223a | 215cd | 177b | 420i | 76.8ab | 111e |
| Mean | 747 | 484 | 263 | 405 | 52 | 242 | 302 | 226 | 295 | 209 | 167 | 102 |
| SEM | 0.343 | 2.74 | 2.77 | 14.03 | 1.96 | 19.5 | 9.50 | 5.30 | 16.4 | 16.4 | 11.3 | 3.90 |
| Significance | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
3.3. Energy, energy efficiency, intake, digestibility and relative feed value of legumes
| Legumes | TDN | DE | ME | NEL | NEM | NEG | DMI | DDM | RFV |
|---|---|---|---|---|---|---|---|---|---|
| AG | 553de | 10.1e | 8.32d | 5.16f | 6.16e | 2.45de | 2.51g | 592de | 114.94ef |
| AH | 604f | 11.1f | 9.11e | 5.66g | 6.74f | 3.08f | 2.51g | 623f | 121.26fg |
| CP | 555e | 10.2e | 8.36d | 5.16ef | 6.16e | 2.50e | 2.19def | 593e | 100.45cd |
| DB | 511ab | 9.36bc | 9.69bc | 4.70be | 5.62bc | 1.96bc | 1.64a | 567bc | 72.20a |
| CT-w | 534cde | 9.82cde | 8.03cd | 4.95cdef | 5.91cde | 2.25cde | 2.12cd | 581cde | 95.48c |
| SSe | 398a | 7.28a | 5.99a | 3.54a | 4.24a | 0.58a | 1.99bc | 499a | 76.80a |
| SH | 525c | 9.65cd | 7.90c | 4.87cde | 5.78c | 2.12c | 1.93b | 575c | 86.16b |
| SSc | 498b | 9.150b | 7.48b | 4.58b | 5.49b | 1.83b | 2.20def | 559b | 95.65c |
| SSco | 528cd | 9.69cde | 7.94cd | 4.87cde | 5.82cd | 2.16cd | 2.27ef | 577cd | 101.46cd |
| SV | 520ab | 9.52bc | 7.82bc | 4.78f | 5.74c | 2.08bc | 2.20def | 572bc | 97.68c |
| MA | 552de | 10.1de | 8.32d | 5.12bc | 6.12de | 2.45de | 2.50g | 591de | 114.36e |
| AS | 605f | 11.1f | 9.11e | 5.66g | 6.78f | 3.08f | 2.73h | 623f | 131.73h |
| DV | 703g | 12.9g | 10.6f | 6.66h | 7.95g | 4.28g | 2.31f | 682g | 122.22g |
| RM | 611f | 11.2f | 9.19e | 5.74e | 6.82f | 3.16f | 2.02be | 627f | 97.92c |
| CT-b | 534cde | 9.77cde | 8.03cd | 4.95b | 5.91cde | 2.25cde | 2.21def | 580cde | 99.45cd |
| LLP | 613f | 11.2f | 9.23e | 5.74e | 6.86 f | 3.20f | 2.16de | 627f | 104.94d |
| Mean | 553 | 10.15 | 8.40 | 5.12 | 6.12 | 2.47 | 2.22 | 592 | 102.04 |
| SEM | 2.04 | 0.029 | 0.029 | 0.021 | 0.025 | 0.025 | 0.011 | 1.22 | 0.548 |
| Significance | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
3.4. Minerals
3.5. Fermentation pattern
3.6. Gas, methane and loss of energy as methane
4. Discussion
4.1. Chemical composition
4.2. Protein and carbohydrate fractions
4.3. Energy, energy efficiency, intake, digestibility and relative feed value of legumes
4.4. Minerals
4.5. Fermentation pattern
4.6. Gas, methane production and loss of energy as methane
5. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
References
- Russelle, M.P. Alfalfa: After an 8,000-year journey, the" Queen of Forages" stands poised to enjoy renewed popularity. Am. Sci. 2001, 89, 252–261. [Google Scholar] [CrossRef]
- Olalekan, A.J.; Bosede, B.F. Comparative study on chemical composition and functional properties of three Nigerian legumes (jack beans, pigeon pea and cowpea). Journal of Emerging Trends in Engineering and Applied Sciences 2010, 1, 89–95. [Google Scholar]
- Amiri, F. Comparison of nutritive values of grasses and legume species using forage quality index. Songklanakarin Journal of Science & Technology 2012, 34. [Google Scholar]
- Wattiaux, M.; Howard, T. , Technical dairy guide: nutrition and feeding. University of Wisconsin. 2001.
- Muir, J.P.; Pitman, W.D.; Dubeux Jr, J.C.; Foster, J.L. The future of warm-season, tropical and subtropical forage legumes in sustainable pastures and rangelands. Afr J Range Forage Sci 2014, 31, 187–198. [Google Scholar] [CrossRef]
- Schultze-Kraft, R.; Rao, I.M.; Peters, M.; Clements, R.J.; Bai, C.; Liu, G. Tropical forage legumes for environmental benefits: An overview. Tropical Grasslands-Forrajes Tropicales 2018, 6, 1–14. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric., Ecosyst. Environ. 2014, 190, 9–17. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Delaby, L.; Moloney, A.; Boland, T.; Lewis, E. Nutritive value of forage legumes used for grazing and silage. Irish Journal of Agricultural and Food Research 2009, 167–187. [Google Scholar]
- Kleen, J.; Taube, F.; Gierus, M. Agronomic performance and nutritive value of forage legumes in binary mixtures with perennial ryegrass under different defoliation systems. The Journal of Agricultural Science 2011, 149, 73–84. [Google Scholar] [CrossRef]
- Virgona, J.; Harris, C.; Kemp, S.; Evans, J.; Salmon, R. Australian Legume Research–synthesis and future directions. Crop and Pasture Science 2012, 63, 918–926. [Google Scholar] [CrossRef]
- Foster, J.; Adesogan, A.; Carter, J.; Blount, A.; Myer, R.; Phatak, S. Intake, digestibility, and nitrogen retention by sheep supplemented with warm-season legume hays or soybean meal. J. Anim. Sci. 2009, 87, 2891–2898. [Google Scholar] [CrossRef]
- Eckard, R.; Grainger, C.; De Klein, C. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livestock science 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Puchala, R.; Min, B.; Goetsch, A.; Sahlu, T. The effect of a condensed tannin-containing forage on methane emission by goats. J. Anim. Sci. 2005, 83, 182–186. [Google Scholar] [CrossRef]
- Graham, P.H.; Vance, C.P. Legumes: importance and constraints to greater use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef]
- Thomas, D.; Sumberg, J. A review of the evaluation and use of tropical forage legumes in sub-Saharan Africa. Agric., Ecosyst. Environ. 1995, 54, 151–163. [Google Scholar] [CrossRef]
- Lewis, G.; Schrire, B.; Mackinder, B.; Lock, M. Legumes of the World. Royal Botanic Gardens, Kew. Edinb. J. Bot 2005, 62, 195–196. [Google Scholar]
- Valarini, M.; Possenti, R. Research note: Nutritive value of a range of tropical forage legumes. Tropical Grasslands 2006, 40, 183. [Google Scholar]
- Zhao, D.; MacKown, C.T.; Starks, P.J.; Kindiger, B.K. Interspecies variation of forage nutritive value and nonstructural carbohydrates in perennial cool-season grasses. Agron. J. 2008, 100, 837–844. [Google Scholar] [CrossRef]
- Guo, X.; Wilmshurst, J.F.; Li, Z. Comparison of laboratory and field remote sensing methods to measure forage quality. Int. J. Environ. Res. Public Health 2010, 7, 3513–3530. [Google Scholar] [CrossRef]
- Kassi, A.L.; Newbold, C.; Wallace, R. Chemical composition and degradation characteristics of foliage of some African multipurpose trees. Anim. Feed Sci. Technol. 2000, 86, 27–37. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O'Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef]
- Caballero, R.; Alzueta, C.; Ortiz, L.T.; Rodríguez, M.L.; Barro, C.; Rebolé, A. , Carbohydrate and protein fractions of fresh and dried common vetch at three maturity stages. Agron. J. 2001, 93, 1006–1013. [Google Scholar] [CrossRef]
- Sastry, V.; Kamra, D.; Pathak, N. Laboratory manual of animal nutrition. Indian Veterinary Research Institute, Izatnagar, India 1999, 255. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Undersander, D. , Mertens, D., Thiex, N. Forage Analyses. In Information Systems Division, National Agricultural Library (United States of America) NAL/USDA, 10301 Baltimore Avenue Beltsville, Md. 2070., 1993.
- Fonnesbeck, P.V.; Clark, D.H.; Garret, W.N.; Speth, C.F. Predicting energy utilization from alfalfa hay from the Western Region. Proc. Am. Anim. Sci.(Western Section) 1984, 35, 305–308. [Google Scholar]
- Khalil, J.; Sawaya, W.N.; Hyder, S.Z. Nutrient composition of Atriplex leaves grown in Saudi Arabia. Rangeland Ecology & Management/Journal of Range Management Archives 1986, 39, 104–107. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Tavendale, M.H.; Meagher, L.P.; Pacheco, D.; Walker, N.; Attwood, G.T.; Sivakumaran, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 2005, 123, 403–419. [Google Scholar] [CrossRef]
- Santoso, B.; Mwenya, B.; Sar, C.; Takahashi, J. Methane production and energy partition in sheep fed timothy silage-or hay-based diets. Jurnal Ilmu Ternak dan Veteriner 2007, 12, 27–33. [Google Scholar]
- Getachew, G.; Makkar, H.; Becker, K. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. The Journal of Agricultural Science 2002, 139, 341–352. [Google Scholar] [CrossRef]
- Blümmel, M.; Steingaβ, H.; Becker, K. The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. Br. J. Nutr. 1997, 77, 911–921. [Google Scholar] [CrossRef]
- Herrero, M.; Jessop, N. In In vitro gas production of tropical pasture legumes. In Proceedings of the XVIII international grassland congress, Winnipeg, Manitoba and Saskatoon, Saskatchewan, Canada, 1997; pp. 63–64. [Google Scholar]
- Tona, G.; Ogunleke, F.; Asaolu, A.; Yusuf, A.; Olasusi, E. In vitro evaluation of grass and legume/browse species grazed by west african dwarf goats in South-Western Nigeria. IOSRJ. Agric. Vet. Sci 2017, 10, 70–75. [Google Scholar] [CrossRef]
- Musco, N.; Koura, I.B.; Tudisco, R.; Awadjihè, G.; Adjolohoun, S.; Cutrignelli, M.I.; Mollica, M.P.; Houinato, M.; Infascelli, F.; Calabrò, S. , Nutritional characteristics of forage grown in south of Benin. Asian-Australas J Anim Sci 2016, 29, 51. [Google Scholar] [CrossRef]
- Mokoboki, H.; Ndlovu, L.; Ayisi, K. Chemical and physical parameters of forage legume species introduced in the Capricorn region of Limpopo Province, South Africa. S. Afr. J. Anim. Sci. 2002, 32, 247–255. [Google Scholar]
- Deshmukh, S.; Jadhav, V. Bromatological and mineral assessment of Clitoria ternatea Linn. leaves. Energy (KJ) 2014, 459, 489.24-2.83. [Google Scholar]
- Silva, D.L.; Oliveira, K.P.; Aroeira, L.J.; Chaves, D.F.; Ponciano, M.F.; Braga, A.P.; Júnior, D.M.L. Chemical composition of Caatinga potential forages species. Tropical and Subtropical Agroecosystems 2015, 18, 267–272. [Google Scholar] [CrossRef]
- Suha Uslu, O.; Kurt, O.; Kaya, E.; Kamalak, A. Effect of species on chemical composition, metabolizable energy, organic matter digestibility and methane production of some legume plants grown in Turkey. J Appl Anim Res 2018, 46, 1158–1161. [Google Scholar] [CrossRef]
- Carvalho, M.; Quesenberry, K. Agronomic evaluation of Arachis pintoi (Krap. and Greg.) germplasm in Florida. Arch. Zootec. 2012, 61, 19–29. [Google Scholar] [CrossRef]
- Ferreira, A.L.; Maurício, R.M.; Fernandes, F.D.; Carvalho, M.A.; Ramos, A.K.B.; Junior, R.G. Ranking contrasting genotypes of forage peanut based on nutritive value and fermentation kinetics. Anim. Feed Sci. Technol. 2012, 175, 16–23. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Zhou, H.; Hou, G.; Cai, Y. Chemical composition and in vitro digestibility of Stylosanthes guianensis varieties. Grassl Sci 2014, 60, 125–129. [Google Scholar] [CrossRef]
- Ali, A.; Abdullah, L.; Karti, P.D.; Chozin, M.; Astuti, D. Production, competition indices, and nutritive values of Setaria splendida, Centrosema pubescens, and Clitoria ternatea in mixed cropping systems in peatland. Media Peternakan 2013, 36, 209–209. [Google Scholar] [CrossRef]
- Nasrullah, M.N.; Niimi, M.; Akashi, R.; Kawamura, O. Nutritive evaluation of forage plants grown in South Sulawesi, Indonesia II. Mineral Composition. Asian-Australasian Journal of Animal Science 2004, 17, 63–67. [Google Scholar] [CrossRef]
- da Silva Cabral, L.; Filho, S.d.C.V.; Muniz, P.A.; Malafaia, R. d. P. L.; da Silva, J.F.C.; Vieira, R.A.M.; Pereira, E.S. Frações protéicas de alimentos tropicais e suas taxas de digestão estimadas pela incubação com proteases ruminais. Rev Bras Zootec 2000, 29, 2316–2324. [Google Scholar]
- Van Soest, P. Nutritional Ecology of The ruminants, Cornell University, Ithaca, 1994. 1994.
- Naeem, M.; Shabbir, A.; Aftab, T.; Khan, M.M.A. Lablab bean (Lablab purpureus L.)—An untapped resilient protein reservoir. Neglected and Underutilized Crops 2023, 391–411. [Google Scholar]
- Mlay, P.S.; Pereka, A.; Chikula Phiri, E.; Balthazary, S.; Igusti, J.; Hvelplund, T.; Riis Weisbjerg, M.; Madsen, J. Feed value of selected tropical grasses, legumes and concentrates. Vet Arh 2006, 76, 53–63. [Google Scholar]
- Carvalho, G.G.P. d.; Garcia, R.; Pires, A.J.V.; Pereira, O.G.; Fernandes, F.É. P.; Obeid, J.A.; Carvalho, B.M.A. d. , Carbohydrate fractioning of elephantgrass silage wilted or enriched with cocoa meal. Rev Bras Zootec 2007, 36, 1000–1005. [Google Scholar] [CrossRef]
- Nocek, J.E. In situ and other methods to estimate ruminal protein and energy digestibility: a review. J. Dairy Sci. 1988, 71, 2051–2069. [Google Scholar] [CrossRef]
- Mertens, D. Predicting intake and digestibility using mathematical models of ruminal function. J. Anim. Sci. 1987, 64, 1548–1558. [Google Scholar] [CrossRef]
- Ribeiro, K.G.; Pereira, O.G.; Valadares Filho S d, C.; Garcia, R.; Cabral, L.d.S. Characterization of the protein and the carbohydrate fractions, and the respective degradation rates of Tifton 85 bermudagrass hay at different regrowth ages. Rev Bras Zootec 2001, 30, 589–595. [Google Scholar] [CrossRef]
- Adewole, A.H.; Famuyide, I.M.; McGaw, L.J.; Selepe, M.A.; October, N. Antifungal Compounds from the Leaves of Rhynchosia minima. Chem. Biodivers. 2022, 19, e202200837. [Google Scholar] [CrossRef]
- Osman, I.M.; Acar, R.; Babikir, E.S.N. EXPLOITING INDIGENOUS PLANTS SPECIES TO REHABILITATE DEGRADED RANGELANDS OF SUDAN USING RHYNCHOSIA MINIMA (L.) DC. PROCEEDING BOOK 2022, 157. [Google Scholar]
- Teferedegne, B. New perspectives on the use of tropical plants to improve ruminant nutrition. Proc. Nutr. Soc. 2000, 59, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Romney, D.; Gill, M. Intake of forages. Forage Evaluation in Ruminant Nutrition, CAB International 2000, 43–62. [Google Scholar]
- Warly, L.; Fariani, A.; Ichinohe, T.; Fujihara, T. Study on nutritive value of tropical forages in North Sumatra, Indonesia. Asian-Australas J Anim Sci 2004, 17, 1518–1523. [Google Scholar]
- Aydın, N.; Mut, Z.; Mut, H.; Ayan, İ. Effect of autumn and spring sowing dates on hay yield and quality of oat (Avena sativa L.) genotypes. 2010.
- Fernandes, F.D.; Ramos, A.K.; Carvalho, M.A.; Maciel, G.A.; ASSIS, G.M.D.; Braga, G.J. Forage yield and nutritive value of Arachis spp. genotypes in the Brazilian savanna. Tropical Grasslands-Forrajes Tropicales 2017, 5, 19–28. [Google Scholar] [CrossRef]
- Gama, T. d. C. M.; Volpe, E.; Lempp, B. Biomass accumulation and chemical composition of Massai grass intercropped with forage legumes on an integrated crop-livestock-forest system. Rev Bras Zootec 2014, 43, 279–288. [Google Scholar] [CrossRef]
- Melesse, A.; Steingass, H.; Schollenberger, M.; Rodehutscord, M. Screening of common tropical grass and legume forages in Ethiopia for their nutrient composition and methane production profile in vitro. Tropical Grasslands-Forrajes Tropicales 2017, 5, 163–175. [Google Scholar] [CrossRef]
- Sébastien, A.; Jérôme, B.; Claude, A.; Soumanou, T.S.; Marcel, H.; Brice, S. Variety and environmental effects on crude protein concentration and mineral composition of Arachis pintoi (Kaprovickas & Gregory) in Benin (West Africa). Journal of Applied Biology and Biotechnology 2013, 1, 024–028. [Google Scholar]
- Juknevičius, S.; Sabienė, N. The content of mineral elements in some grasses and legumes. Ekologija 2007, 53, 44–52. [Google Scholar]
- McDowell, L.; Valle, G. Major minerals in forages. Forage evaluation in ruminant nutrition. 2000, 373–397. [Google Scholar]
- McCrabb, G.; Berger, K.; Magner, T.; May, C.; Hunter, R. Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects on growth. Aust. J. Agric. Res. 1997, 48, 323–329. [Google Scholar] [CrossRef]
- Anele, U.; Südekum, K.-H.; Hummel, J.; Arigbede, O.; Oni, A.; Olanite, J.; Böttger, C.; Ojo, V.; Jolaosho, A. Chemical characterization, in vitro dry matter and ruminal crude protein degradability and microbial protein synthesis of some cowpea (Vigna unguiculata L. Walp) haulm varieties. Anim. Feed Sci. Technol. 2011, 163, 161–169. [Google Scholar] [CrossRef]
- Hungate, R. The rumen and its microbes Academic Press New York and London; Academic Press: New York, Estados Unidos, 1966. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Mirzaei-Aghsaghali, A.; Maheri-Sis, N. Factors affecting mitigation of methane emission from ruminants I: feeding strategies. Asian J. Anim. Vet. Adv. 2011, 6, 888–908. [Google Scholar] [CrossRef]
- Singh, S.; Koli, P.; Bhadoria, B.K.; Agarwal, M.; Lata, S.; Ren, Y.; Du, X. Proanthocyanidins Modulate Rumen Enzyme Activities and protein utilization in vitro. Molecules 2022, 27, 5870. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kundu, S.S. Effect of tropical browse leaves supplementation on rumen enzymes of sheep and goats fed Dichanthium annulatum grass-based diets. Trop. Anim. Health Prod. 2010, 42, 1181–1187. [Google Scholar] [CrossRef]
- Koli, P.; Singh, S.; Bhadoria, B.K.; Agarwal, M.; Lata, S.; Ren, Y. Sequential Extraction of Proanthocyanidin Fractions from Ficus Species and Their Effects on Rumen Enzyme Activities In Vitro. Molecules 2022, 27, 5153. [Google Scholar] [CrossRef]
- Lopez, V.M.; Florentino, B.; Barlaz, M.A. Chemical composition and methane potential of commercial food wastes. Waste Manage. 2016, 56, 477–490. [Google Scholar] [CrossRef]
- Banik, B.; Durmic, Z.; Erskine, W.; Ghamkhar, K.; Revell, C. In vitro ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia. Crop and Pasture Science 2013, 64, 935–942. [Google Scholar] [CrossRef]
- Bezabih, M.; Pellikaan, W.; Tolera, A.; Khan, N.; Hendriks, W. Chemical composition and in vitro total gas and methane production of forage species from the M id R ift V alley grasslands of E thiopia. Grass Forage Sci. 2014, 69, 635–643. [Google Scholar] [CrossRef]
- Boga, M.; Yurtseven, S.; Kilic, U.; Aydemir, S.; Polat, T. Determination of nutrient contents and in vitro gas production values of some legume forages grown in the Harran plain saline soils. Asian-Australas J Anim Sci 2014, 27, 825. [Google Scholar] [CrossRef] [PubMed]
- Maccarana, L.; Cattani, M.; Tagliapietra, F.; Bailoni, L.; Schiavon, S. Influence of main dietary chemical constituents on the in vitro gas and methane production in diets for dairy cows. Journal of Animal Science and Biotechnology 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bueno, I.C.; Brandi, R.A.; Franzolin, R.; Benetel, G.; Fagundes, G.M.; Abdalla, A.L.; Louvandini, H.; Muir, J.P. In vitro methane production and tolerance to condensed tannins in five ruminant species. Anim. Feed Sci. Technol. 2015, 205, 1–9. [Google Scholar] [CrossRef]
- Cone, J.W.; Van Gelder, A.H.; Bachmann, H. Influence of inoculum source on gas production profiles. Anim. Feed Sci. Technol. 2002, 99, 221–231. [Google Scholar] [CrossRef]
- Jayanegara, A.; Togtokhbayar, N.; Makkar, H.P.S.; Becker, K. Tannins determined by various methods as predictors of methane production reduction potential of plants by an in vitro rumen fermentation system. Anim. Feed Sci. Technol. 2009, 150, 230–237. [Google Scholar] [CrossRef]
- Singh, S.; Bhadoria, B.K.; Koli, P.; Lata, S. , Seasonal variation in chemical and biochemical constituents of tropical top feed species: components in silvipasture system. Range Manag. Agrofor. 2021, 42, 312–319. [Google Scholar]
- Singh, S.; Bhadoria, B.K.; Koli, P.; Singh, A. Nutritional evaluation of top foliages for livestock feeding in semi arid region of India. Indian J. Anim. Sci. 2019, 89, 1389–1398. [Google Scholar] [CrossRef]
- Singh, S.; Kushwaha, B.; Nag, S.; Mishra, A.; Singh, A.; Anele, U. In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim. Feed Sci. Technol. 2012, 178, 2–11. [Google Scholar] [CrossRef]
| Legumes | OM | CP | EE | NDF | ADF | Cellulose | Lignin | Hemi cellulose |
|---|---|---|---|---|---|---|---|---|
| AG | 873b | 123f | 20.2ab | 479b | 381cd | 2725e | 101ef | 976a |
| AH | 878c | 116e | 23.4abc | 478b | 342b | 273e | 68.1ab | 136bcd |
| CP | 905g | 172i | 27.5cd | 549cde | 380c | 266c | 103ef | 169d |
| DB | 897f | 88b | 28.1cd | 730h | 414ef | 325e | 82.4bcd | 316g |
| CT-w | 919i | 146h | 48.3f | 566f | 396cde | 270c | 124gh | 171d |
| SSe | 930L | 80a | 26.6cd | 604g | 501g | 365g | 134i | 103ab |
| SH | 923j | 93c | 27.0cd | 624g | 403e | 297d | 99.2e | 221e |
| SSc | 915h | 92c | 43.2ef | 548cde | 423f | 345f | 72.9abc | 124abc |
| SSco | 886d | 95c | 18.5a | 529cd | 401de | 307de | 83.8bc | 129abc |
| SV | 927k | 105d | 24.6bcd | 545cde | 407ef | 320g | 80.7bc | 139bcd |
| MA | 855a | 141g | 24.9bcd | 482b | 382cd | 271e | 105ef | 99.0a |
| AS | 894e | 105d | 29.7d | 439a | 342b | 213b | 115fg | 98.2a |
| DV | 928kl | 143gh | 63.8g | 519c | 266a | 177a | 73.5abc | 253ef |
| RM | 934m | 143gh | 41.5e | 595fg | 337b | 229b | 1027ef | 258f |
| CT-b | 937n | 183j | 46.6f | 544cde | 396cde | 296d | 94.6de | 147cd |
| LLP | 896e | 180j | 40.3e | 556de | 335b | 267c | 62.7a | 220e |
| Mean | 906 | 12.54 | 33.4 | 549 | 382 | 28.09 | 93.9 | 168 |
| SEM | 2.12 | 0.283 | 0.421 | - | 1.51 | 6.93 | 1.69 | 2.87 |
| Significance | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Legumes | Cu | Zn | Fe | Mn | Ca | Mg |
|---|---|---|---|---|---|---|
| AG | 76.7h | 65.8g | 1150cde | 47.5c | 2.77f | 0.59j |
| AH | 60.7g | 61.1g | 737bc | 47.3c | 2.74f | 0.58j |
| CP | 28.7ef | 42.2e | 246ab | 31.9ab | 1.48e | 0.37e |
| DB | 35.7f | 31.9bc | 1271de | 70.5ef | 1.37e | 0.41g |
| CT-w | 24.9cde | 41.7de | 311ab | 40.8bc | 0.60a | 0.37f |
| SSe | 14.9ab | 35.0 | 215ab | 20.3a | 0.94c | 0.24e |
| SH | 11.1a | 26.7ab | 259ab | 77.37f | 0.80b | 0.25ab |
| SSc | 13.6ab | 32.0bc | 174a | 22.1a | 1.34e | 0.28bc |
| SSco | 16.1abc | 48.7f | 1023cd | 54.5cd | 1.47e | 0.29cd |
| SV | 12.4ab | 20.8a | 137a | 27.2a | 1.44e | 0.46h |
| MA | 21.1bcde | 30.1bc | 1573e | 61.4e | 1.17d | 0.34ef |
| AS | 18.5abcd | 28.5bc | 1288de | 72.3f | 0.93c | 0.36ef |
| DV | 27.3def | 27.1ab | 32.8a | 28.3ab | 0.93c | 0.88k |
| RM | 59. 6g | 25.5ab | 183a | 18.6a | 0.58a | 0.32de |
| CT-b | 72.0h | 35.3cd | 31.5a | 41.9bc | 0.55a | 0.53i |
| LLP | 62.8g | 39.3de | 39.4a | 41.6bc | 0.98c | 0.44gh |
| Mean | 34.8 | 37.0 | 542 | 44.0 | 1.26 | 0.42 |
| SEM | 0.726 | 0.544 | 41.41 | 1.08 | 0.11 | 0.003 |
| Significance | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Legumes | ME kJ/g | DMD | PF | SCFA mm/g | MBM mg/g | EMBP mg/g |
|---|---|---|---|---|---|---|
| AG | 6.07cd | 649fg | 6.09cde | 2.44 cd | 421efg | 0.63 cd |
| AH | 6.04cd | 663g | 6.35cde | 2.41 cd | 445g | 0.64 cd |
| CP | 5.77bcd | 513b | 5.35bc | 2.20bcd | 306 bc | 0.60 bcd |
| DB | 6.11cd | 577cd | 5.26bc | 2.54 cd | 346 cde | 0.56bcd |
| CT-w | 4.86ab | 559cd | 7.05de | 1.80ab | 392defg | 0.68d |
| SSe | 5.61bc | 578cd | 5.49bc | 2.41 cd | 355 cdef | 0.59 bcd |
| SH | 5.82bcd | 641fg | 6.20cde | 2.37cd | 417 defg | 0.63 cd |
| SSc | 6.18cd | 631efg | 5.60bcde | 2.61de | 385defg | 0.59 bcd |
| SSco | 5.78bcd | 646 fg | 6.25cde | 2.42 cd | 424 efg | 0.63cd |
| SV | 5.84bcd | 580 cd | 5.24bc | 2.54 cd | 342 cd | 0.57 bcd |
| MA | 5.59bc | 594cde | 7.08e | 2.00abc | 407 defg | 0.66 d |
| AS | 4.49a | 394a | 5.53bc | 1.64a | 238b | 0.58 bcd |
| DV | 6.53cd | 409a | 3.45a | 2.77de | 142a | 0.32a |
| RM | 6.25cd | 547bc | 4.82abc | 2.60 cde | 302 bc | 0.53bc |
| CT-b | 6.43cd | 602de | 4.37ab | 3.13e | 301 bc | 0.48b |
| LLP | 6.73d | 660g | 5.56bcd | 2.76de | 402 defg | 0.58 bcd |
| Mean | 5.88 | 578 | 5.61 | 2.42 | 352 | 0.58 |
| SEM | 0.080 | 10.4 | 0.151 | 0.059 | 11.00 | 0.013 |
| Significance | 0.001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 |
| Legumes | Gas mL/g | CH4 mL/g | Gas mL/g DDM | CH4 mL/g DDM | CH4% Gas | CH4%DE | CH4% ME |
|---|---|---|---|---|---|---|---|
| AG | 110cde | 15.2d | 170ab | 23.5b | 13.9 bc | 5.77ef | 7.03 ef |
| AH | 109cde | 15.1d | 164 ab | 22.7 b | 13.9 bc | 5.23 cdef | 6.37 cdef |
| CP | 99.1bcd | 11.0bc | 192 abc | 21.4 b | 11.1 abc | 4.14 abc | 5.04 abc |
| DB | 114de | 13.0cd | 199 abc | 22.6 b | 11.5 abc | 5.31 def | 6.47def |
| CT-w | 81.3b | 8.24a | 145 a | 14.7 a | 10.1 ab | 3.23 a | 3.94a |
| SSe | 108cde | 11.5bc | 188 abc | 20.1 ab | 10.8 abc | 6.10f | 7.43 f |
| SH | 107cde | 11.5bc | 166 ab | 18.1ab | 11.2 abc | 4.61 bcd | 5.61 bcd |
| SSc | 117de | 12.8cd | 186 abc | 20.4 b | 11.3 abc | 5.37 def | 6.54 def |
| SSco | 109cde | 11.9bc | 169 ab | 18.6ab | 11.4 abc | 4.75 bcde | 5.79 bcde |
| SV | 115de | 11.4bc | 197 abc | 19.7 ab | 10.0 a | 4.60 bcd | 5.60 bcd |
| MA | 90.4bc | 12.4cd | 153 a | 21.0b | 14.1 c | 4.72 bcde | 5.75 bcde |
| AS | 55.4a | 9.1ab | 188 abc | 23.2b | 12.5 abc | 3.17 a | 3.86a |
| DV | 122def | 10.8 bc | 309d | 26.4 c | 8.99a | 3.24 a | 3.94a |
| RM | 117de | 11.4 bc | 215bc | 21.0b | 9.72 a | 3.92 ab | 4.78 ab |
| CT-b | 141f | 13.4cd | 235 c | 22.3 b | 9.51a | 5.27 cdef | 6.42 cdef |
| LLP | 124ef | 12.8 cd | 190 abc | 19.4 ab | 10.4abc | 4.49 bcd | 5.46 bcd |
| Mean | 107 | 12.0 | 192 | 21.0 | 11.3 | 4.62 | 5.63 |
| SEM | 1.80 | 0.219 | 5.86 | 0.495 | 0.315 | 0.134 | 0.163 |
| Significance | <.0001 | <.0001 | <.0001 | 0.010 | 0.041 | <.0001 | <.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
