Submitted:
25 September 2023
Posted:
26 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Method
2.1. Participants
2.2. Experimental Design
2.2.1. Test Procedures
2.2.2. Training Protocol
2.3. Outcome Measures and Statistical Analyses
2.3.1. Accuracy Measure of Recognition Data
2.3.2. Perceptual Judgement of Production Data
2.3.3. Correlational Analysis between Tone Perception and Production Accuracy
3. Results
3.1. Perceptual Gains induced by High Variability Phonetic Training
3.2. Far-transfer to Production Modality
3.3. Relationship between Perception and Production
4. Discussion
4.1. Robust Generalization to Lexical Tone Recognition in Novel Phonetic Contexts
4.2. Cross-modality Transfer of Perceptual Learning to Tone Production
4.3. Limitations and Future Directions
5. Conclusions
Funding
Acknowledgments
Conflict of Interest
Appendix A. Stimuli of picture naming task in lexical tone production test.


References
- Barr, D.J.; Levy, R.; Scheepers, C.; Tily, H.J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 2013, 68, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Barriuso, T. A., & Hayes-Harb, R. (2018). High variability phonetic training as a bridge from research to practice. The CATESOL Journal, 30(1), 177–194. 1.
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- Boersma, P., & Weenink, D. (2017). Praat: Doing phonetics by computer (Computer program, Version 6.0.33). 2019. Available online: http://www.praat.org.
- Bradlow, A.R.; Akahane-Yamada, R.; Pisoni, D.B.; Tohkura, Y. Training Japanese listeners to identify English /r/and /l/: Long-term retention of learning in perception and production. Percept. Psychophys. 1999, 61, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Bradlow, A.R.; Pisoni, D.B.; Akahane-Yamada, R.; Tohkura, Y. Training Japanese listeners to identify English /r/ and /l/: IV. Some effects of perceptual learning on speech production. J. Acoust. Soc. Am. 1997, 101, 2299–2310. [Google Scholar] [CrossRef]
- Cambridge, G.; Taylor, T.; Arnott, W.; Wilson, W.J. Auditory training for adults with cochlear implants: a systematic review. Int. J. Audiol. 2022, 61, 896–904. [Google Scholar] [CrossRef]
- Campbell, R.; MacSweeney, M.; Surguladze, S.; Calvert, G.; McGuire, P.; Suckling, J.; Brammer, M.J.; David, A.S. Cortical substrates for the perception of face actions: an fMRI study of the specificity of activation for seen speech and for meaningless lower-face acts (gurning). Cogn. Brain Res. 2001, 12, 233–243. [Google Scholar] [CrossRef]
- Hockett, C.F.; Chao, Y.R. Mandarin Primer: An Intensive Course in Spoken Chinese. Language 1948, 25, 210. [Google Scholar] [CrossRef]
- Chen, Y.; Wong, L.L. Speech perception in Mandarin-speaking children with cochlear implants: A systematic review. Int. J. Audiol. 2017, 56, S7–S16. [Google Scholar] [CrossRef]
- Cheng, B.; Zhang, X.; Fan, S.; Zhang, Y. The Role of Temporal Acoustic Exaggeration in High Variability Phonetic Training: A Behavioral and ERP Study. Front. Psychol. 2019, 10, 1178. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, Y.; Shu, Y.; Tao, D.-D.; Wang, B.; Yuan, Y.; Galvin, J.J.; Fu, Q.-J.; Chen, B. Music Training Can Improve Music and Speech Perception in Pediatric Mandarin-Speaking Cochlear Implant Users. Trends Hear. 2018, 22. [Google Scholar] [CrossRef] [PubMed]
- Deroche, M.L.D.; Lu, H.-P.; Lin, Y.-S.; Chatterjee, M.; Peng, S.-C. Processing of Acoustic Information in Lexical Tone Production and Perception by Pediatric Cochlear Implant Recipients. Front. Neurosci. 2019, 13, 639. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Clayards, M.; Brown, H.; Wonnacott, E. The effects of high versus low talker variability and individual aptitude on phonetic training of Mandarin lexical tones. PeerJ 2019, 7, e7191. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.L. Perception and production in child phonology: the testing of four hypotheses. J. Child Lang. 1974, 1, 205–219. [Google Scholar] [CrossRef]
- Fowler, C.A. An event approach to the study of speech perception from a direct–realist perspective. J. Phon. 1986, 14, 3–28. [Google Scholar] [CrossRef]
- Fowler, C.A. Real Objects of Speech Perception: A Commentary on Diehl and Kluender. Ecol. Psychol. 1989, 1, 145–160. [Google Scholar] [CrossRef]
- Fuhrmeister, P.; Myers, E.B. Desirable and undesirable difficulties: Influences of variability, training schedule, and aptitude on nonnative phonetic learning. Attention, Perception, Psychophys. 2020, 82, 2049–2065. [Google Scholar] [CrossRef]
- Gao, Q.; Wong, L.L.N.; Chen, F. A Review of Speech Perception of Mandarin-Speaking Children With Cochlear Implantation. Front. Neurosci. 2021, 15, 773694. [Google Scholar] [CrossRef]
- Goldinger, S.D. Echoes of echoes? An episodic theory of lexical access. Psychol. Rev. 1998, 105, 251–279. [Google Scholar] [CrossRef]
- Greenlee, M. Learning the phonetic cues to the voiced-voiceless distinction: a comparison of child and adult speech perception. J. Child Lang. 1980, 7, 459–468. [Google Scholar] [CrossRef]
- Guo, C.; Chen, F.; Chang, Y.; Yan, J. Applying Random Forest classification to diagnose autism using acoustical voice-quality parameters during lexical tone production. Biomed. Signal Process. Control. 2022, 77. [Google Scholar] [CrossRef]
- Guo, C.; Chen, F.; Yan, J.; Gao, X.; Zhu, M. Atypical prosodic realization by Mandarin-speaking autistic children: Evidence from tone sandhi and neutral tone. J. Commun. Disord. 2022, 100, 106280. [Google Scholar] [CrossRef] [PubMed]
- Henshaw, H.; Ferguson, M.A. Efficacy of Individual Computer-Based Auditory Training for People with Hearing Loss: A Systematic Review of the Evidence. PLOS ONE 2013, 8, e62836. [Google Scholar] [CrossRef]
- Hiskey, M. S. (1966). Hiskey-Nebraska test of learning aptitude. Cambridge, UK: Union College Press.
- Ingvalson, E. M., & Wong, P. C. M. (2016). Auditory training: Predictors of success and optimal training paradigms. In N. M. Young & K. I. Kirk (Eds.), Cochlear implants in children: Learning and the brain (pp. 293–297). Philadelphia, PA: Springer.
- Johnson, K. Memory for vowel exemplars. J. Acoust. Soc. Am. 1994, 95, 2977–2977. [Google Scholar] [CrossRef]
- Johnson, K. (1997). Speech perception without speaker normalization: an exemplar model. In K. Johnson & J. W. Mullennix (Eds.), Talker variability in speech peocessing (pp. 145–165). San Diego: Academic Press.
- Kim, S.; Chou, H.-H.; Luo, X. Mandarin tone recognition training with cochlear implant simulation: Amplitude envelope enhancement and cue weighting. J. Acoust. Soc. Am. 2021, 150, 1218–1230. [Google Scholar] [CrossRef]
- Kuhl, P.K.; Conboy, B.T.; Coffey-Corina, S.; Padden, D.; Rivera-Gaxiola, M.; Nelson, T. Phonetic learning as a pathway to language: new data and native language magnet theory expanded (NLM-e). Philos. Trans. R. Soc. B: Biol. Sci. 2008, 363, 979–1000. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, P.K.; Meltzoff, A.N. Infant vocalizations in response to speech: Vocal imitation and developmental change. J. Acoust. Soc. Am. 1996, 100, 2425–2438. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [CrossRef]
- Ladefoged, P.; Broadbent, D.E. Information Conveyed by Vowels. J. Acoust. Soc. Am. 1957, 29, 98–104. [Google Scholar] [CrossRef]
- Lenth, R., Singmann, H., Love, J., Buerkner, P., & Herve, M. (2018). emmeans: Estimated marginal means, aka least-squares means. R Package Version 1.3.0. Available online: https://cran.rproject.org/package=emmeans.
- Liberman, A.M.; Cooper, F.S.; Shankweiler, D.P.; Studdert-Kennedy, M. Perception of the speech code. Psychol. Rev. 1967, 74, 431–461. [Google Scholar] [CrossRef]
- Liberman, A.M.; Mattingly, I.G. The motor theory of speech perception revised. Cognition 1985, 21, 1–36. [Google Scholar] [CrossRef]
- Lieberman, P. On the evolution of language: A unified view. Cognition 1973, 2, 59–94. [Google Scholar] [CrossRef]
- Lively, S.E.; Logan, J.S.; Pisoni, D.B. Training Japanese listeners to identify English /r/ and /l/. II: The role of phonetic environment and talker variability in learning new perceptual categories. J. Acoust. Soc. Am. 1993, 94, 1242–1255. [Google Scholar] [CrossRef] [PubMed]
- Lively, S.E.; Pisoni, D.B.; Yamada, R.A.; Tohkura, Y.; Yamada, T. Training Japanese listeners to identify English /r/ and /l/. III. Long-term retention of new phonetic categories. J. Acoust. Soc. Am. 1994, 96, 2076–2087. [Google Scholar] [CrossRef] [PubMed]
- Logan, J.S.; Lively, S.E.; Pisoni, D.B. Training Japanese listeners to identify English /r/ and /l/: A first report. J. Acoust. Soc. Am. 1991, 89, 874–886. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, H.; Xie, S.; Xu, L. Acoustic Assessment of Tone Production of Prelingually-Deafened Mandarin-Speaking Children With Cochlear Implants. Front. Neurosci. 2020, 14. [Google Scholar] [CrossRef]
- Miller, S.; Zhang, Y.; Nelson, P. Neural Correlates of Phonetic Learning in Postlingually Deafened Cochlear Implant Listeners. Ear Hear. 2016, 37, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.E.; Zhang, Y.; Nelson, P.B. Efficacy of Multiple-Talker Phonetic Identification Training in Postlingually Deafened Cochlear Implant Listeners. J. Speech, Lang. Hear. Res. 2016, 59, 90–98. [Google Scholar] [CrossRef]
- Mishra, S.K.; Boddupally, S.P.; Rayapati, D. Auditory Learning in Children With Cochlear Implants. J. Speech, Lang. Hear. Res. 2015, 58, 1052–1060. [Google Scholar] [CrossRef]
- Moore, D.R.; Shannon, R.V. Beyond cochlear implants: awakening the deafened brain. Nat. Neurosci. 2009, 12, 686–691. [Google Scholar] [CrossRef]
- Oleson, J.J.; Brown, G.D.; McCreery, R. The Evolution of Statistical Methods in Speech, Language, and Hearing Sciences. J. Speech, Lang. Hear. Res. 2019, 62, 498–506. [Google Scholar] [CrossRef]
- Oxenham, A.J. Pitch Perception and Auditory Stream Segregation: Implications for Hearing Loss and Cochlear Implants. Trends Amplif. 2008, 12, 316–331. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.-C.; Tomblin, J.B.; Cheung, H.; Lin, Y.-S.; Wang, L.-S. Perception and Production of Mandarin Tones in Prelingually Deaf Children with Cochlear Implants. Ear Hear. 2004, 25, 251–264. [Google Scholar] [CrossRef]
- Perrachione, T.K.; Lee, J.; Ha, L.Y.Y.; Wong, P.C.M. Learning a novel phonological contrast depends on interactions between individual differences and training paradigm design. J. Acoust. Soc. Am. 2011, 130, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Pisoni, D. B., & Lively, S. E. (1995). Variability and invariance in speech perception: A new look at some old problems in perceptual learning. In W. Strange (Ed.), Speech perception and linguistic experience: Issues in cross-language speech research (pp. 433–459). Baltimore, MD: York Press.
- Qin, Z.; Tremblay, A.; Zhang, J. Influence of within-category tonal information in the recognition of Mandarin-Chinese words by native and non-native listeners: An eye-tracking study. J. Phon. 2019, 73, 144–157. [Google Scholar] [CrossRef]
- R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.r-project.org/.
- Ramscar, M.; Baayen, H. Production, comprehension, and synthesis: a communicative perspective on language. Front. Psychol. 2013, 4, 233. [Google Scholar] [CrossRef] [PubMed]
- Ramscar, M.; Yarlett, D.; Dye, M.; Denny, K.; Thorpe, K. The Effects of Feature-Label-Order and Their Implications for Symbolic Learning. Cogn. Sci. 2010, 34, 909–957. [Google Scholar] [CrossRef] [PubMed]
- Raviv, L.; Lupyan, G.; Green, S.C. How variability shapes learning and generalization. Trends Cogn. Sci. 2022, 26, 462–483. [Google Scholar] [CrossRef]
- Rayes, H.; Al-Malky, G.; Vickers, D. Systematic Review of Auditory Training in Pediatric Cochlear Implant Recipients. J. Speech, Lang. Hear. Res. 2019, 62, 1574–1593. [Google Scholar] [CrossRef]
- Sadakata, M.; McQueen, J.M. Individual aptitude in Mandarin lexical tone perception predicts effectiveness of high-variability training. Front. Psychol. 2014, 5, 1318. [Google Scholar] [CrossRef]
- Sakai, M.; Moorman, C. Can perception training improve the production of second language phonemes? A meta-analytic review of 25 years of perception training research. Appl. Psycholinguist. 2018, 39, 187–224. [Google Scholar] [CrossRef]
- Shinohara, Y.; Iverson, P. High variability identification and discrimination training for Japanese speakers learning English /r/–/l/. J. Phon. 2018, 66, 242–251. [Google Scholar] [CrossRef]
- Singh, L.; Fu, C.S.L. A New View of Language Development: The Acquisition of Lexical Tone. Child Dev. 2016, 87, 834–854. [Google Scholar] [CrossRef] [PubMed]
- Studebaker, G.A. A "Rationalized" Arcsine Transform. J. Speech, Lang. Hear. Res. 1985, 28, 455–462. [Google Scholar] [CrossRef]
- Tamati, T.N.; Pisoni, D.B.; Moberly, A.C. Speech and Language Outcomes in Adults and Children with Cochlear Implants. Annu. Rev. Linguistics 2022, 8, 299–319. [Google Scholar] [CrossRef]
- Tan, J.; Dowell, R.; Vogel, A. Mandarin Lexical Tone Acquisition in Cochlear Implant Users With Prelingual Deafness: A Review. Am. J. Audiol. 2016, 25, 246–256. [Google Scholar] [CrossRef]
- Tang, P.; Yuen, I.; Rattanasone, N.X.; Gao, L.; Demuth, K. The Acquisition of Mandarin Tonal Processes by Children With Cochlear Implants. J. Speech, Lang. Hear. Res. 2019, 62, 1309–1325. [Google Scholar] [CrossRef]
- Tang, P.; Yuen, I.; Rattanasone, N.X.; Gao, L.; Demuth, K. Longer Cochlear Implant Experience Leads to Better Production of Mandarin Tones for Early Implanted Children. Ear Hear. 2021, 42, 1405–1411. [Google Scholar] [CrossRef]
- Tao, D.; Deng, R.; Jiang, Y.; Galvin, J.J.I.; Fu, Q.-J.; Chen, B. Melodic Pitch Perception and Lexical Tone Perception in Mandarin-Speaking Cochlear Implant Users. Ear Hear. 2015, 36, 102–110. [Google Scholar] [CrossRef]
- Tao, D.-D.; Liu, J.-S.; Zhou, N. Acoustic analysis of tone production in Mandarin-speaking bimodal cochlear implant users. JASA Express Lett. 2022, 2, 055201. [Google Scholar] [CrossRef]
- Wang, W.S.-Y. The Chinese Language. Sci. Am. 1973, 228, 50–60. [Google Scholar] [CrossRef]
- Wang, Y.; Jongman, A.; Sereno, J.A. Acoustic and perceptual evaluation of Mandarin tone productions before and after perceptual training. J. Acoust. Soc. Am. 2003, 113, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Spence, M.M.; Jongman, A.; Sereno, J.A. Training American listeners to perceive Mandarin tones. J. Acoust. Soc. Am. 1999, 106, 3649–3658. [Google Scholar] [CrossRef] [PubMed]
- Whalen, D.; Xu, Y. Information for Mandarin Tones in the Amplitude Contour and in Brief Segments. Phonetica 1992, 49, 25–47. [Google Scholar] [CrossRef] [PubMed]
- Wiener, S.; Chan, M.K.M.; Ito, K. Do Explicit Instruction and High Variability Phonetic Training Improve Nonnative Speakers’ Mandarin Tone Productions? Mod. Lang. J. 2020, 104, 152–168. [Google Scholar] [CrossRef]
- Wilson, B. S., Dorman, M. F., Woldorff, M. G., & Tucci, D. L. (2011). Cochlear implants. Matching the prosthesis to the brain and facilitating desired plastic changes in brain function. In Progress in Brain Research (Vol. 194, pp. 117–129). [CrossRef]
- Wilson, S.M.; Saygin, A.P.; I Sereno, M.; Iacoboni, M. Listening to speech activates motor areas involved in speech production. Nat. Neurosci. 2004, 7, 701–702. [Google Scholar] [CrossRef] [PubMed]
- Wong, P. Acoustic characteristics of three-year-olds’ correct and incorrect monosyllabic Mandarin lexical tone productions. J. Phon. 2012, 40, 141–151. [Google Scholar] [CrossRef]
- Wong, P. Monosyllabic Mandarin Tone Productions by 3-Year-Olds Growing Up in Taiwan and in the United States: Interjudge Reliability and Perceptual Results. J. Speech, Lang. Hear. Res. 2012, 55, 1423–1437. [Google Scholar] [CrossRef]
- Wong, P. Perceptual evidence for protracted development in monosyllabic Mandarin lexical tone production in preschool children in Taiwan. J. Acoust. Soc. Am. 2013, 133, 434–443. [Google Scholar] [CrossRef]
- Wong, P.; Leung, C.T.-T. Suprasegmental Features Are Not Acquired Early: Perception and Production of Monosyllabic Cantonese Lexical Tones in 4- to 6-Year-Old Preschool Children. J. Speech, Lang. Hear. Res. 2018, 61, 1070–1085. [Google Scholar] [CrossRef]
- Wong, P.; Schwartz, R.G.; Jenkins, J.J. Perception and Production of Lexical Tones by 3-Year-Old, Mandarin-Speaking Children. J. Speech, Lang. Hear. Res. 2005, 48, 1065–1079. [Google Scholar] [CrossRef]
- Wu, J.-L.; Yang, H.-M.; Lin, Y.-H.; Fu, Q.-J. Effects of Computer-Assisted Speech Training on Mandarin-Speaking Hearing-Impaired Children. Audiol. Neurotol. 2007, 12, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, X.; Lu, H.; Zhou, N.; Wang, S.; Liu, Q.; Li, Y.; Zhao, X.; Han, D. Tone perception and production in pediatric cochlear implants users. Acta Oto-Laryngologica 2011, 131, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Chen, F.; Gao, X.; Peng, G. Auditory-Motor Mapping Training Facilitates Speech and Word Learning in Tone Language–Speaking Children With Autism: An Early Efficacy Study. J. Speech, Lang. Hear. Res. 2021, 64, 4664–4681. [Google Scholar] [CrossRef] [PubMed]
- Yang, X. J., Qu, C. Y., Sun, X. B., Zhu, F., & Wang, J. P. (2011). Norm revision of H-NTLA for children from 3 to 7 years old in China. Chinese Journal of Clinical Psychology, 19(2), 195–197.
- Zhang, H.; Ding, H.; Zhang, Y. High-Variability Phonetic Training Benefits Lexical Tone Perception: An Investigation on Mandarin-Speaking Pediatric Cochlear Implant Users. J. Speech, Lang. Hear. Res. 2021, 64, 2070–2084. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, W.; Ding, H.; Zhang, Y. Sustainable Benefits of High Variability Phonetic Training in Mandarin-speaking Kindergarteners With Cochlear Implants: Evidence From Categorical Perception of Lexical Tones. Ear Hear. 2023, Publish Ah. [CrossRef]
- Zhang, H.; Zhang, J.; Ding, H.; Li, Y. Efficacy of Multi-Talker Phonetic Training in Mandarin Tone Perception for Native Pediatric Cochlear Implant Users. Speech Prosody 2020. LOCATION OF CONFERENCE, COUNTRYDATE OF CONFERENCE;
- Zhang, H.; Zhang, J.; Ding, H.; Zhang, Y. Bimodal Benefits for Lexical Tone Recognition: An Investigation on Mandarin-speaking Preschoolers with a Cochlear Implant and a Contralateral Hearing Aid. Brain Sci. 2020, 10, 238. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Hong, T.; Li, Y.; Zhang, Y.; Shu, H. Mandarin-Speaking, Kindergarten-Aged Children With Cochlear Implants Benefit From Natural F 0 Patterns in the Use of Semantic Context During Speech Recognition. J. Speech, Lang. Hear. Res. 2018, 61, 2146–2152. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, B.; Qin, D.; Zhang, Y. Is talker variability a critical component of effective phonetic training for nonnative speech? J. Phon. 2021, 87. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, B.; Zhang, Y. The Role of Talker Variability in Nonnative Phonetic Learning: A Systematic Review and Meta-Analysis. J. Speech, Lang. Hear. Res. 2021, 64, 4802–4825. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, B.; Zou, Y.; Li, X.; Zhang, Y. Cognitive factors in nonnative phonetic learning: Impacts of inhibitory control and working memory on the benefits and costs of talker variability. J. Phon. 2023, 100. [Google Scholar] [CrossRef]
- Zhang, Y.; Kuhl, P.K.; Imada, T.; Iverson, P.; Pruitt, J.; Stevens, E.B.; Kawakatsu, M.; Tohkura, Y.; Nemoto, I. Neural signatures of phonetic learning in adulthood: A magnetoencephalography study. NeuroImage 2009, 46, 226–240. [Google Scholar] [CrossRef]
- Zhou, N.; Huang, J.; Chen, X.; Xu, L. Relationship Between Tone Perception and Production in Prelingually Deafened Children With Cochlear Implants. Otol. Neurotol. 2013, 34, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Xu, L. Development and evaluation of methods for assessing tone production skills in Mandarin-speaking children with cochlear implants. J. Acoust. Soc. Am. 2008, 123, 1653–1664. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wong, L.L.; Chen, F. Development and validation of a new Mandarin tone identification test. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 2174–2182. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wong, L.L.; Chen, F. Tone identification in Mandarin-speaking children with profound hearing impairment. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 2292–2296. [Google Scholar] [CrossRef] [PubMed]





| Subject (Sex) | Group | CA (yrs) | Speech processor | Speech strategy | CI side | Age at CI (yrs) | CI duration (yrs) | H-NTLA score |
| t1 (F) | TG | 4.97 | OPUS2 | FS4-P | Right | 1.58 | 3.38 | 105 |
| t2 (F) | TG | 5.03 | OPUS2 | FS4-P | Left | 1.14 | 3.89 | 100 |
| t3 (F) | TG | 4.35 | OPUS2 | FS4-P | Right | 1.04 | 3.3 | 126 |
| t4 (M) | TG | 4.23 | OPUS2 | FS4-P | Right | 1 | 3.23 | 102 |
| t5 (M) | TG | 4.63 | Nucleus5 | ACE | Left | 1.38 | 3.24 | 114 |
| t6 (M) | TG | 5 | Nucleus6 | ACE | Right | 1.5 | 3.49 | 125 |
| t7 (F) | TG | 4.17 | Naida | HiRes | Right | 1.59 | 2.58 | 103 |
| t8 (M) | TG | 4.16 | OPUS2 | FS4-P | Right | 1.57 | 2.59 | 105 |
| t9 (M) | TG | 4.97 | Nucleus6 | ACE | Right | 2.32 | 2.65 | 108 |
| t10 (F) | TG | 6.39 | Nucleus5 | ACE | Right | 1.88 | 4.51 | 98 |
| t11 (F) | TG | 6.39 | Nucleus5 | ACE | Right | 1.88 | 4.51 | 96 |
| t12 (F) | TG | 6.33 | Nucleus5 | ACE | Right | 1.61 | 4.72 | 112 |
| t13 (M) | TG | 4.78 | OPUS2 | FS4-P | Right | 1.6 | 3.18 | 110 |
| t14 (M) | TG | 4.29 | Nucleus6 | ACE | Right | 1.1 | 3.19 | 106 |
| t15 (M) | TG | 6.81 | Freedom | ACE | Right | 2.28 | 4.53 | 103 |
| t16 (F) | TG | 5.16 | OPUS2 | FS4-P | Right | 3.46 | 1.7 | 108 |
| c1 (F) | CG | 4.36 | Nucleus6 | ACE | Right | 1.41 | 2.95 | 96 |
| c2 (M) | CG | 5.17 | OPUS2 | FS4-P | Right | 1.21 | 3.95 | 113 |
| c3 (M) | CG | 5.25 | OPUS1 | FS4-P | Right | 1.71 | 3.54 | 125 |
| c4 (F) | CG | 4.89 | OPUS2 | FS4-P | Right | 1.35 | 3.54 | 118 |
| c5 (M) | CG | 4.87 | OPUS1 | FS4-P | Right | 1.13 | 3.74 | 108 |
| c6 (F) | CG | 5.64 | OPUS1 | FS4-P | Right | 2.67 | 2.98 | 109 |
| c7 (M) | CG | 4.26 | Nucleus5 | ACE | Left | 1.85 | 2.41 | 110 |
| c8 (F) | CG | 4.68 | Naida | HiRes | Right | 2.8 | 1.88 | 102 |
| c9 (M) | CG | 5.59 | OPUS2 | FS4-P | Right | 1.72 | 3.87 | 105 |
| c10 (M) | CG | 5.5 | Nucleus6 | ACE | Right | 1.97 | 3.53 | 108 |
| c11 (F) | CG | 6.7 | Nucleus5 | ACE | Right | 1.94 | 4.76 | 112 |
| c12 (M) | CG | 4.59 | Nucleus6 | ACE | Right | 2.99 | 1.6 | 98 |
| c13 (M) | CG | 5.38 | Nucleus5 | ACE | Right | 2.38 | 3 | 106 |
| c14 (M) | CG | 6.36 | Freedom | ACE | Left | 2.35 | 4.01 | 108 |
| c15 (M) | CG | 4.35 | Nucleus5 | ACE | Right | 1.55 | 2.8 | 102 |
| c16 (M) | CG | 6.8 | Freedom | ACE | Right | 3.38 | 3.42 | 114 |
| Characteristics | TG | CG | t value | p value |
| CA (yrs) | 5.1 (0.89) | 5.27 (0.8) | 0.57 | .57 |
| Age at CI (yrs) | 1.68 (0.62) | 2.02 (0.67) | 1.50 | .14 |
| CI duration (yrs) | 3.42 (0.84) | 3.25 (0.82) | 0.58 | .57 |
| H-NTLA | 107 (8.49) | 108 (7.29) | 0.29 | .77 |
| Tone Type | r-value | Effect Size | p-value |
| T1 | -.023 | small | .9 |
| T2 | -.18 | small | .32 |
| T3 | .087 | small | .64 |
| T4 | .32 | medium | .078 |
| All tones | .38 | medium | <.01** |
| Tone Type | r-value | Effect Size | p-value |
| T1 | -.1 | small | .7 |
| T2 | -.034 | small | .9 |
| T3 | .057 | small | .83 |
| T4 | .21 | small | .43 |
| All tones | .038 | small | .76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
