Submitted:
03 October 2023
Posted:
04 October 2023
You are already at the latest version
Abstract

Keywords:
Introduction
Methods
Study Selection and Eligibility Criteria
Information Sources and Search Strategy
Selection and Data collection process
Data items
Methodological Quality Assessment
Results
Search Results
Methodological Quality Assessment
Study Characteristics
Types and Cancer Models
Tumor Volume, Weight, Size, and Angiogenesis After Environmental Enrichment
| Author, Year | Type of Cancer | Cancer model | Tumor outcomes |
|---|---|---|---|
| Bice et al.2017 | Colon Tumor | Genetically induced by mutant’s phenotypes (ApcMin and ApcMin Tcf4Het) | ↓ Tumor Angiogenesis; Volume (mm3); ↔ Tumor number and Weight (mg) |
| Cao et al.2010 | Melanoma | Implanted subcutaneously in the flank (B16F10 syngeneic melanoma cell line / 1 x 105 per mouse). | ↓ Tumor volume (% and mm3); Tumor Weight (%); ↔ Tumor occurrence (%); Mice with tumor (%) |
| Foglesong et al.2019 | Breast Tumor | Inoculation of 50.000 breast cancer cells derived from MMTV-PyMT mice in 100 μL serum-free in the right mammary | ↓ Tumor occurrence (%) and Volume (mm3) |
| Garofalo et al.2014 | Glioma | Were injected intracranially GL261 or CD133+-GL261 (7.5 x 104), and U87MG (5 x 104) glioma cells | ↓ Tumor volume (% and mm3); ↔ Mice with tumor |
| Kappes et al.2012 | Breast Tumor | Mammary cell line EO771 (56105 cells in 100 ml) were transplanted subcutaneously into the fourth right mammary fat pad | ↓ Tumor volume (mm3); Weight (mg) |
| Li et al.2015 | Pancreatic | Subcutaneous tumors were prepared and implanted using Panc02 cells (6 x 105 per mouse) in their right flank | ↓ Tumor volume (mm3); Weight (g); ↑ Tumor Inhibition (%) |
| Li et al.2021 | Liver | Murine HCC cells (Hepa1-6, H22 and LPC-H12) were transplanted subcutaneously and injected into the right flanks of mice (~5 × 105–1 × 106) cells | ↓ Tumor occurrence; Volume (mm3); Weight (g) |
| Queen et al. 2021 | Lung | LLC cells (2.5 x 105) were implanted in mouse subcutaneous tissue with 100 μL of serum-free | ↓ Tumor volume (mm3); Weight (g) |
| Takai et al.2016 | Ovarian | OV3121 cells, derived from an ovarian granulosa cell tumor (5 × 105 cells) were injected subcutaneously onto the back of the mice | ↓ Mice with tumor (%) |
| Watanabe et al.2019 | Lung | 3LL tumor cells (5 × 104) were injected subcutaneously in the right flanks to develop solid intra-abdominal tumors. Alternatively, 3LL cells (1 × 105) were injected into the tail vein to form colonies of metastatic cells | ↓ Tumor Weight (g), and Occurrence |
| Westwood et al.2013 | Melanoma | Were inoculated subcutaneously with 100 μl of a single-cell suspension of 1×105 B16F10 melanoma cells | ↔ Tumor Size (mm2) |
| Wu et al.2016 | Pancreatic | Panc02, Panc02-VC or Panc02-ABCA8b cells (6 x105 per mice) were implanted subcutaneously in the right flank | ↓ Tumor Weight (g), ↑ Tumor Inhibition (%) |
| Author, year | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 |
|---|---|---|---|---|---|---|---|---|---|---|
| Legend: Q1. Was the allocation sequence adequately generated and applied? Q2. Were the groups similar at baseline or were they adjusted for confounders in the analysis?; Q3. Was the allocation to the different groups adequately concealed during? Q4. Were the animals randomly housed during the experiment?; Q5. Were the caregivers and/or investigators blinded from knowledge which intervention each animal received during the experiment?; Q6. Were animals selected at random for outcome assessment?; Q7. Was the outcome assessor blinded?; Q8. Were incomplete outcome data adequately addressed?; Q9. Are reports of the study free of selective outcome reporting?; Q10. Was the study apparently free of other problems that could result in high risk of bias?; Y, Yes; N, No; U, Unclear | ||||||||||
| Bice et al., 2017 | Y | Y | Y | Y | N | Y | N | Y | Y | Y |
| Cao et al., 2010 | Y | Y | Y | Y | N | Y | N | Y | Y | Y |
| Foglesong et al., 2019 | Y | Y | Y | Y | N | Y | N | Y | Y | Y |
| Garofalo et al., 2014 | Y | U | Y | Y | N | Y | N | Y | Y | Y |
| Kappes et al., 2012 | Y | Y | Y | Y | N | Y | N | Y | Y | Y |
| Li et al., 2015 | Y | Y | Y | Y | N | Y | N | Y | Y | Y |
| Li et al., 2021 | Y | Y | Y | Y | N | Y | N | Y | Y | Y |
| Queen et al., 2021 | Y | Y | Y | Y | N | Y | N | Y | Y | Y |
| Takai et al., 2016 | Y | Y | Y | Y | N | Y | N | Y | Y | Y |
| Watanabe et al., 2019 | Y | Y | Y | Y | N | Y | N | Y | Y | Y |
| Westwood et al. 2013 | Y | U | Y | Y | N | Y | N | Y | Y | Y |
| Wu et al., 2016 | Y | Y | Y | Y | N | Y | N | Y | Y | Y |
Tumor Number, Occurrence, Inhibition, and Mice with Tumor after different protocols of environmental enrichment
Discussion
Strengths and limitations
Conclusions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Consent for publication
References
- Crofton, E. J.; Zhang, Y.; Green, T. A. , Inoculation stress hypothesis of environmental enrichment. Neurosci Biobehav Rev 2015, 49, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Ismail, T. R.; Yap, C. G.; Naidu, R.; Pamidi, N. , Enrichment Protocol for Rat Models. Curr Protoc 2021, 1, e152. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Kang, K. , Effects of Environmental Enrichment on Neurotrophins in an MPTP-Induced Parkinson's Disease Animal Model: A Randomized Trial. Biol Res Nurs 2020, 22, 506–513. [Google Scholar] [CrossRef]
- Liew, A. K. Y.; Teo, C. H.; Soga, T. , The Molecular Effects of Environmental Enrichment on Alzheimer's Disease. Mol Neurobiol 2022, 59, 7095–7118. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Xian, D.; He, Y.; Yan, Z.; Deng, X.; Chen, Y.; Zhao, L.; Zhang, Y.; Li, W.; Ma, B.; Zhang, J.; Jing, Y. , Effects of maternal deprivation and environmental enrichment on anxiety-like and depression-like behaviors correlate with oxytocin system and CRH level in the medial-lateral habenula. Peptides 2022, 158, 170882. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Fernandes, M. S.; Santos, G. C. J.; Filgueira, T. O.; Gomes, D. A.; Barbosa, E. A. S.; Dos Santos, T. M.; Câmara, N. O. S.; Castoldi, A.; Souto, F. O. , Cytokines and Immune Cells Profile in Different Tissues of Rodents Induced by Environmental Enrichment: Systematic Review. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef] [PubMed]
- Greten, F. R.; Grivennikov, S. I. , Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef]
- Kuninaka, S.; Yano, T.; Yokoyama, H.; Fukuyama, Y.; Terazaki, Y.; Uehara, T.; Kanematsu, T.; Asoh, H.; Ichinose, Y. , Direct influences of pro-inflammatory cytokines (IL-1beta, TNF-alpha, IL-6) on the proliferation and cell-surface antigen expression of cancer cells. Cytokine 2000, 12, 8–11. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, H.; Li, C.; Cai, P.; Qi, F. , The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. Biosci Trends 2021, 15, 283–298. [Google Scholar] [CrossRef]
- Cao, L.; Liu, X.; Lin, E. J.; Wang, C.; Choi, E. Y.; Riban, V.; Lin, B.; During, M. J. , Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 2010, 142, 52–64. [Google Scholar] [CrossRef]
- Hassan, Q. N., 2nd; Queen, N. J.; Cao, L. , Regulation of aging and cancer by enhanced environmental activation of a hypothalamic-sympathoneural-adipocyte axis. Transl Cancer Res 2020, 9, 5687–5699. [Google Scholar] [CrossRef] [PubMed]
- Queen, N. J.; Deng, H.; Huang, W.; Mo, X.; Wilkins, R. K.; Zhu, T.; Wu, X.; Cao, L. , Environmental Enrichment Mitigates Age-Related Metabolic Decline and Lewis Lung Carcinoma Growth in Aged Female Mice. Cancer Prev Res (Phila) 2021, 14, 1075–1088. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Gan, Y.; Fan, Y.; Wu, Y.; Lin, H.; Song, Y.; Cai, X.; Yu, X.; Pan, W.; Yao, M.; Gu, J.; Tu, H. , Enriched environment inhibits mouse pancreatic cancer growth and down-regulates the expression of mitochondria-related genes in cancer cells. Sci Rep 2015, 5, 7856. [Google Scholar] [CrossRef]
- Nachat-Kappes, R.; Pinel, A.; Combe, K.; Lamas, B.; Farges, M. C.; Rossary, A.; Goncalves-Mendes, N.; Caldefie-Chezet, F.; Vasson, M. P.; Basu, S. , Effects of enriched environment on COX-2, leptin and eicosanoids in a mouse model of breast cancer. PLoS One 2012, 7, e51525. [Google Scholar] [CrossRef]
- Westwood, J. A.; Darcy, P. K.; Kershaw, M. H. , Environmental enrichment does not impact on tumor growth in mice. F1000Res 2013, 2, 140. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, S.; D'Alessandro, G.; Chece, G.; Brau, F.; Maggi, L.; Rosa, A.; Porzia, A.; Mainiero, F.; Esposito, V.; Lauro, C.; Benigni, G.; Bernardini, G.; Santoni, A.; Limatola, C. , Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice. Nat Commun 2015, 6, 6623. [Google Scholar] [CrossRef]
- Wu, Y.; Gan, Y.; Yuan, H.; Wang, Q.; Fan, Y.; Li, G.; Zhang, J.; Yao, M.; Gu, J.; Tu, H. , Enriched environment housing enhances the sensitivity of mouse pancreatic cancer to chemotherapeutic agents. Biochem Biophys Res Commun 2016, 473, 593–599. [Google Scholar] [CrossRef]
- Bice, B. D.; Stephens, M. R.; Georges, S. J.; Venancio, A. R.; Bermant, P. C.; Warncke, A. V.; Affolter, K. E.; Hidalgo, J. R.; Angus-Hill, M. L. , Environmental Enrichment Induces Pericyte and IgA-Dependent Wound Repair and Lifespan Extension in a Colon Tumor Model. Cell Rep 2017, 19, 760–773. [Google Scholar] [CrossRef]
- Foglesong, G. D.; Queen, N. J.; Huang, W.; Widstrom, K. J.; Cao, L. , Enriched environment inhibits breast cancer progression in obese models with intact leptin signaling. Endocr Relat Cancer 2019, 26, 483–495. [Google Scholar] [CrossRef]
- Watanabe, J.; Kagami, N.; Kawazoe, M.; Arata, S. , A simplified enriched environment increases body temperature and suppresses cancer progression in mice. Exp Anim 2020, 69, 207–218. [Google Scholar] [CrossRef]
- Liu, C.; Yang, Y.; Chen, C.; Li, L.; Li, J.; Wang, X.; Chu, Q.; Qiu, L.; Ba, Q.; Li, X.; Wang, H. , Environmental eustress modulates β-ARs/CCL2 axis to induce anti-tumor immunity and sensitize immunotherapy against liver cancer in mice. Nat Commun 2021, 12, 5725. [Google Scholar] [CrossRef]
- Takai, D.; Abe, A.; Miura, H.; Tanaka, S.; Komura, J. I. , Minimum environmental enrichment is effective in activating antitumor immunity to transplanted tumor cells in mice. Exp Anim 2019, 68, 569–576. [Google Scholar] [CrossRef]
- Kamiya, A.; Hiyama, T.; Fujimura, A.; Yoshikawa, S. , Sympathetic and parasympathetic innervation in cancer: therapeutic implications. Clin Auton Res 2021, 31, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Magnon, C.; Hall, S. J.; Lin, J.; Xue, X.; Gerber, L.; Freedland, S. J.; Frenette, P. S. , Autonomic nerve development contributes to prostate cancer progression. Science 2013, 341, 1236361. [Google Scholar] [CrossRef] [PubMed]
- Dubben, H. H.; Thames, H. D.; Beck-Bornholdt, H. P. , Tumor volume: a basic and specific response predictor in radiotherapy. Radiother Oncol 1998, 47, 167–174. [Google Scholar] [CrossRef]
- Detmar, M. , Tumor angiogenesis. J Investig Dermatol Symp Proc 2000, 5, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, M.; Rüdiger, D.; Zahler, S. , Mechanical Aspects of Angiogenesis. Cancers (Basel) 2021, 13. [Google Scholar] [CrossRef]
- Kiselev, S. M.; Lutsenko, S. V.; Severin, S. E.; Severin, E. S. , Tumor angiogenesis inhibitors. Biochemistry (Mosc) 2003, 68, 497–513. [Google Scholar] [CrossRef]
- Lugano, R.; Ramachandran, M.; Dimberg, A. , Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 2020, 77, 1745–1770. [Google Scholar] [CrossRef]
- Xiao, R.; Ali, S.; Caligiuri, M. A.; Cao, L. , Enhancing Effects of Environmental Enrichment on the Functions of Natural Killer Cells in Mice. Front Immunol 2021, 12, 695859. [Google Scholar] [CrossRef]
- Bloor, C. M. , Angiogenesis during exercise and training. Angiogenesis 2005, 8, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Rampino, A.; Annese, T.; Margari, A.; Tamma, R.; Ribatti, D. , Nutraceuticals and their role in tumor angiogenesis. Exp Cell Res 2021, 408, 112859. [Google Scholar] [CrossRef] [PubMed]
- Di Castro, M. A.; Garofalo, S.; De Felice, E.; Meneghetti, N.; Di Pietro, E.; Mormino, A.; Mazzoni, A.; Caleo, M.; Maggi, L.; Limatola, C. , Environmental enrichment counteracts the effects of glioma in primary visual cortex. Neurobiol Dis 2022, 174, 105894. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Vogelzang, A.; Miyajima, M.; Sugiura, Y.; Wu, Y.; Chamoto, K.; Nakano, R.; Hatae, R.; Menzies, R. J.; Sonomura, K.; Hojo, N.; Ogawa, T.; Kobayashi, W.; Tsutsui, Y.; Yamamoto, S.; Maruya, M.; Narushima, S.; Suzuki, K.; Sugiya, H.; Murakami, K.; Hashimoto, M.; Ueno, H.; Kobayashi, T.; Ito, K.; Hirano, T.; Shiroguchi, K.; Matsuda, F.; Suematsu, M.; Honjo, T.; Fagarasan, S. , B cell-derived GABA elicits IL-10(+) macrophages to limit anti-tumour immunity. Nature 2021, 599, 471–476. [Google Scholar] [CrossRef]
- Mansour, A. G.; Xiao, R.; Bergin, S. M.; Huang, W.; Chrislip, L. A.; Zhang, J.; Ali, S.; Queen, N. J.; Caligiuri, M. A.; Cao, L. , Enriched environment enhances NK cell maturation through hypothalamic BDNF in male mice. Eur J Immunol 2021, 51, 557–566. [Google Scholar] [CrossRef]


| Inclusion Criteria | Exclusion Criteria | |
|---|---|---|
| Population | Rodents | Non-Rodents |
| Intervention | Environmental enrichment | Non-Environmental enrichment |
| Control | Non-Environmental enrichment | Any other comparison group |
| Outcomes | Type of cancer; cancer model description; Angiogenesis; Tumor Occurrence; Tumor Volume (%, cubic millimeters); Tumor Weight (milligrams, grams) Mice with Tumor and Inhibition (%); Tumor Size (square millimeters). | No Tumor Parameters |
| Study Design | Animal Studies | Reviews; Case report; Letter to editor; comments, etc. |
| Author, Year | Species, Sex and Age | Animals per Cage | Environmental Enrichment Protocol and Housing dimensionsWYXWYX(Length, Width and Depth or Height) | Exposure time to Environmental Enrichment |
|---|---|---|---|---|
| Bice et al.2017 | C57BL6 mice; Female and Male; 16 wks old | 15-20 | Huts; Mouse Igloo; Rafters; Running Wheels; Tunnel; 15 cm x 20 cm x 29 cm | Short and Long term (16 wks) |
| Cao et al. 2010 | C57BL6 mice; Male; 3 wks old | 18-20 | Igloos; Huts; Maze; Nesting material; Retreats; Running Wheels; Tunnels; Wood Toys; 1.5 m x 1.5 m x 1.0 m | 3-6 wks |
| Foglesong et al.2019 | C57BL6 transgenic mice; Female; 6 wks old | 5 | Igloos; Huts; Maze; Nesting material; Retreats; Running Wheels; Tunnels; Wood Toys; 63 cm x 49 cm x 44 cm | 4 wks |
| Garofalo et al. 2014 | C57BL6 mice; Male; 3 wks-2 months old | 10 | Climbing Ladders; Seesaws; Running Wheel; Balls; Plastic; Wood; Cardboard Boxes and Nesting material; 36 cm x 54 cm x 19 cm | 5 wks |
| Kappes et al.2012 | C57BL6 mice; Female; 3 wks old | 10 | Running Wheel; Tunnels; Igloos; Nesting material and Wooden Toys; 60 cm x 38 cm x 20 cm | 16 wks |
| Li et al.2015 | C57BL6 mice; Male; 3 wks old | 12 | Running Wheel; Small Huts; Tunnels; Wood Toys; and Nesting materials; 61cm x 43 cm x 21 cm | 3-5 wks |
| Li et al.2021 | C57BL/6 mice; Male; 2–3 wks old and BALB/c mice; male; 3 wks old | 8-25 | Running Wheels; Tunnels; Huts; Retreats; and Wood Toys; 40 cm x 30 cm x 20 cm | 3-10 wks |
| Queen et al.2021 | C57BL6 mice; Female; 3 and 14 months old | 10 | Running Wheels; Huts; Shelters; Toys; Tunnels; Maze; and Nesting material; 120 cm x 90 cm x 76 cm | 11 wks |
| Takai et al.2016 | B6C3F1 mice; Female; 6 wks old | 12-24 | Mouse Igloos; 218 mm x 320 mm x 133 mm | 6 wks-100 days |
| Watanabe et al.2019 | C57BL/6 mice; male; 24-35 wks old | 4-14 | Mouse Igloos and Fast -Trac; 21.8 cm x 32 cm x 13.3 cm | 10-14 wks |
| Westwood et al.2013 | C57BL/6 mice; male; 3 wks old | 20 | Exercise Wheels; Cardboard Boxes; PVC Tubes; Plumbing T Piece; 81 cm x 57 cm x 34 cm | 6 wks |
| Wu et al.2016 | C57BL/6 mice; male; 3 wks old | 12 | Exercise Wheels; Tunnels; Wood Toys; Plastic Tubes; 61cm x 43 cm x 21 cm | 3 wks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
