Pan, J.; Li, W.; Chen, B.; Liu, L.; Zhang, J.; Li, J. Arabidopsis 3β-Hydroxysteroid Dehydrogenases/C4-Decarboxylases Are Essential for the Pollen and Embryonic Development. Int. J. Mol. Sci.2023, 24, 15565.
Pan, J.; Li, W.; Chen, B.; Liu, L.; Zhang, J.; Li, J. Arabidopsis 3β-Hydroxysteroid Dehydrogenases/C4-Decarboxylases Are Essential for the Pollen and Embryonic Development. Int. J. Mol. Sci. 2023, 24, 15565.
Pan, J.; Li, W.; Chen, B.; Liu, L.; Zhang, J.; Li, J. Arabidopsis 3β-Hydroxysteroid Dehydrogenases/C4-Decarboxylases Are Essential for the Pollen and Embryonic Development. Int. J. Mol. Sci.2023, 24, 15565.
Pan, J.; Li, W.; Chen, B.; Liu, L.; Zhang, J.; Li, J. Arabidopsis 3β-Hydroxysteroid Dehydrogenases/C4-Decarboxylases Are Essential for the Pollen and Embryonic Development. Int. J. Mol. Sci. 2023, 24, 15565.
Abstract
The biosynthesis of C27-29 sterols from their C30 precursor squalene involves C24-alkylation and removal of three methyl groups, including two at the C4 position. The two C4 demethylation reactions require a bifunctional enzyme known as 3β-hydroxysteroid dehydrogenase/C4-decarboxylase (3βHSD/D) that removes an oxidized methyl (carboxylic) group at C4 while simultaneously catalyzing the 3β-hydroxyl3-keto oxidation. Its loss-of-function mutations cause ergosterol-dependent growth in yeast and congenital hemidysplasia with ichthyosiform erythroderma and limb defect (CHILD) syndrome in humans. Although plant 3βHSD/D enzymes were well studied enzymatically, their developmental functions remain unknown. Here we employed a CRISPR/Cas9-based genome-editing approach to generate knockout mutants for two Arabidopsis 3βHSD/D genes, HSD1 and HSD2, and discovered the male gametophytic lethality for the hsd1 hsd2 double mutation. Pollen-specific expression of HSD2 in the heterozygous hsd1 hsd2/+ mutant not only rescued the pollen lethality but also revealed critical roles of the two HSD genes in embryogenesis. Our study thus demonstrated essential functions of the two Arabidopsis 3βHSD/D genes in male gametogenesis and embryogenesis.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.