Submitted:
10 October 2023
Posted:
11 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Endocannabinoid System: A Brief Review
| MAIN NON-CANNABINOID RECEPTORS AND ENDOGENOUS LIGANDS | ||
| Class | Target | Endogenous component |
| GPCR | GPR55 | AEA; 2-AG; 2- AGE; Virodhamine |
| GPR119 | AEA; Oleamide | |
| GPR118 | AEA. | |
| TRP | TRPV1 | AEA; 2-AG; 2-AGE |
| TRPV8 | AEA | |
| Nuclear Receptor | PPARα | AEA; 2- AGE; Virodhamine |
| PPARγ | AEA; AG | |
| Voltage-dependent ion channel | Calcium channels | AEA; |
| Potassium channels | AEA, 2-AG, Virodhamine. | |
4. Palmitoylethanolamide: A Promising Therapeutic Lipid
4.1. Pharmacokinetic Characteristics
4.2. Possible Pharmacological Targets and Mechanisms of Action
4.2.1. PEA Interaction with Transient Receptor Potential Vanilloid Type 1 (TRPV1)
4.2.2. PEA Interaction with Peroxisome Proliferator-Activated Receptor (PPARs)
4.2.3. Interaction of PEA with G Protein-Coupled Receptors (GPR55)
5. Therapeutic Opportunities of Palmitoylethanolamide
5.1. Therapeutic Potential of PEA in Central Nervous System Disorders
5.1.1. Neuroinflammation
5.1.2. Alzheimer's Disease
5.1.3. Vascular Dementia
5.1.4. Multiple Sclerosis
5.2. Therapeutic Potential of PEA in Pain, Inflammatory Processes, and Immune System Modulation
| Pathological Condition | Experimental Model | Lineage | Gender | Age | Formulation | A.R. | Main effect | Receptor | Reference | |
| Nervous System | AD | Mice | 3×Tg-AD | M | 3 e 9m | PEA-um | s.c. | Neuroprotective and anti-inflammatory | - | [119] |
| AD | Mice | SAMP8 | ** | 4m | PEA | p.o. | Anti-inflammatory | - | [19] | |
| AD | Mice | ** | ** | ** | PEA | icv | Neuroprotective | PPAR- α | [92] | |
| Multiple Sclerosis | Mice | C57BL/6 | ** | ** | co-ultraPEA-Lut | i.p. | Anti-inflammatory and immunomodulator | - | [20] | |
| Anxiety associated to neuroinflammation | Mice | C57Bl/6J | M | 6 w. | PEA | p.o. | Anti-inflammatory | PPAR-α | [115] | |
| Neuroinflammation | Mice | C57BL/6J | M | 10-12 w. | PEA | i.p. | Anti-inflammatory | PPAR-α | [116] | |
| Neuroinflammation | Mice | CD1 | ** | ** | co-ultraPEALut | i.p. | Anti-inflammatory | PPARα e PPARβ | [117] | |
| Experimental spinal cord injury | Mice | CD1 | M | Adult | PEA | i.p. | Anti-inflammatory and immunomodulator | PPARα | [104] | |
| Vascular dementia | Mice | CD2 | M | ** | PEA-OXA | p.o. | Neuroprotective | - | [123] | |
| Spinal Cord Injury | Mice | CD1 | M | ** | co-ultraPEALut | i.p. | Regeneration and immunomodulator | - | [105] | |
| Cerebral ischemia | Rat | Wistar | M | ** | Co-ultraPEALut | i.v. | Anti-inflammatory and immunomodulator | - | [106] | |
| Focal cerebral ischemia | Rat | Wistar | M | ** | PEA-OXA | i.v. | Anti-inflammatory and immunomodulator | - | [108] | |
| Spinal Cord Injury | Mice | CD1 | ** | ** | PEA | i.p. | Neuroprotective and anti-inflammatory | PPAR-δ PPAR-γ | [25] | |
| Sciatic nerve injury | Mice | CD1 | M | ** | PEA-OXA | p.o. | Neuroprotective and anti-inflammatory | - | [21] | |
| Sciatic nerve injury | Mice | Mutants | ** | ** | PEA | s.c. | Neuroprotective and anti-inflammatory | PPAR-α | [107] |
| Pathological condition | Experimental Model | Formulation | Cellular model | Main effect | Receptor | Reference | |
| Central Nervous System | AD | In vitro | Co-ultra PEALut | Aβ 1-42toxicity | Anti-inflammatory | PPAR-α | [121] |
| Neuroinflammation | In vitro | PEA | N9 microglial cells | Neuroprotective | CB2 | [114] | |
| Neuroinflammation | In vitro | PEA | Microglial astrocyte co-cultures | Neuroprotective | PPAR-α | [112] | |
| Neuroinflammation/ Neurodegeneration | In vitro | PEA | Astrocyte culture | Anti-inflammatory | PPAR-α | [113] |
| Pathological condition | Clinical trial | Population | Age | Formulation | Dosage | Time | Main effect | Reference | |
| Central Nervous System | Cerebral ischemia | Observational | Men and women | 31–100 years old | co-ultraPEA-LUT (S.L.) | 700mg+70 mg | 2m | Clinical improvement | [106] |
5.2.1. Osteoarthritis and Inflammatory Arthritis
5.2.2. Hypersensitivity
5.3. Therapeutic Potential of PEA in Vascular System Disorders
5.4. Therapeutic Potential of PEA in Gastrointestinal Disorders
5.5. Therapeutic Potential of PEA in Respiratory Disorders
| Pathological Condition | Experimental Model | Lineage | Formulation | A.R. | Main Effect | Receptor | Reference | |
| Gastrointestinal System | Intestinal inflammation | Rat | Mutants | PEA | i.v. | Anti-inflammatory and immunomodulator | - | [141] |
| Colitis | Mice | ICR | PEA | p.o. | Anti-inflammatory | TRPV1 e CB1 | [49] | |
| Colitis | Mice | CD1 | PEA-um + Paracetamol | p.o. | Anti-inflammatory | - | [132] | |
| Inflammatory bowel disease | Zebrafish Larvae | Wild (WT) |
PEA-OXA | ** | Anti-inflammatory | - | [63] | |
| Vascular System | Coagulopathy | Rat | Sprague-Dawley | PEA-um | p.o. | Anti-inflammatory and neuroprotective | - | [140] |
| Digestive system | Steatohepatitis | Mice | C57BL/6 | PEA | p.o. | Antii-inflamatório | PPAR- α | [143] |
| Respiratory system | Acute lung injury | Mice | CD1 | PEA-um | p.o | Anti-inflammatory and immunomodulator | - | [142] |
| Pathological Condition | Clinical trial | Gender | Age | Formulation | A.R. | Dosage | Time | Main Effect | Reference | |
| Respiratory system | COVID-19 | Case-control | Men and women | 18-80 years old | PEA-um | o.p. | 1800 mg | 28d | Anti-inflammatory and immunomodulator | [145] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Pertwee, R.G. Endocannabinoids and Their Pharmacological Actions. Handbook of experimental pharmacology 2015, 231, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Devane, W.A.; Hanus, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992, 258, 1946–1949. [Google Scholar] [CrossRef] [PubMed]
- Hanus, L.; Abu-Lafi, S.; Fride, E.; Breuer, A.; Vogel, Z.; Shalev, D.E.; Kustanovich, I.; Mechoulam, R. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 3662–3665. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.C.; Sauer, J.M.; Knierman, M.D.; Becker, G.W.; Berna, M.J.; Bao, J.; Nomikos, G.G.; Carter, P.; Bymaster, F.P.; Leese, A.B.; et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. The Journal of pharmacology and experimental therapeutics 2002, 301, 1020–1024. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.M.; Bisogno, T.; Trevisani, M.; Al-Hayani, A.; De Petrocellis, L.; Fezza, F.; Tognetto, M.; Petros, T.J.; Krey, J.F.; Chu, C.J.; et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, 8400–8405. [Google Scholar] [CrossRef] [PubMed]
- Cascio, M.G. PUFA-derived endocannabinoids: an overview. The Proceedings of the Nutrition Society 2013, 72, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, E.; Tocquer, C.; Andre, C.; Moreira, D.M.; Okamoto, I.H.; Cavalcanti, J.L.S.; Working Group on Alzheimer's, D.; Vascular Dementia of the Brazilian Academy of, N. Vascular dementia: Diagnostic criteria and supplementary exams. Recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Part I. Dementia & neuropsychologia 2011, 5, 251–263. [Google Scholar] [CrossRef]
- Maccarrone, M.; Finazzi-Agro, A. Endocannabinoids and their actions. Vitamins and hormones 2002, 65, 225–255. [Google Scholar] [CrossRef]
- Coburn, A.F.; Graham, C.E.; Haninger, J. The effect of egg yolk in diets on anaphylactic arthritis (passive Arthus phenomenon) in the guinea pig. The Journal of experimental medicine 1954, 100, 425–435. [Google Scholar] [CrossRef]
- Ganley, O.H.; Graessle, O.E.; Robinson, H.J. Anti-inflammatory activity on compounds obtained from egg yolk, peanut oil, and soybean lecithin. The Journal of laboratory and clinical medicine 1958, 51, 709–714. [Google Scholar]
- Gugliandolo, E.; Peritore, A.F.; Impellizzeri, D.; Cordaro, M.; Siracusa, R.; Fusco, R.; D'Amico, R.; Paola, R.D.; Schievano, C.; Cuzzocrea, S.; et al. Dietary Supplementation with Palmitoyl-Glucosamine Co-Micronized with Curcumin Relieves Osteoarthritis Pain and Benefits Joint Mobility. Animals : an open access journal from MDPI 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Bruun, S.; Gouveia-Figueira, S.; Domellof, M.; Husby, S.; Neergaard Jacobsen, L.; Michaelsen, K.F.; Fowler, C.J.; Zachariassen, G. Satiety Factors Oleoylethanolamide, Stearoylethanolamide, and Palmitoylethanolamide in Mother's Milk Are Strongly Associated with Infant Weight at Four Months of Age-Data from the Odense Child Cohort. Nutrients 2018, 10. [Google Scholar] [CrossRef]
- Petrosino, S.; Di Marzo, V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. British journal of pharmacology 2017, 174, 1349–1365. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Morishita, J.; Tsuboi, K.; Tonai, T.; Ueda, N. Molecular characterization of a phospholipase D generating anandamide and its congeners. The Journal of biological chemistry 2004, 279, 5298–5305. [Google Scholar] [CrossRef]
- Perlik, F.; Raskova, H.; Elis, J. Anti-inflammatory properties of N(2-hydroxyethyl) palmitamide. Acta physiologica Academiae Scientiarum Hungaricae 1971, 39, 395–400. [Google Scholar]
- Roviezzo, F.; Rossi, A.; Caiazzo, E.; Orlando, P.; Riemma, M.A.; Iacono, V.M.; Guarino, A.; Ialenti, A.; Cicala, C.; Peritore, A.; et al. Palmitoylethanolamide Supplementation during Sensitization Prevents Airway Allergic Symptoms in the Mouse. Frontiers in pharmacology 2017, 8, 857. [Google Scholar] [CrossRef] [PubMed]
- Romero, T.R.; Resende, L.C.; Guzzo, L.S.; Duarte, I.D. CB1 and CB2 cannabinoid receptor agonists induce peripheral antinociception by activation of the endogenous noradrenergic system. Anesthesia and analgesia 2013, 116, 463–472. [Google Scholar] [CrossRef]
- Siracusa, R.; Fusco, R.; Cordaro, M.; Peritore, A.F.; D'Amico, R.; Gugliandolo, E.; Crupi, R.; Genovese, T.; Evangelista, M.; Di Paola, R.; et al. The Protective Effects of Pre- and Post-Administration of Micronized Palmitoylethanolamide Formulation on Postoperative Pain in Rats. International journal of molecular sciences 2020, 21. [Google Scholar] [CrossRef]
- D'Antongiovanni, V.; Pellegrini, C.; Antonioli, L.; Benvenuti, L.; Di Salvo, C.; Flori, L.; Piccarducci, R.; Daniele, S.; Martelli, A.; Calderone, V.; et al. Palmitoylethanolamide Counteracts Enteric Inflammation and Bowel Motor Dysfunctions in a Mouse Model of Alzheimer's Disease. Frontiers in pharmacology 2021, 12, 748021. [Google Scholar] [CrossRef]
- Contarini, G.; Franceschini, D.; Facci, L.; Barbierato, M.; Giusti, P.; Zusso, M. A co-ultramicronized palmitoylethanolamide/luteolin composite mitigates clinical score and disease-relevant molecular markers in a mouse model of experimental autoimmune encephalomyelitis. Journal of neuroinflammation 2019, 16, 126. [Google Scholar] [CrossRef]
- Gugliandolo, E.; D'Amico, R.; Cordaro, M.; Fusco, R.; Siracusa, R.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; Di Paola, R. Effect of PEA-OXA on neuropathic pain and functional recovery after sciatic nerve crush. Journal of neuroinflammation 2018, 15, 264. [Google Scholar] [CrossRef] [PubMed]
- Clayton, P.; Hill, M.; Bogoda, N.; Subah, S.; Venkatesh, R. Palmitoylethanolamide: A Natural Compound for Health Management. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Iannotti, F.A.; Di Marzo, V.; Petrosino, S. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Progress in lipid research 2016, 62, 107–128. [Google Scholar] [CrossRef] [PubMed]
- Aloe, L.; Leon, A.; Levi-Montalcini, R. A proposed autacoid mechanism controlling mastocyte behaviour. Agents and actions 1993, 39 Spec No, C145–147. [Google Scholar] [CrossRef]
- Paterniti, I.; Impellizzeri, D.; Crupi, R.; Morabito, R.; Campolo, M.; Esposito, E.; Cuzzocrea, S. Molecular evidence for the involvement of PPAR-delta and PPAR-gamma in anti-inflammatory and neuroprotective activities of palmitoylethanolamide after spinal cord trauma. Journal of neuroinflammation 2013, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Neher, M.D.; Weckbach, S.; Huber-Lang, M.S.; Stahel, P.F. New insights into the role of peroxisome proliferator-activated receptors in regulating the inflammatory response after tissue injury. PPAR research 2012, 2012, 728461. [Google Scholar] [CrossRef]
- Im, D.S. GPR119 and GPR55 as Receptors for Fatty Acid Ethanolamides, Oleoylethanolamide and Palmitoylethanolamide. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef]
- Mechoulam, R.; Fride, E.; Di Marzo, V. Endocannabinoids. European journal of pharmacology 1998, 359, 1–18. [Google Scholar] [CrossRef]
- Mechoulam, R.; Gaoni, Y. A Total Synthesis of Dl-Delta-1-Tetrahydrocannabinol, the Active Constituent of Hashish. Journal of the American Chemical Society 1965, 87, 3273–3275. [Google Scholar] [CrossRef]
- Howlett, A.C.; Thomas, B.F.; Huffman, J.W. The Spicy Story of Cannabimimetic Indoles. Molecules 2021, 26. [Google Scholar] [CrossRef]
- Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Di Marzo, V.; Bifulco, M.; De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nature reviews. Drug discovery 2004, 3, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zheng, J. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein & cell 2017, 8, 169–177. [Google Scholar] [CrossRef]
- O'Sullivan, S.E. An update on PPAR activation by cannabinoids. British journal of pharmacology 2016, 173, 1899–1910. [Google Scholar] [CrossRef]
- Galiegue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carriere, D.; Carayon, P.; Bouaboula, M.; Shire, D.; Le Fur, G.; Casellas, P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. European journal of biochemistry 1995, 232, 54–61. [Google Scholar] [CrossRef]
- Howlett, A.C. Pharmacology of cannabinoid receptors. Annual review of pharmacology and toxicology 1995, 35, 607–634. [Google Scholar] [CrossRef]
- Castillo, P.E.; Younts, T.J.; Chavez, A.E.; Hashimotodani, Y. Endocannabinoid signaling and synaptic function. Neuron 2012, 76, 70–81. [Google Scholar] [CrossRef]
- Brown, S.P.; Brenowitz, S.D.; Regehr, W.G. Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nature neuroscience 2003, 6, 1048–1057. [Google Scholar] [CrossRef]
- Kreitzer, A.C.; Regehr, W.G. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 2001, 29, 717–727. [Google Scholar] [CrossRef]
- Wilson, R.I.; Kunos, G.; Nicoll, R.A. Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 2001, 31, 453–462. [Google Scholar] [CrossRef]
- Chevaleyre, V.; Takahashi, K.A.; Castillo, P.E. Endocannabinoid-mediated synaptic plasticity in the CNS. Annual review of neuroscience 2006, 29, 37–76. [Google Scholar] [CrossRef] [PubMed]
- Heifets, B.D.; Castillo, P.E. Endocannabinoid signaling and long-term synaptic plasticity. Annual review of physiology 2009, 71, 283–306. [Google Scholar] [CrossRef] [PubMed]
- Kano, M.; Ohno-Shosaku, T.; Hashimotodani, Y.; Uchigashima, M.; Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiological reviews 2009, 89, 309–380. [Google Scholar] [CrossRef] [PubMed]
- Ohno-Shosaku, T.; Kano, M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Current opinion in neurobiology 2014, 29, 1–8. [Google Scholar] [CrossRef]
- Di Marzo, V.; Piscitelli, F. The Endocannabinoid System and its Modulation by Phytocannabinoids. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 2015, 12, 692–698. [Google Scholar] [CrossRef]
- Brown, A.J. Novel cannabinoid receptors. British journal of pharmacology 2007, 152, 567–575. [Google Scholar] [CrossRef]
- Bonilla, F.A.; Oettgen, H.C. Adaptive immunity. The Journal of allergy and clinical immunology 2010, 125, S33–40. [Google Scholar] [CrossRef]
- Holzer, P. TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. European journal of pharmacology 2004, 500, 231–241. [Google Scholar] [CrossRef]
- Borrelli, F.; Izzo, A.A. Role of acylethanolamides in the gastrointestinal tract with special reference to food intake and energy balance. Best practice & research. Clinical endocrinology & metabolism 2009, 23, 33–49. [Google Scholar] [CrossRef]
- Grygiel-Gorniak, B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutrition journal 2014, 13, 17. [Google Scholar] [CrossRef]
- O'Sullivan, S.E.; Kendall, D.A. Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology 2010, 215, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Delerive, P.; Fruchart, J.C.; Staels, B. Peroxisome proliferator-activated receptors in inflammation control. The Journal of endocrinology 2001, 169, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Devchand, P.R.; Keller, H.; Peters, J.M.; Vazquez, M.; Gonzalez, F.J.; Wahli, W. The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 1996, 384, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Yang, T.; Liu, H.; Han, L.; Zhang, K.; Hu, X.; Zhang, X.; Yin, K.J.; Gao, Y.; Bennett, M.V.L.; et al. Peroxisome proliferator-activated receptor gamma (PPARgamma): A master gatekeeper in CNS injury and repair. Progress in neurobiology 2018, 163-164, 27–58. [Google Scholar] [CrossRef]
- Kadayat, T.M.; Shrestha, A.; Jeon, Y.H.; An, H.; Kim, J.; Cho, S.J.; Chin, J. Targeting Peroxisome Proliferator-Activated Receptor Delta (PPARdelta): A Medicinal Chemistry Perspective. Journal of medicinal chemistry 2020, 63, 10109–10134. [Google Scholar] [CrossRef] [PubMed]
- Grabacka, M.; Pierzchalska, M.; Plonka, P.M.; Pierzchalski, P. The Role of PPAR Alpha in the Modulation of Innate Immunity. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Delerive, P.; Gervois, P.; Fruchart, J.C.; Staels, B. Induction of IkappaBalpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators. The Journal of biological chemistry 2000, 275, 36703–36707. [Google Scholar] [CrossRef]
- Calebiro, D.; Godbole, A. Internalization of G-protein-coupled receptors: Implication in receptor function, physiology and diseases. Best practice & research. Clinical endocrinology & metabolism 2018, 32, 83–91. [Google Scholar] [CrossRef]
- Godlewski, G.; Offertaler, L.; Wagner, J.A.; Kunos, G. Receptors for acylethanolamides-GPR55 and GPR119. Prostaglandins & other lipid mediators 2009, 89, 105–111. [Google Scholar] [CrossRef]
- Ryberg, E.; Larsson, N.; Sjogren, S.; Hjorth, S.; Hermansson, N.O.; Leonova, J.; Elebring, T.; Nilsson, K.; Drmota, T.; Greasley, P.J. The orphan receptor GPR55 is a novel cannabinoid receptor. British journal of pharmacology 2007, 152, 1092–1101. [Google Scholar] [CrossRef]
- Bachur, N.R.; Masek, K.; Melmon, K.L.; Udenfriend, S. Fatty Acid Amides of Ethanolamine in Mammalian Tissues. The Journal of biological chemistry 1965, 240, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Lambert, D.M.; Vandevoorde, S.; Jonsson, K.O.; Fowler, C.J. The palmitoylethanolamide family: a new class of anti-inflammatory agents? Current medicinal chemistry 2002, 9, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Di Paola, D.; Natale, S.; Iaria, C.; Cordaro, M.; Crupi, R.; Siracusa, R.; D'Amico, R.; Fusco, R.; Impellizzeri, D.; Cuzzocrea, S.; et al. Intestinal Disorder in Zebrafish Larvae (Danio rerio): The Protective Action of N-Palmitoylethanolamide-oxazoline. Life 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Cravatt, B.F.; Giang, D.K.; Mayfield, S.P.; Boger, D.L.; Lerner, R.A.; Gilula, N.B. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 1996, 384, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Clayton, P.; Subah, S.; Venkatesh, R.; Hill, M.; Bogoda, N. Palmitoylethanolamide: A Potential Alternative to Cannabidiol. Journal of dietary supplements 2023, 20, 505–530. [Google Scholar] [CrossRef] [PubMed]
- Smart, D.; Jonsson, K.O.; Vandevoorde, S.; Lambert, D.M.; Fowler, C.J. 'Entourage' effects of N-acyl ethanolamines at human vanilloid receptors. Comparison of effects upon anandamide-induced vanilloid receptor activation and upon anandamide metabolism. British journal of pharmacology 2002, 136, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, B.L.; Ouyang, Y.; Rockwell, C.E.; Rao, G.K.; Kaminski, N.E. 2-Arachidonoyl-glycerol suppresses interferon-gamma production in phorbol ester/ionomycin-activated mouse splenocytes independent of CB1 or CB2. Journal of leukocyte biology 2005, 77, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, F.; Romano, B.; Petrosino, S.; Pagano, E.; Capasso, R.; Coppola, D.; Battista, G.; Orlando, P.; Di Marzo, V.; Izzo, A.A. Palmitoylethanolamide, a naturally occurring lipid, is an orally effective intestinal anti-inflammatory agent. British journal of pharmacology 2015, 172, 142–158. [Google Scholar] [CrossRef]
- Rankin, L.; Fowler, C.J. The Basal Pharmacology of Palmitoylethanolamide. International journal of molecular sciences 2020, 21. [Google Scholar] [CrossRef]
- Tronino, D.; Offerta, A.; Ostacolo, C.; Russo, R.; De Caro, C.; Calignano, A.; Puglia, C.; Blasi, P. Nanoparticles prolong N-palmitoylethanolamide anti-inflammatory and analgesic effects in vivo. Colloids and surfaces. B, Biointerfaces 2016, 141, 311–317. [Google Scholar] [CrossRef]
- Impellizzeri, D.; Bruschetta, G.; Cordaro, M.; Crupi, R.; Siracusa, R.; Esposito, E.; Cuzzocrea, S. Micronized/ultramicronized palmitoylethanolamide displays superior oral efficacy compared to nonmicronized palmitoylethanolamide in a rat model of inflammatory pain. Journal of neuroinflammation 2014, 11, 136. [Google Scholar] [CrossRef]
- Petrosino, S.; Cordaro, M.; Verde, R.; Schiano Moriello, A.; Marcolongo, G.; Schievano, C.; Siracusa, R.; Piscitelli, F.; Peritore, A.F.; Crupi, R.; et al. Oral Ultramicronized Palmitoylethanolamide: Plasma and Tissue Levels and Spinal Anti-hyperalgesic Effect. Frontiers in pharmacology 2018, 9, 249. [Google Scholar] [CrossRef] [PubMed]
- Petrosino, S.; Schiano Moriello, A.; Cerrato, S.; Fusco, M.; Puigdemont, A.; De Petrocellis, L.; Di Marzo, V. The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. British journal of pharmacology 2016, 173, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsson, L.; Mattsson, S.; Fowler, C.J. Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. British journal of clinical pharmacology 2016, 82, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Zhukov, O.D. [Distribution of N-([1-14C]-palmitoyl)ethanolamine in rat tissues]. Ukrains'kyi biokhimichnyi zhurnal 1999, 71, 124–125. [Google Scholar] [PubMed]
- Artamonov, M.; Zhukov, O.; Shuba, I.; Storozhuk, L.; Khmel, T.; Klimashevsky, V.; Mikosha, A.; Gula, N. Incorporation of labelled N-acylethanolamine (NAE) into rat brain regions in vivo and adaptive properties of saturated NAE under x-ray irradiation. Ukrains'kyi biokhimichnyi zhurnal 2005, 77, 51–62. [Google Scholar] [PubMed]
- Svobodova, A.; Vrkoslav, V.; Smeringaiova, I.; Jirsova, K. Distribution of an analgesic palmitoylethanolamide and other N-acylethanolamines in human placental membranes. PloS one 2023, 18, e0279863. [Google Scholar] [CrossRef]
- Schmid, P.C.; Zuzarte-Augustin, M.L.; Schmid, H.H. Properties of rat liver N-acylethanolamine amidohydrolase. The Journal of biological chemistry 1985, 260, 14145–14149. [Google Scholar] [CrossRef]
- Cravatt, B.F.; Lichtman, A.H. The enzymatic inactivation of the fatty acid amide class of signaling lipids. Chemistry and physics of lipids 2002, 121, 135–148. [Google Scholar] [CrossRef]
- Mattace Raso, G.; Simeoli, R.; Russo, R.; Santoro, A.; Pirozzi, C.; d'Emmanuele di Villa Bianca, R.; Mitidieri, E.; Paciello, O.; Pagano, T.B.; Orefice, N.S.; et al. N-Palmitoylethanolamide protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress. Pharmacological research 2013, 76, 67–76. [Google Scholar] [CrossRef]
- Petrosino, S.; Iuvone, T.; Di Marzo, V. N-palmitoyl-ethanolamine: Biochemistry and new therapeutic opportunities. Biochimie 2010, 92, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Mazzari, S.; Canella, R.; Petrelli, L.; Marcolongo, G.; Leon, A. N-(2-hydroxyethyl)hexadecanamide is orally active in reducing edema formation and inflammatory hyperalgesia by down-modulating mast cell activation. European journal of pharmacology 1996, 300, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Scarampella, F.; Abramo, F.; Noli, C. Clinical and histological evaluation of an analogue of palmitoylethanolamide, PLR 120 (comicronized Palmidrol INN) in cats with eosinophilic granuloma and eosinophilic plaque: a pilot study. Veterinary dermatology 2001, 12, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Theodosiou, M.; Rush, A.R.; Zhou, F.X.; Hu, D.; Walker, S.J.; Tracey, J.D. Hyperalgesia due to nerve damage: role of nerve growth factor. Pain 1999, 81, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Lambert, D.M.; Di Marzo, V. The palmitoylethanolamide and oleamide enigmas : are these two fatty acid amides cannabimimetic? Current medicinal chemistry 1999, 6, 757–773. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.S.; Barrett, D.A.; Randall, M.D. 'Entourage' effects of N-palmitoylethanolamide and N-oleoylethanolamide on vasorelaxation to anandamide occur through TRPV1 receptors. British journal of pharmacology 2008, 155, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Del Re, A.; Palenca, I.; Seguella, L.; Pesce, M.; Corpetti, C.; Steardo, L.; Rurgo, S.; Sarnelli, G.; Esposito, G. Oral Adelmidrol Administration Up-Regulates Palmitoylethanolamide Production in Mice Colon and Duodenum through a PPAR-gamma Independent Action. Metabolites 2022, 12. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Bisogno, T.; Ligresti, A.; Bifulco, M.; Melck, D.; Di Marzo, V. Effect on cancer cell proliferation of palmitoylethanolamide, a fatty acid amide interacting with both the cannabinoid and vanilloid signalling systems. Fundamental & clinical pharmacology 2002, 16, 297–302. [Google Scholar] [CrossRef]
- Ambrosino, P.; Soldovieri, M.V.; Russo, C.; Taglialatela, M. Activation and desensitization of TRPV1 channels in sensory neurons by the PPARalpha agonist palmitoylethanolamide. British journal of pharmacology 2013, 168, 1430–1444. [Google Scholar] [CrossRef]
- Capasso, R.; Orlando, P.; Pagano, E.; Aveta, T.; Buono, L.; Borrelli, F.; Di Marzo, V.; Izzo, A.A. Palmitoylethanolamide normalizes intestinal motility in a model of post-inflammatory accelerated transit: involvement of CB(1) receptors and TRPV1 channels. British journal of pharmacology 2014, 171, 4026–4037. [Google Scholar] [CrossRef]
- Deciga-Campos, M.; Jaramillo-Morales, O.A.; Espinosa-Juarez, J.V.; Aguilera-Martinez, M.E.; Ventura-Martinez, R.; Lopez-Munoz, F.J. N-palmitoylethanolamide synergizes the antinociception of morphine and gabapentin in the formalin test in mice. The Journal of pharmacy and pharmacology 2023, 75, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- D'Agostino, G.; La Rana, G.; Russo, R.; Sasso, O.; Iacono, A.; Esposito, E.; Raso, G.M.; Cuzzocrea, S.; Lo Verme, J.; Piomelli, D.; et al. Acute intracerebroventricular administration of palmitoylethanolamide, an endogenous peroxisome proliferator-activated receptor-alpha agonist, modulates carrageenan-induced paw edema in mice. The Journal of pharmacology and experimental therapeutics 2007, 322, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, C.; Pirozzi, C.; Lama, A.; Senzacqua, M.; Comella, F.; Bordin, A.; Monnolo, A.; Pelagalli, A.; Ferrante, M.C.; Mollica, M.P.; et al. Palmitoylethanolamide Promotes White-to-Beige Conversion and Metabolic Reprogramming of Adipocytes: Contribution of PPAR-alpha. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Chen, Q.; Jiang, N.; Liang, X.; Li, J.; Zong, R.; Huang, C.; Qiu, Y.; Ma, J.X.; Liu, Z. PPARalpha-Dependent Effects of Palmitoylethanolamide Against Retinal Neovascularization and Fibrosis. Investigative ophthalmology & visual science 2020, 61, 15. [Google Scholar] [CrossRef]
- Deciga-Campos, M.; Ramirez-Marin, P.M.; Lopez-Munoz, F.J. Synergistic antinociceptive interaction between palmitoylethanolamide and tramadol in the mouse formalin test. European journal of pharmacology 2015, 765, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Pagano, E.; Venneri, T.; Lucariello, G.; Cicia, D.; Brancaleone, V.; Nani, M.F.; Cacciola, N.A.; Capasso, R.; Izzo, A.A.; Borrelli, F.; et al. Palmitoylethanolamide Reduces Colon Cancer Cell Proliferation and Migration, Influences Tumor Cell Cycle and Exerts In Vivo Chemopreventive Effects. Cancers 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Avagliano, C.; Russo, R.; De Caro, C.; Cristiano, C.; La Rana, G.; Piegari, G.; Paciello, O.; Citraro, R.; Russo, E.; De Sarro, G.; et al. Palmitoylethanolamide protects mice against 6-OHDA-induced neurotoxicity and endoplasmic reticulum stress: In vivo and in vitro evidence. Pharmacological research 2016, 113, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, C.; Valenza, M.; Stecca, C.; Esposito, G.; Carratu, M.R.; Steardo, L. Palmitoylethanolamide exerts neuroprotective effects in mixed neuroglial cultures and organotypic hippocampal slices via peroxisome proliferator-activated receptor-alpha. Journal of neuroinflammation 2012, 9, 49. [Google Scholar] [CrossRef]
- Cristiano, C.; Pirozzi, C.; Coretti, L.; Cavaliere, G.; Lama, A.; Russo, R.; Lembo, F.; Mollica, M.P.; Meli, R.; Calignano, A.; et al. Palmitoylethanolamide counteracts autistic-like behaviours in BTBR T+tf/J mice: Contribution of central and peripheral mechanisms. Brain, behavior, and immunity 2018, 74, 166–175. [Google Scholar] [CrossRef]
- Guida, F.; Luongo, L.; Boccella, S.; Giordano, M.E.; Romano, R.; Bellini, G.; Manzo, I.; Furiano, A.; Rizzo, A.; Imperatore, R.; et al. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Scientific reports 2017, 7, 375. [Google Scholar] [CrossRef]
- Rinne, P.; Guillamat-Prats, R.; Rami, M.; Bindila, L.; Ring, L.; Lyytikainen, L.P.; Raitoharju, E.; Oksala, N.; Lehtimaki, T.; Weber, C.; et al. Palmitoylethanolamide Promotes a Proresolving Macrophage Phenotype and Attenuates Atherosclerotic Plaque Formation. Arteriosclerosis, thrombosis, and vascular biology 2018, 38, 2562–2575. [Google Scholar] [CrossRef] [PubMed]
- Marichal-Cancino, B.A.; Gonzalez-Hernandez, A.; MaassenVanDenBrink, A.; Ramirez-San Juan, E.; Villalon, C.M. Potential Mechanisms Involved in Palmitoylethanolamide-Induced Vasodepressor Effects in Rats. Journal of vascular research 2020, 57, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Qiao, Z.; Kumar, P.; Song, Z.H. Effects of palmitoylethanolamide on aqueous humor outflow. Investigative ophthalmology & visual science 2012, 53, 4416–4425. [Google Scholar] [CrossRef]
- Genovese, T.; Esposito, E.; Mazzon, E.; Di Paola, R.; Meli, R.; Bramanti, P.; Piomelli, D.; Calignano, A.; Cuzzocrea, S. Effects of palmitoylethanolamide on signaling pathways implicated in the development of spinal cord injury. The Journal of pharmacology and experimental therapeutics 2008, 326, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Crupi, R.; Impellizzeri, D.; Bruschetta, G.; Cordaro, M.; Paterniti, I.; Siracusa, R.; Cuzzocrea, S.; Esposito, E. Co-Ultramicronized Palmitoylethanolamide/Luteolin Promotes Neuronal Regeneration after Spinal Cord Injury. Frontiers in pharmacology 2016, 7, 47. [Google Scholar] [CrossRef]
- Caltagirone, C.; Cisari, C.; Schievano, C.; Di Paola, R.; Cordaro, M.; Bruschetta, G.; Esposito, E.; Cuzzocrea, S.; Stroke Study, G. Co-ultramicronized Palmitoylethanolamide/Luteolin in the Treatment of Cerebral Ischemia: from Rodent to Man. Translational stroke research 2016, 7, 54–69. [Google Scholar] [CrossRef]
- Di Cesare Mannelli, L.; D'Agostino, G.; Pacini, A.; Russo, R.; Zanardelli, M.; Ghelardini, C.; Calignano, A. Palmitoylethanolamide is a disease-modifying agent in peripheral neuropathy: pain relief and neuroprotection share a PPAR-alpha-mediated mechanism. Mediators of inflammation 2013, 2013, 328797. [Google Scholar] [CrossRef]
- Fusco, R.; Scuto, M.; Cordaro, M.; D'Amico, R.; Gugliandolo, E.; Siracusa, R.; Peritore, A.F.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; et al. N-Palmitoylethanolamide-Oxazoline Protects against Middle Cerebral Artery Occlusion Injury in Diabetic Rats by Regulating the SIRT1 Pathway. International journal of molecular sciences 2019, 20. [Google Scholar] [CrossRef]
- DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: the devil is in the details. Journal of neurochemistry 2016, 139 Suppl 2, 136–153. [Google Scholar] [CrossRef]
- Mechoulam, R.; Ben-Shabat, S.; Hanus, L.; Ligumsky, M.; Kaminski, N.E.; Schatz, A.R.; Gopher, A.; Almog, S.; Martin, B.R.; Compton, D.R.; et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochemical pharmacology 1995, 50, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Lyman, M.; Lloyd, D.G.; Ji, X.; Vizcaychipi, M.P.; Ma, D. Neuroinflammation: the role and consequences. Neuroscience research 2014, 79, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, U.; Pelzer, M.; Kleine, J.; Hohmann, T.; Ghadban, C.; Dehghani, F. Opposite Effects of Neuroprotective Cannabinoids, Palmitoylethanolamide, and 2-Arachidonoylglycerol on Function and Morphology of Microglia. Frontiers in neuroscience 2019, 13, 1180. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, C.; Esposito, G.; Blasio, A.; Valenza, M.; Arietti, P.; Steardo, L., Jr.; Carnuccio, R.; De Filippis, D.; Petrosino, S.; Iuvone, T.; et al. Palmitoylethanolamide counteracts reactive astrogliosis induced by beta-amyloid peptide. Journal of cellular and molecular medicine 2011, 15, 2664–2674. [Google Scholar] [CrossRef]
- D'Aloia, A.; Molteni, L.; Gullo, F.; Bresciani, E.; Artusa, V.; Rizzi, L.; Ceriani, M.; Meanti, R.; Lecchi, M.; Coco, S.; et al. Palmitoylethanolamide Modulation of Microglia Activation: Characterization of Mechanisms of Action and Implication for Its Neuroprotective Effects. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef]
- Lama, A.; Pirozzi, C.; Severi, I.; Morgese, M.G.; Senzacqua, M.; Annunziata, C.; Comella, F.; Del Piano, F.; Schiavone, S.; Petrosino, S.; et al. Palmitoylethanolamide dampens neuroinflammation and anxiety-like behavior in obese mice. Brain, behavior, and immunity 2022, 102, 110–123. [Google Scholar] [CrossRef]
- Zhou, G.; Fu, X.; Wang, L.; Cao, Y.; Zhuang, J.; Hu, J.; Li, Y.; Xu, C.; Gao, S.; Shao, A.; et al. Palmitoylethanolamide ameliorates neuroinflammation via modulating PPAR-alpha to promote the functional outcome after intracerebral hemorrhage. Neuroscience letters 2022, 781, 136648. [Google Scholar] [CrossRef]
- Paterniti, I.; Impellizzeri, D.; Di Paola, R.; Navarra, M.; Cuzzocrea, S.; Esposito, E. A new co-ultramicronized composite including palmitoylethanolamide and luteolin to prevent neuroinflammation in spinal cord injury. Journal of neuroinflammation 2013, 10, 91. [Google Scholar] [CrossRef]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer's disease. European journal of neurology 2018, 25, 59–70. [Google Scholar] [CrossRef]
- Scuderi, C.; Bronzuoli, M.R.; Facchinetti, R.; Pace, L.; Ferraro, L.; Broad, K.D.; Serviddio, G.; Bellanti, F.; Palombelli, G.; Carpinelli, G.; et al. Ultramicronized palmitoylethanolamide rescues learning and memory impairments in a triple transgenic mouse model of Alzheimer's disease by exerting anti-inflammatory and neuroprotective effects. Translational psychiatry 2018, 8, 32. [Google Scholar] [CrossRef]
- D'Agostino, G.; Russo, R.; Avagliano, C.; Cristiano, C.; Meli, R.; Calignano, A. Palmitoylethanolamide protects against the amyloid-beta25-35-induced learning and memory impairment in mice, an experimental model of Alzheimer disease. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2012, 37, 1784–1792. [Google Scholar] [CrossRef]
- Facchinetti, R.; Valenza, M.; Gomiero, C.; Mancini, G.F.; Steardo, L.; Campolongo, P.; Scuderi, C. Co-Ultramicronized Palmitoylethanolamide/Luteolin Restores Oligodendrocyte Homeostasis via Peroxisome Proliferator-Activated Receptor-alpha in an In Vitro Model of Alzheimer's Disease. Biomedicines 2022, 10. [Google Scholar] [CrossRef] [PubMed]
- Craft, S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Archives of neurology 2009, 66, 300–305. [Google Scholar] [CrossRef]
- Impellizzeri, D.; Siracusa, R.; Cordaro, M.; Crupi, R.; Peritore, A.F.; Gugliandolo, E.; D'Amico, R.; Petrosino, S.; Evangelista, M.; Di Paola, R.; et al. N-Palmitoylethanolamine-oxazoline (PEA-OXA): A new therapeutic strategy to reduce neuroinflammation, oxidative stress associated to vascular dementia in an experimental model of repeated bilateral common carotid arteries occlusion. Neurobiology of disease 2019, 125, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Giovannoni, G. Multiple sclerosis - a review. European journal of neurology 2019, 26, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Doshi, A.; Chataway, J. Multiple sclerosis, a treatable disease. Clinical medicine 2017, 17, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Conti, S.; Giagnoni, G.; Colleoni, M. Therapeutic effect of the endogenous fatty acid amide, palmitoylethanolamide, in rat acute inflammation: inhibition of nitric oxide and cyclo-oxygenase systems. British journal of pharmacology 2002, 137, 413–420. [Google Scholar] [CrossRef]
- LoVerme, J.; Russo, R.; La Rana, G.; Fu, J.; Farthing, J.; Mattace-Raso, G.; Meli, R.; Hohmann, A.; Calignano, A.; Piomelli, D. Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-alpha. The Journal of pharmacology and experimental therapeutics 2006, 319, 1051–1061. [Google Scholar] [CrossRef]
- D'Agostino, G.; La Rana, G.; Russo, R.; Sasso, O.; Iacono, A.; Esposito, E.; Mattace Raso, G.; Cuzzocrea, S.; Loverme, J.; Piomelli, D.; et al. Central administration of palmitoylethanolamide reduces hyperalgesia in mice via inhibition of NF-kappaB nuclear signalling in dorsal root ganglia. European journal of pharmacology 2009, 613, 54–59. [Google Scholar] [CrossRef]
- Romero, T.R.; Duarte, I.D. N-palmitoyl-ethanolamine (PEA) induces peripheral antinociceptive effect by ATP-sensitive K+-channel activation. Journal of pharmacological sciences 2012, 118, 156–160. [Google Scholar] [CrossRef]
- Romero, T.R.; Galdino, G.S.; Silva, G.C.; Resende, L.C.; Perez, A.C.; Cortes, S.F.; Duarte, I.D. Involvement of the L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in peripheral antinociception induced by N-palmitoyl-ethanolamine in rats. Journal of neuroscience research 2012, 90, 1474–1479. [Google Scholar] [CrossRef]
- Galdino, G.; Romero, T.; Pinho da Silva, J.F.; Aguiar, D.; de Paula, A.M.; Cruz, J.; Parrella, C.; Piscitelli, F.; Duarte, I.; Di Marzo, V.; et al. Acute resistance exercise induces antinociception by activation of the endocannabinoid system in rats. Anesthesia and analgesia 2014, 119, 702–715. [Google Scholar] [CrossRef] [PubMed]
- Peritore, A.F.; Siracusa, R.; Fusco, R.; Gugliandolo, E.; D'Amico, R.; Cordaro, M.; Crupi, R.; Genovese, T.; Impellizzeri, D.; Cuzzocrea, S.; et al. Ultramicronized Palmitoylethanolamide and Paracetamol, a New Association to Relieve Hyperalgesia and Pain in a Sciatic Nerve Injury Model in Rat. International journal of molecular sciences 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, D.; Luongo, L.; Cipriano, M.; Palazzo, E.; Cinelli, M.P.; de Novellis, V.; Maione, S.; Iuvone, T. Palmitoylethanolamide reduces granuloma-induced hyperalgesia by modulation of mast cell activation in rats. Molecular pain 2011, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Ardizzone, A.; Fusco, R.; Casili, G.; Lanza, M.; Impellizzeri, D.; Esposito, E.; Cuzzocrea, S. Effect of Ultra-Micronized-Palmitoylethanolamide and Acetyl-l-Carnitine on Experimental Model of Inflammatory Pain. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Seol, T.K.; Lee, W.; Park, S.; Kim, K.N.; Kim, T.Y.; Oh, Y.N.; Jun, J.H. Effect of palmitoylethanolamide on inflammatory and neuropathic pain in rats. Korean journal of anesthesiology 2017, 70, 561–566. [Google Scholar] [CrossRef]
- Xia, B.; Di, C.; Zhang, J.; Hu, S.; Jin, H.; Tong, P. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcified tissue international 2014, 95, 495–505. [Google Scholar] [CrossRef]
- Hinz, B.; Brune, K. Pain and osteoarthritis: new drugs and mechanisms. Current opinion in rheumatology 2004, 16, 628–633. [Google Scholar] [CrossRef]
- Jung, J.I.; Lee, H.S.; Jeon, Y.E.; Kim, S.M.; Hong, S.H.; Moon, J.M.; Lim, C.Y.; Kim, Y.H.; Kim, E.J. Anti-inflammatory activity of palmitoylethanolamide ameliorates osteoarthritis induced by monosodium iodoacetate in Sprague-Dawley rats. Inflammopharmacology 2021, 29, 1475–1486. [Google Scholar] [CrossRef]
- Impellizzeri, D.; Esposito, E.; Di Paola, R.; Ahmad, A.; Campolo, M.; Peli, A.; Morittu, V.M.; Britti, D.; Cuzzocrea, S. Palmitoylethanolamide and luteolin ameliorate development of arthritis caused by injection of collagen type II in mice. Arthritis research & therapy 2013, 15, R192. [Google Scholar] [CrossRef]
- D'Amico, R.; Monaco, F.; Siracusa, R.; Cordaro, M.; Fusco, R.; Peritore, A.F.; Gugliandolo, E.; Crupi, R.; Cuzzocrea, S.; Di Paola, R.; et al. Ultramicronized Palmitoylethanolamide in the Management of Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef]
- Wang, J.X.; Voss, J.L. Brain networks for exploration decisions utilizing distinct modeled information types during contextual learning. Neuron 2014, 82, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Peritore, A.F.; D'Amico, R.; Siracusa, R.; Cordaro, M.; Fusco, R.; Gugliandolo, E.; Genovese, T.; Crupi, R.; Di Paola, R.; Cuzzocrea, S.; et al. Management of Acute Lung Injury: Palmitoylethanolamide as a New Approach. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Ying, H.; Yao, J.; Yang, L.; Jin, W.; Ma, H.; Li, L.; Zhao, Y. Micronized Palmitoylethanolamide Ameliorates Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Steatohepatitis via Inhibiting Inflammation and Restoring Autophagy. Frontiers in pharmacology 2021, 12, 744483. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Friedman, S.L.; Shulman, G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021, 184, 2537–2564. [Google Scholar] [CrossRef]
- Albanese, M.; Marrone, G.; Paolino, A.; Di Lauro, M.; Di Daniele, F.; Chiaramonte, C.; D'Agostini, C.; Romani, A.; Cavaliere, A.; Guerriero, C.; et al. Effects of Ultramicronized Palmitoylethanolamide (um-PEA) in COVID-19 Early Stages: A Case-Control Study. Pharmaceuticals 2022, 15. [Google Scholar] [CrossRef]
|
Pathological Condition |
Experimental Model | Lineage | Formulation | A.R. | Main Effect | Receptor | Reference | |
| Pain and inflammatory processes | Postoperative pain | Rat | Sprague-Dawley | PEA-um | p.o. | Anti-inflammatory and analgesic | - | [18] |
| Sciatic nerve injury | Rat | Sprague-Dawley | PEAum- Paracetamol | p.o. | Anti-inflammatory and analgesic | - | [132] | |
| Sciatic nerve injury | Mice and Rat | Swiss and Sprague-Dawley | PEA | i.pl. | Anti-inflammatory and analgesic | PPAR-α | [127] | |
| Hyperalgesia | Rat | Wistar | PEA | i.pl. | Antinociception | Canais de K(+) | [129] | |
| Hyperalgesia | Rat | Wistar | PEA | i.pl. | Antinociception | nNOS | [130] | |
| Hyperalgesia | Rat | Wistar | PEA | i.pl. | Antinociception | CB2 | [17] | |
| Paw edema | Rat | Sprague-Dawley | PEA-um | p.o. | Anti-hyperalgesic and anti-inflammatory | - | [72] | |
| Paw edema | Rat | Sprague-Dawley | PEA-um and LAC | p.o. | Anti-inflammatory and analgesic | - | [134] | |
| Paw edema | Mice | Swiss | PEA | i.c.v. | Anti-hyperalgesic and anti-inflammatory | PPAR-α | [92] | |
| Inflammatory and neuropathic pain | Rat | Sprague-Dawley | PEA | i.p. | Anti-hyperalgesic and anti-inflammatory | - | [135] | |
| Inflammatory and neuropathic pain | Mice and Rat | Sprague-Dawley and mutant mice | PEA-OXA | p.o. | Anti-inflammatory and immunomodulatory | PPAR-α. | [13] | |
| Acute inflammation | Rat | Wistar | PEA | p.o. | Anti-inflammatory | - | [126] | |
| Osteoarthritis | Rat | Sprague-Dawley | PEA | p.o. | Anti-inflammatory and immunomodulatory | - | [138] | |
| Osteoarthritis | Mice | DBA | co-ultraPEALut | i.p. | Anti-inflammatory | - | [71] | |
| Hypersensitivity | Mice | BALB/c | PEA | p.o. | Immunomodulatory | - | [16] | |
| Chronic granulomatous inflammation | Rat | Wistar | PEA | s.c. | Anti-inflammatory and immunomodulatory | - | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).