Submitted:
20 September 2023
Posted:
25 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study area
2.2. Baseline data
2.2.1. Farming systems information
2.2.2. Farming systems predictive model
2.2.3. Climate scenarios
2.3. Scenario assessment
3. Results
3.1. Climate change predictions
3.2. Effects of climate change on farming system choice
4. Discussion
4.1. Marginal effects of climate change on farming system choice
4.2. Comparing farming system and crop-modelling approaches
4.3. Strengths and weaknesses of the proposed approach
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- European Environment Agency, Climate change adaptation in the agriculture sector in Europe - Publications Office of the EU, EEA Rep. No 04/2019, Publ. Off. (2019). https://op.europa.eu/en/publication-detail/-/publication/fb9bf9af-0117-11ea-8c1f-01aa75ed71a1/language-en/format-PDF/source-265745439.
- IPCC, Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022. [CrossRef]
- P. Asare-Nuamah, E. Botchway, Understanding climate variability and change: analysis of temperature and rainfall across agroecological zones in Ghana, Heliyon. 5 (2019) e02654. [CrossRef]
- Y.T. Ayinu, D.Y. Ayal, T.T. Zeleke, K.T. Beketie, Impact of climate variability on household food security in Godere District, Gambella Region, Ethiopia, Clim. Serv. 27 (2022) 100307. [CrossRef]
- L.T. Habtemariam, G. Abate Kassa, M. Gandorfer, Impact of climate change on farms in smallholder farming systems: Yield impacts, economic implications and distributional effects, Agric. Syst. 152 (2017) 58–66. [CrossRef]
- S. Adnan, K. Ullah, S. Gao, A.H. Khosa, Z. Wang, Shifting of agro-climatic zones, their drought vulnerability, and precipitation and temperature trends in Pakistan, Int. J. Climatol. 37 (2017) 529–543. [CrossRef]
- Ceglar, M. Zampieri, A. Toreti, F. Dentener, Observed Northward Migration of Agro-Climate Zones in Europe Will Further Accelerate Under Climate Change, Earth’s Futur. 7 (2019) 1088–1101. [CrossRef]
- Molotoks, P. Smith, T.P. Dawson, Impacts of land use, population, and climate change on global food security, Food Energy Secur. 10 (2021) 1–20. [CrossRef]
- S.A. Ofori, S.J. Cobbina, S. Obiri, Climate Change, Land, Water, and Food Security: Perspectives From Sub-Saharan Africa, Front. Sustain. Food Syst. 5 (2021) 1–9. [CrossRef]
- J.L. Santos, F. Moreira, P.F. Ribeiro, M.J. Canadas, A. Novais, A. Lomba, A farming systems approach to linking agricultural policies with biodiversity and ecosystem services, Front. Ecol. Environ. in press (2020) fee.2292. [CrossRef]
- P. Hayman, L. Rickards, R. Eckard, D. Lemerle, Climate change through the farming systems lens: Challenges and opportunities for farming in Australia, Crop Pasture Sci. 63 (2012) 203–214. [CrossRef]
- P. Reidsma, F. Ewert, A.O. Lansink, R. Leemans, Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses, Eur. J. Agron. 32 (2010) 91–102. [CrossRef]
- P. Reidsma, J. Wolf, A. Kanellopoulos, B.F. Schaap, M. Mandryk, J. Verhagen, M.K. Van Ittersum, Climate change impact and adaptation research requires integrated assessment and farming systems analysis: A case study in the Netherlands, Environ. Res. Lett. 10 (2015). [CrossRef]
- J. Dixon, Concept and Classifications of Farming Systems, in: Encycl. Food Secur. Sustain., Elsevier, 2019: pp. 71–80. [CrossRef]
- P.M. Etwire, The impact of climate change on farming system selection in Ghana, Agric. Syst. 179 (2020) 102773. [CrossRef]
- P.F. Ribeiro, J.L. Santos, M.J. Canadas, A.M. Novais, F. Moreira, Â. Lomba, Explaining farming systems spatial patterns: A farm-level choice model based on socioeconomic and biophysical drivers, Agric. Syst. 191 (2021). [CrossRef]
- D. Iakovidis, Y. Gadanakis, J. Park, Farm-level sustainability assessment in Mediterranean environments: Enhancing decision-making to improve business sustainability, Environ. Sustain. Indic. 15 (2022) 100187. [CrossRef]
- D. Leclère, P.A. Jayet, N. de Noblet-Ducoudré, Farm-level Autonomous Adaptation of European Agricultural Supply to Climate Change, Ecol. Econ. 87 (2013) 1–14. [CrossRef]
- M.P.M. Meuwissen, P.H. Feindt, A. Spiegel, C.J.A.M. Termeer, E. Mathijs, Y. de Mey, R. Finger, A. Balmann, E. Wauters, J. Urquhart, M. Vigani, K. Zawalińska, H. Herrera, P. Nicholas-Davies, H. Hansson, W. Paas, T. Slijper, I. Coopmans, W. Vroege, A. Ciechomska, F. Accatino, B. Kopainsky, P.M. Poortvliet, J.J.L. Candel, D. Maye, S. Severini, S. Senni, B. Soriano, C.J. Lagerkvist, M. Peneva, C. Gavrilescu, P. Reidsma, A framework to assess the resilience of farming systems, Agric. Syst. 176 (2019) 102656. [CrossRef]
- M. van Zonneveld, M.S. Turmel, J. Hellin, Decision-Making to Diversify Farm Systems for Climate Change Adaptation, Front. Sustain. Food Syst. 4 (2020) 1–20. [CrossRef]
- G.O.U. Wogan, I.J. Wang, The value of space-for-time substitution for studying fine-scale microevolutionary processes, Ecography (Cop.). 41 (2018) 1456–1468. [CrossRef]
- Holzkämper, P. Calanca, J. Fuhrer, Analyzing climate effects on agriculture in time and space, Procedia Environ. Sci. 3 (2011) 58–62. [CrossRef]
- K. Riahi, D.P. van Vuuren, E. Kriegler, J. Edmonds, B.C. O’Neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko, W. Lutz, A. Popp, J.C. Cuaresma, S. KC, M. Leimbach, L. Jiang, T. Kram, S. Rao, J. Emmerling, K. Ebi, T. Hasegawa, P. Havlik, F. Humpenöder, L.A. Da Silva, S. Smith, E. Stehfest, V. Bosetti, J. Eom, D. Gernaat, T. Masui, J. Rogelj, J. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen, K. Takahashi, L. Baumstark, J.C. Doelman, M. Kainuma, Z. Klimont, G. Marangoni, H. Lotze-Campen, M. Obersteiner, A. Tabeau, M. Tavoni, The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Glob. Environ. Chang. 42 (2017) 153–168. [CrossRef]
- N. Cuba, Research note: Sankey diagrams for visualizing land cover dynamics, Landsc. Urban Plan. 139 (2015) 163–167. [CrossRef]
- J.C. Pérez-Girón, E.R. Díaz-Varela, P. Álvarez-Álvarez, Climate-driven variations in productivity reveal adaptive strategies in Iberian cork oak agroforestry systems, For. Ecosyst. 9 (2022). [CrossRef]
- V. Acácio, F.S. Dias, F.X. Catry, M. Rocha, F. Moreira, Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types, Glob. Chang. Biol. 23 (2017) 1199–1217. [CrossRef]
- I.H. Sørensen, M. Torralba, C. Quintas-Soriano, J. Muñoz-Rojas, T. Plieninger, Linking Cork to Cork Oak Landscapes: Mapping the Value Chain of Cork Production in Portugal, Front. Sustain. Food Syst. 5 (2021) 1–15. [CrossRef]
- J. Rocha, C. Carvalho-Santos, P. Diogo, P. Beça, J.J. Keizer, J.P. Nunes, Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal), Sci. Total Environ. 736 (2020). [CrossRef]
- Tomaz, P. Palma, S. Fialho, A. Lima, P. Alvarenga, M. Potes, R. Salgado, Spatial and temporal dynamics of irrigation water quality under drought conditions in a large reservoir in Southern Portugal, Environ. Monit. Assess. 192 (2020) 1–17. [CrossRef]
- V. Acácio, F.S. Dias, F.X. Catry, M.N. Bugalho, F. Moreira, Canopy Cover Loss of Mediterranean Oak Woodlands: Long-term Effects of Management and Climate, Ecosystems. 24 (2021) 1775–1791. [CrossRef]
- J. Duque-Lazo, R.M. Navarro-Cerrillo, F.J. Ruíz-Gómez, Assessment of the future stability of cork oak (Quercus suber L.) afforestation under climate change scenarios in Southwest Spain, For. Ecol. Manage. 409 (2018) 444–456. [CrossRef]
- N. Faria, Predicting agronomical and ecological effects of shifting from sheep to cattle grazing in highly dynamic Mediterranean dry grasslands, L. Degrad. Dev. 30 (2019). [CrossRef]
- Dumont, D. Andueza, V. Niderkorn, A. Lüscher, C. Porqueddu, C. Picon-Cochard, A meta-analysis of climate change effects on forage quality in grasslands: specificities of mountain and mediterranean areas, Grass Forage Sci. 70 (2015) 239–254. [CrossRef]
- Yang, H. Fraga, W. Van Ieperen, J.A. Santos, Modelling climate change impacts on early and late harvest grassland systems in Portugal, Crop Pasture Sci. 69 (2018) 821–836. [CrossRef]
- H. Fraga, M. Moriondo, L. Leolini, J.A. Santos, Mediterranean olive orchards under climate change: A review of future impacts and adaptation strategies, Agronomy. 11 (2021) 1–15. [CrossRef]
- H. Fraga, J.G. Pinto, J.A. Santos, Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal, Agric. Water Manag. 237 (2020) 106193. [CrossRef]
- L. Tanasijevic, M. Todorovic, L.S. Pereira, C. Pizzigalli, P. Lionello, Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region, Agric. Water Manag. 144 (2014) 54–68. [CrossRef]
- Caselli, R. Petacchi, Climate change and major pests of mediterranean olive orchards: Are we ready to face the global heating?, Insects. 12 (2021). [CrossRef]
- S. Branquinho, J. Rolim, J.L. Teixeira, Climate change adaptation measures in the irrigation of a super-intensive olive orchard in the south of portugal, Agronomy. 11 (2021). [CrossRef]
- Yang, H. Fraga, W. van Ieperen, H. Trindade, J.A. Santos, Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal, Clim. Change. 154 (2019) 159–178. [CrossRef]
- M. Dettori, C. Cesaraccio, P. Duce, Simulation of climate change impacts on production and phenology of durum wheat in Mediterranean environments using CERES-Wheat model, F. Crop. Res. 206 (2017) 43–53. [CrossRef]
- S.T.A. Pickett, Space-for-Time Substitution as an Alternative to Long-Term Studies, in: Long-Term Stud. Ecol., Springer New York, New York, NY, 1989: pp. 110–135. [CrossRef]
- R.S.L. Lovell, S. Collins, S.H. Martin, A.L. Pigot, A.B. Phillimore, Space-for-time substitutions in climate change ecology and evolution (Preprint), EcoEvoRxiv. (2022). [CrossRef]
- J. Wolf, A. Kanellopoulos, J. Kros, H. Webber, G. Zhao, W. Britz, G.J. Reinds, F. Ewert, W. De Vries, Combined analysis of climate, technological and price changes on future arable farming systems in Europe, AGSY. 140 (2015) 56–73. [CrossRef]







| Farming system | Area in 2017 (predicted) | Expected relative changes in area in each 2081-2100 scenario | |||
|---|---|---|---|---|---|
| ha | % | Low (SSP 1-2.6) |
Moderate (SSP 3-7.0) |
High (SSP 5-8.5) |
|
| Cattle grazing - CO | 495,655 | 25.2 | -22% | -62% | -72% |
| Cattle grazing - HO | 580,656 | 29.5 | 44% | 80% | 89% |
| Cattle grazing - forages | 168,219 | 8.5 | -3% | 17% | 23% |
| Grazing goats | 21,075 | 1.1 | -12% | 8% | 6% |
| Mixed Cattle and sheep - Irrigated forages | 20,090 | 1.0 | -1% | -13% | -18% |
| Sheep grazing - CO | 132,621 | 6.7 | -55% | -89% | -93% |
| Sheep grazing - HO | 100,952 | 5.1 | -11% | 4% | 5% |
| Sheep grazing - pastures | 32,734 | 1.7 | -48% | -62% | -66% |
| Sheep grazing - pastures and forages | 36,330 | 1.8 | -45% | -61% | -63% |
| Sheep grazing - forages | 18,602 | 0.9 | -23% | -48% | -59% |
| Rainfed olive groves with sheep | 13,396 | 0.7 | 3% | -22% | -28% |
| Rainfed olive groves | 15,472 | 0.8 | -15% | -12% | -7% |
| Irrigated olive groves | 89,647 | 4.6 | 11% | 42% | 46% |
| Vineyards | 21,947 | 1.1 | -45% | -58% | -64% |
| Fruit trees | 10,256 | 0.5 | -8% | -33% | -37% |
| Stone pine | 54,665 | 2.8 | -11% | -26% | -29% |
| Rice | 22,220 | 1.1 | 7% | -9% | -12% |
| Irrigated cereals and horticultural crops | 50,042 | 2.5 | -9% | -22% | -21% |
| Rainfed cereals and oilseeds | 39,694 | 2.0 | 9% | -9% | -12% |
| Rainfed cereals | 19,182 | 1.0 | 7% | 14% | 22% |
| Pastures without livestock | 12,775 | 0.6 | -75% | -84% | -84% |
| Fallows | 12,700 | 0.6 | -13% | -5% | -1% |
| Total | 1,968,929 | 100.0 | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
