Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Environmental Enrichment in Cancer: A Possible Tool to Combat Tumor Development: A Systematic Review

Version 1 : Received: 3 October 2023 / Approved: 4 October 2023 / Online: 4 October 2023 (09:35:48 CEST)

A peer-reviewed article of this Preprint also exists.

Fernandes, M.S.S.; Lacerda, T.R.; Fidélis, D.E.S.; Santos, G.C.J.; Filgueira, T.O.; de Souza, R.F.; Lagranha, C.J.; Lira, F.S.; Castoldi, A.; Souto, F.O. Environmental Enrichment in Cancer as a Possible Tool to Combat Tumor Development: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 16516. Fernandes, M.S.S.; Lacerda, T.R.; Fidélis, D.E.S.; Santos, G.C.J.; Filgueira, T.O.; de Souza, R.F.; Lagranha, C.J.; Lira, F.S.; Castoldi, A.; Souto, F.O. Environmental Enrichment in Cancer as a Possible Tool to Combat Tumor Development: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 16516.

Abstract

Aims: This systematic review aims to evaluate the influence of Environmental Enrichment (EE) on oncological factors in experimental studies involving various types of cancer models. Methods: A comprehensive search was conducted in three databases: PubMed (161 articles), Embase (335 articles), and Scopus (274 articles). Eligibility criteria were applied based on the PICOS strategy to minimize bias. Two independent researchers performed the searches, with a third participant resolving any discrepancies. The selected articles were analyzed, and data regarding sample characteristics and EE protocols were extracted. The outcomes focused solely on cancer and tumor-related parameters, including cancer type, description of the cancer model, angiogenesis, tumor occurrence, volume, weight, mice with tumors, and tumor inhibition rate. Key-findings: A total of 770 articles were identified across the three databases, with 12 studies meeting the inclusion criteria for this systematic review. The findings demonstrated that different EE protocols were effective in significantly reducing various aspects of tumor growth and development, such as angiogenesis, volume, weight, and the number of mice with tumors. Furthermore, EE enhanced the rate of tumor inhibition in mouse cancer models. Findings: This systematic review highlights the significant impact of EE protocols on multiple parameters associated with tumor growth and development, including angiogenesis, occurrence, volume, weight, and tumor incidence. Moreover, EE demonstrated the potential to increase the rate of tumor inhibition. These findings underscore the importance of EE as a valuable tool in the management of cancer.

Keywords

Enriched Environment; Cancer; Tumor growth; angiogenesis; pro-oncogenic factor

Subject

Biology and Life Sciences, Life Sciences

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.