Submitted:
20 September 2023
Posted:
20 September 2023
You are already at the latest version
Abstract
Keywords:
1. Backround
1.1. The Planck scale and the Compton scale
| Prediction | Formula: |
|---|---|
| Gravity acceleration | |
| Orbital velocity | |
| Orbital time | |
| Velocity ball Newton cradle | |
| Frequency Newton spring |
2. General relativity theory
| Prediction | Formula: |
|---|---|
| Gravity acceleration | |
| Orbital velocity | |
| Orbital time | |
| Velocity ball Newton cradle | |
| Frequency Newton spring | |
| Gravitational red shift | |
| Time dilation | |
| Gravitational deflection (GR) | |
| Advance of perihelion | |
| Schwarzschild radius |
3. Possible interpretation
3.1. Schwarzschild radius
4. The claims that the Planck constant plays role in some observed gravity phenomena is likely wrong when understood from a deeper perspective
“First of all, they demonstrate the validity of quantum theory in a gravitational potential on the 1% level. The gravity-induced interference is purely quantum mechanical, because the phase shift is proportional to the wavelength λ and depends explicitly on Planck’s constant ℏ , but the interference pattern disappears as . The effect depends on and the experiments test the equivalence principle."
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix The Eddington–Finkelstein Coordinates
Appendix The Lemaître Coordinates
References
- A. Einstein. Näherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin.
- A. Einstein. Die grundlage der allgemeinen relativitätstheorie. Annalen der Physics, 354:769, 1916b. [CrossRef]
- K. Krasnova and R. Percacci. Gravity and unification: A review. Classical and Quantum Gravity, 35:143001, 2018. [CrossRef]
- R. Howl, R. Penrose, and I. Fuentes. Exploring the unification of quantum theory and general relativity with a Bose–Einstein condensate. New Journal of Physics, 21:043047, 2019. [CrossRef]
- C. Kiefer. Quantum gravity – a unfinished revoluition. Invited contribution for EPS Grand Challenges: Physics for Society at the Horizon 2050 arXiv, 2023. URL https://arxiv.org/pdf/2302.13047.pdf.
- I Newton. Philosophiae Naturalis Principia Mathematica. London, Jussu Societatis Regiae ac Typis Josephi Streater, 1686.
- C. Maxwell. A Treatise on Electricity and Magnetism. Macmillan and Co., Oxford, UK, 1873.
- E. G. Haug. Newton did not invent or use the so-called Newton’s gravitational constant; G, it has mainly caused confusion. Journal of Modern Physics, 2022; 13, 179. [CrossRef]
- A. Cornu and J. B. Baille. Détermination nouvelle de la constante de l’attraction et de la densité moyenne de la terre. C. R. Acad. Sci. Paris, 1873; 76.
- C. V. Boys. On the Newtonian constant of gravitation. Nature, 1894; 5, 330. [CrossRef]
- M. Planck. Einführung in die allgemeine Mechanik, 1928.
- H. Cavendish. Experiments to determine the density of the earth. Philosophical Transactions of the Royal Society of London, (part II), 88, 1798.
- B. E. Clotfelter. The cavendish experiment as cavendish knew it. American Journal of Physics, 55:210, 1987. [CrossRef]
- L. Sean. Henry Cavendish and the density of the earth. The Physics Teacher, 1999. [CrossRef]
- B. Thüring. The gravitational constant. Ann. Acad. Sci. Fennicae A, 1961.
- S. Hossenfelder. Existential Physics: A Scientist’s Guide to Life’s Biggest Questions, 2022.
- M. Planck. Natuerliche Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften, 1899. URL https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up. 1899.
- M. Planck. <italic>Vorlesungen über die Theorie der Wärmestrahlung</italic>. Leipzig: J.A. Barth, p. M. Planck. Vorlesungen über die Theorie der Wärmestrahlung, 1959. [Google Scholar]
- A. S. Eddington. Report On The Relativity Theory Of Gravitation, 1918.
- T. Padmanabhan. Planck length as the lower bound to all physical length scales. General Relativity and Gravitation, 1985. [CrossRef]
- S. Hossenfelder. Can we measure structures to a precision better than the planck length? Classical and Quantum Gravity, 5011. [CrossRef]
- S. Hossenfelder. Minimal length scale scenarios for quantum gravity. Living Reviews in Relativity, 2013. [CrossRef]
- K. Cahill. The gravitational constant. Lettere al Nuovo Cimento, 1984. [CrossRef]
- K. Cahill. Tetrads, broken symmetries, and the gravitational constant. Zeitschrift Für Physik C Particles and Fields, /: 1984b. URL https, 1984. [CrossRef]
- E. R. Cohen. Fundamental Physical Constants, in the book Gravitational Measurements, Fundamental Metrology and Constants, 1987.
- M. E. McCulloch. Quantised inertia from relativity and the uncertainty principle. Europhysics Letters (EPL), 6900; :1. [CrossRef]
- E. G. Haug. Can the Planck length be found independent of big G ? Applied Physics Research. [CrossRef]
- E. G. Haug. Planck units measured totally independently of big G. Open Journal of Microphysics. [CrossRef]
- E. G. Haug. Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a newton force spring. Journal Physics Communication. [CrossRef]
- E. G. Haug. Extraction of the planck length from cosmological redshift without knowledge off G or ℏ. International Journal of Quantum Foundation, supplement series Quantum Speculations, 6599.
- E. G. Haug. Progress in the composite view of the Newton gravitational constant and its link to the Planck scale. Universe, 2022. [CrossRef]
- A. H. Compton. A quantum theory of the scattering of x-rays by light elements. Physical Review, 1923. [CrossRef]
- E. G. Haug. Demonstration that Newtonian gravity moves at the speed of light and not instantaneously (infinite speed) as thought! Journal of Physics Communication. 2021. [CrossRef]
- S. D’Auria. Introduction to Nuclear and Particle Physics, 2018.
- E. G. Haug. Collision space-time: Unified quantum gravity. Physics Essays, 2020; :46. [CrossRef]
- E. G. Haug. Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales. Physics Essays, 2022. [CrossRef]
- E. G. Haug. Quantum Gravity Hidden In Newton Gravity And How To Unify It With Quantum Mechanics, T: book, 2021.
- E. G. Haug. Planck quantization of Newton and Einstein gravitation. International Journal of Astronomy and Astrophysics, 2016. [CrossRef]
- E. G. Haug. Different mass definitions and their pluses and minuses related to gravity: The kilogram mass is likely incomplete. Preprint at Researchgate.net, under review by journal. [CrossRef]
- K. Schwarzschild. Über das gravitationsfeld eines massenpunktes nach der einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, 1916.
- K. Schwarzschild. über das gravitationsfeld einer kugel aus inkompressibler flussigkeit nach der einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, 1916.
- R. Colella, A. W. R. Colella, A. W. Overhauser, and S. A. Werner. Observation of gravitationally induced quantum interference. Physical Review Letters, 1975. [Google Scholar] [CrossRef]
- J. L. Staudenmann, S. A. Werner, R. Colella, and A. W. Overhauser. Gravity and inertia in quantum mechanics. Phys. Rev. A, 21:1419, 1980. URL https://link.aps.org/doi/10.1103/PhysRevA.21.1419. /.
- S.A. Werner, H. S.A. Werner, H. Kaiser, M. Arif, and R. Clothier. Neutron interference induced by gravity: New results and interpretations. Physica B+C, 1988. [Google Scholar] [CrossRef]
- H. Abele and H. Leeb. Gravitation and quantum interference experiments with neutrons. New Journal of Physics, 5010. [CrossRef]
- M. Guidry. Modern General Relativity, 2019.
| 1 | Max Planck originally used the Planck constant h, rather than the reduced Planck constant ℏ, for this purpose. However, the standard now is to use the reduced Planck constant, which also appears to be more appropriate for our purposes. We plan to write a separate paper on this topic in the future, but it will not affect the conclusions of this paper. |
| 2 | In that paper we had also set the cosmological constant to zero. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
