Submitted:
15 September 2023
Posted:
18 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental design and feeding
2.2. Selection of animals for the research
2.3. Blood collection and analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Naskar, S.; Gowane, G.R.; Chopra, A.; Paswan, C.; Prince, L.L.L. Genetic Adaptability of Livestock to Environmental Stresses. In Environmental Stress and Amelioration in Livestock Production; Sejian, V., Naqvi, S.M., Ezeji, T., Lakritz, J., Lal, R., Eds.; Springer Berlin: Heidelberg, 2012; pp. 317–378. [Google Scholar]
- Luo, H.; Brito, L.F.; Li, X.; Su, G.; Dou, J.; Xu, W.; Yan, X.; Zhang, H.; Guo, G.; Liu, L.; et al. Genetic Parameters for Rectal Temperature, Respiration Rate, and Drooling Score in Holstein Cattle and Their Relationships with Various Fertility, Production, Body Conformation, and Health Traits. J. Dairy Sci. 2021, 104, 4390–4403. [Google Scholar] [CrossRef] [PubMed]
- Strandén, I.; Kantanen, J.; Russo, I.R.M.; Orozco-terWengel, P.; Bruford, M.W. Genomic Selection Strategies for Breeding Adaptation and Production in Dairy Cattle under Climate Change. Heredity (Edinb). 2019, 123, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Gaughan, J.B.; Sejian, V.; Mader, T.L.; Dunshea, F.R. Adaptation Strategies: Ruminants. Anim. Front. 2019, 9, 47–53. [Google Scholar] [CrossRef]
- Kristensen, T.N.; Ketola, T.; Kronholm, I. Adaptation to Environmental Stress at Different Timescales. Ann. N. Y. Acad. Sci. 2018, 1476, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Rome, 2015.
- Aleena, J.; Pragna, P.; Archana, P.R.; Sejian, V.; Bagath, M.; Krishnan, G.; Manimaran, A.; Beena, V.; Kurien, E.K.; Varma, G.; et al. Significance of Metabolic Response in Livestock for Adapting to Heat Stress Challenges. Asian J. Anim. Sci. 2016, 10, 224–234. [Google Scholar] [CrossRef]
- Niyas, P.A.A.; Chaidanya, K.; Shaji, S.; Sejian, V.; Bhatta, R.; Bagath, M.; Rao, G.; Kurien, E.K.; Girish, V. Adaptation of Livestock to Environmental Challenges. J. Vet. Sci. Med. Diagn. 2015, 04. [Google Scholar] [CrossRef]
- Buffington, D.E.; Collazo-Arocho, A.; Canton, G.H.; Pitt, D.; Thatcher, W.W.; Collier, R.J. Black Globe-Humidity Index (BGHI) as Comfort Equation for Dairy Cows. Trans. ASAE 1981, 24, 0711–0714. [Google Scholar] [CrossRef]
- Baêta, F.C.; Meador, N.F.; Shanklin, M.D.; Johnson, H.D. Equivalent Temperature Index at Temperatures above the Thermoneutral for Lactating Dairy Cows. Pap. Am. Soc. Agric. Eng. 1987, 21. [Google Scholar]
- Gaughan, J.B.; Mader, T.L.; Holt, S.M.; Lisle, A. A New Heat Load Index for Feedlot Cattle. J. Anim. Sci. 2008, 86, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental Factors Influencing Heat Stress in Feedlot Cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Mader, T.L.; Johnson, L.J.; Gaughan, J.B. A Comprehensive Index for Assessing Environmental Stress in Animals. J. Anim. Sci. 2010, 88, 2153–2165. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.G.; Maia, A.S.C.; de Macedo Costa, L.L. Index of Thermal Stress for Cows (ITSC) under High Solar Radiation in Tropical Environments. Int. J. Biometeorol. 2014, 59, 551–559. [Google Scholar] [CrossRef]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Hansen, P.J. Physiological and Cellular Adaptations of Zebu Cattle to Thermal Stress. Anim. Reprod. Sci. 2004, 82–83, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Rashamol, V.P.; Sejian, V.; Pragna, P.; Lees, A.M.; Bagath, M.; Krishnan, G.; Gaughan, J.B. Prediction Models, Assessment Methodologies and Biotechnological Tools to Quantify Heat Stress Response in Ruminant Livestock. Int. J. Biometeorol. 2019, 63, 1265–1281. [Google Scholar] [CrossRef] [PubMed]
- Rashamol, V.P.; Sejian, V.; Bagath, M.; Krishnan, G.; Archana, P.R.; Bhatta, R. Physiological Adaptability of Livestock to Heat Stress: An Updated Review. J. Anim. Behav. Biometeorol. 2018, 6, 62–71. [Google Scholar] [CrossRef]
- Maurya, V.P.; Sejian, V.; Gupta, M.; Dangi, S.S.; Kushwaha, A.; Singh, G.; Sarkar, M. Adaptive Mechanisms of Livestock to Changing Climate. In Climate Change Impact on Livestock: Adaptation and Mitigation; Sejian, V., Gaughan, J., Baumgard, L., Prasad, C., Eds.; Springer: New Delhi, India, 2015; pp. 123–138. [Google Scholar]
- Dowling, D.F. The Hair Follicle and Apocrine Gland Populations of Zebu (Bos Indicus l.) and Shorthorn (b. Taurus l.) Cattle Skin. Aust. J. Agric. Res. 1955, 6, 645–654. [Google Scholar] [CrossRef]
- Allen, T.E.; Pan, Y.S.; Hayman, R.H. The Effect of Feeding on Evaporative Heat Loss and Body Temperature in Zebu and Jersey Heifers. Aust. J. Agric. Res. 1963, 14, 580–593. [Google Scholar] [CrossRef]
- Schleger, A.V.; Turner, H.G. Sweating Rates of Cattle in the Field and Their Reaction to Diurnal and Seasonal Changes. Aust. J. Agric. Res. 1965, 16, 92–106. [Google Scholar] [CrossRef]
- Pan, Y.S. Quantitative and Morphological Variation of Sweat Glands, Skin Thickness, and Skin Shrinkage over Various Body Regions of Sahiwal Zebu and Jersey Cattle. Aust. J. Agric. Res. 1963, 14, 424–437. [Google Scholar] [CrossRef]
- Nay, T.; Haymani, R.H. Sweat Glands in Zebu (Bos Indicus l.) and European (b. Taurus l.) Cattle i. Size of Individual Glands, the Denseness of Their Population, and Their Depth below the Skin Surface. Aust. J. Agric. Res. 1956, 7, 482–492. [Google Scholar] [CrossRef]
- Beatty, D.T.; Barnes, A.L.; Taylor, E.G.; Pethick, D.W.; Mccarthy, M.; Maloney, S.K. Physiological Responses of Bos Taurus and Bos Indicus Cattle to Prolonged, Continuous Heat and Humidity. J. Anim. Sci. Sci. 2006, 84, 972–985. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.; Schleger, A. The Significance of Coat Type in Cattle. Aust. J. Agric. Res. 1960, 11, 645. [Google Scholar] [CrossRef]
- McDowell, R.E. Improvement of Livestock Production in Warm Climates; W. H. Freeman & Company: San Francisco, US, 1972. [Google Scholar]
- Jian, W.; Duangjinda, M.; Vajrabukka, C.; Katawatin, S. Differences of Skin Morphology in Bos Indicus, Bos Taurus, and Their Crossbreds. Int. J. Biometeorol. 2014, 58, 1087–1094. [Google Scholar] [CrossRef]
- Brito, L.F.C.; Silva, A.E.D.F.; Barbosa, R.T.; Kastelic, J.P. Testicular Thermoregulation in Bos Indicus, Crossbred and Bos Taurus Bulls: Relationship with Scrotal, Testicular Vascular Cone and Testicular Morphology, and Effects on Semen Quality and Sperm Production. Theriogenology 2004, 61, 511–528. [Google Scholar] [CrossRef]
- Mattioli, R.C.; Pandey, V.S.; Murray, M.; Fitzpatrick, J.L. Immunogenetic Influences on Tick Resistance in African Cattle with Particular Reference to Trypanotolerant N’Dama (Bos Taurs) and Trypanosusceptible Gobra Zebu (Bos Indicus) Cattle. Acta Trop. 2000, 75, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Lemecha, H.; Mulatu, W.; Hussein, I.; Rege, E.; Tekle, T.; Abdicho, S.; Ayalew, W. Response of Four Indigenous Cattle Breeds to Natural Tsetse and Trypanosomosis Challenge in the Ghibe Valley of Ethiopia. Vet. Parasitol. 2006, 141, 165–176. [Google Scholar] [CrossRef]
- Gandini, G.; Maltecca, C.; Pizzi, F.; Bagnato, A.; Rizzi, R. Comparing Local and Commercial Breeds on Functional Traits and Profitability: The Case of Reggiana Dairy Cattle. J. Dairy Sci. 2007, 90, 2004–2011. [Google Scholar] [CrossRef]
- Czaja, H.; Trela, J. Jak Powstała Populacja Bydła Polskiego Czerwonego. In Proceedings of the Prace nad zachowaniem rzadkich ras zwierząt gospodarskich; Balice; 1994; pp. 56–57. (in Polish). [Google Scholar]
- Polish Federation of Cattle Breeders and Dairy Farmers. Cattle Assesment and Breeding, Data for 2021 (in Polish). Available online: Wyniki 2022 krajowe_02.indd (pfhb.pl) (accessed on 5 September 2023).
- National Research Institute of Animal Production. Bydlo.Bioroznorodnosc.Izoo.Krakow.Pl/Liczebnosc (in Polish). Available online: http://bydlo.bioroznorodnosc.izoo.krakow.pl/liczebnosc (accessed on 5 September 2023).
- Adamczyk, K.; Felenczak, A.; Jamrozy, J.; Bulla, J. Conservation of Polish Red Cattle. Slovak. J. Anim. Sci. 2008, 41, 72–76. [Google Scholar]
- Polish Association of Beef Cattle Breeders and Producers Performance Evaluation of Beef Cattle, Data for 2021 (in Polish). Available online: https://bydlo.com.pl/ocena-wartosci-uzytkowej-bydla-miesnego (accessed on 5 September 2023).
- Fielder, S.E. Hematology Reference Ranges - MSD Manual Professional Edition. Available online: https://www.msdvetmanual.com/special-subjects/reference-guides/hematology-reference-ranges (accessed on 5 September 2023).
- Fielder, S.E. Serum Biochemical Analysis Reference Ranges - MSD Manual Professional Edition. Available online: https://www.msdvetmanual.com/special-subjects/reference-guides/serum-biochemical-analysis-reference-ranges (accessed on 5 September 2023).
- Jackson, P.G.G.; Cockcroft, P.D. Appendix 3: Laboratory Reference Values: Biochemistry. In Clinical Examination of Farm Animals; Blackwell Science Ltd: Oxford, UK, 2007; pp. 303–305. [Google Scholar]
- Frisch, J.E.; Vercoe, J.E. Food Intake, Eating Rate, Weight Gains, Metabolic Rate and Efficiency of Feed Utilization in Bos Taurus and Bos Indicus Crossbred Cattle. Anim. Sci. 1977, 25, 343–358. [Google Scholar] [CrossRef]
- Ledger, H.P.; Rogerson, A.; Freeman, G.H. Further Studies on the Voluntary Food Intake of Bos Indicus, Bos Taurus and Crossbred Cattle. Anim. Sci. 1970, 12, 425–431. [Google Scholar] [CrossRef]
- Cárdenas-Medina, J.V.; Ku-Vera, J.C.; Magana-Monforte, J.G. Estimation of Metabolizable Energy Requirements for Maintenance and Energetic Efficiency of Weight Gain in Bos Taurus and Bos Indicus Cows in Tropical Mexico. J. Anim. Vet. Adv. 2010, 9, 421–428. [Google Scholar] [CrossRef]
- Kelly, L.; Bougouin, A.; Kebreab, E. Maintenance Energy Requirement and Efficiency of Utilisation of Metabolisable Energy for Milk Production of Bos Taurus × Bos Indicus Crossbred Tropical Dairy Cows: A Meta-Analysis. Anim. Prod. Sci. 2021, 61, 1338–1347. [Google Scholar] [CrossRef]
- Oliveira, A.S. Meta-Analysis of Feeding Trials to Estimate Energy Requirements of Dairy Cows under Tropical Condition. Anim. Feed Sci. Technol. 2015, 210, 94–103. [Google Scholar] [CrossRef]
- Kong, Z.; Li, B.; Zhou, C.; He, Q.; Zheng, Y.; Tan, Z. Comparative Analysis of Metabolic Differences of Jersey Cattle in Different High-Altitude Areas. Front. Vet. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, F.; Mi, H.; Lv, X.; Wang, K.; Li, B.; Jin, T.; Chen, L.; Zhang, G.; Huang, X.; et al. N-Carbamoylglutamate Supplementation on the Digestibility, Rumen Fermentation, Milk Quality, Antioxidant Parameters, and Metabolites of Jersey Cattle in High-Altitude Areas. Front. Vet. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Averdunk, G.; Krogmeier, D. Minor and Dual-Purpose Bos Taurus Breeds. In Encyclopedia of Dairy Sciences; McSweeney, P.L.H., McNamara, J.P., Eds.; Academic Press, 2021; Vol. 1, pp. 116–122. [Google Scholar]
- Konopiński, T. Cattle Breeding; Instytut Naukowo-Wydawniczy Ruchu Ludowego „Polska”: Poznań, 1949 (in Polish).
- Żukowski, K. Polish Red Cattle: A Scheme for Their Conservation. Anim. Genet. Resour. Inf. 1990, 7, 71–76. [Google Scholar] [CrossRef]
- Negussie, E.; Rottmann, O.J.; Pirchner, F.; Rege, J.E.O. Patterns of Growth and Partitioning of Fat Depots in Tropical Fat-Tailed Menz and Horro Sheep Breeds. Meat Sci. 2003, 64, 491–498. [Google Scholar] [CrossRef]
- Ermias, E.; Yami, A.; Rege, J.E.O. Fat Deposition in Tropical Sheep as Adaptive Attribute to Periodic Feed Fluctuation. J. Anim. Breed. Genet. 2002, 119, 235–246. [Google Scholar] [CrossRef]
- Mirkena, T.; Duguma, G.; Haile, A.; Tibbo, M.; Okeyo, A.M.; Wurzinger, M.; Sölkner, J. Genetics of Adaptation in Domestic Farm Animals: A Review. Livest. Sci. 2010, 132, 1–12. [Google Scholar] [CrossRef]
- Litwińczuk, Z.; Florek, M.; Domaradzki, P.; Żółkiewski, P. Physicochemical Properties of Meat from Young Bulls of 3 Native Breeds: Polish Red, White-Backed, and Polish Black-And-White, as Well as of Simmental and Polish Holstein-Friesian Breeds. Food. Sci. Technol. Qual. 2014, 21, 53–62. [Google Scholar] [CrossRef]
- Choroszy, Z.; Choroszy, B. The Possibility of Using Polish Red Cattle for Beef Production, Możliwości Wykorzystania Bydła Rasy Polskiej Czerwonej Do Produkcji Mięsa Wołowego. Wiadomości Zootech. 2005, R. XLIII, 73–78 (in Polish).
- Albertí, P.; Panea, B.; Sañudo, C.; Olleta, J.L.; Ripoll, G.; Ertbjerg, P.; Christensen, M.; Gigli, S.; Failla, S.; Concetti, S.; et al. Live Weight, Body Size and Carcass Characteristics of Young Bulls of Fifteen European Breeds. Livest. Sci. 2008, 114, 19–30. [Google Scholar] [CrossRef]
- Randby, Å.T.; Nørgaard, P.; Weisbjerg, M.R. Effect of Increasing Plant Maturity in Timothy-Dominated Grass Silage on the Performance of Growing/Finishing Norwegian Red Bulls. Grass Forage Sci. 2010, 65, 273–286. [Google Scholar] [CrossRef]
- Baltušnikienė, A.; Jukna, V. Impact of Genotype on Cattle Growth, Beef Chemical Composition and Cholesterol Level. Vet. ir Zootech. Kaunas Liet. Vet. Akad. 2011, 54, 14–19. [Google Scholar]
- Kozitсyna, A.I.; Karpenko, L.Y.; Bakhta, A.A.; Balykina, A.B.; Enukashvili, A.I. Pregnant Cows and Heifers Blood Profile Comparison. In Proceedings of the Advances in Engineering Research, International scientific and practical conference “Agro-SMART - Smart solutions for agriculture” (Agro-SMART 2018); Tyumen, Russia, July 16 2018; pp. 391–396. [Google Scholar]
- Zhou, Z.; Loor, J.J.; Piccioli-Cappelli, F.; Librandi, F.; Lobley, G.E.; Trevisi, E. Circulating Amino Acids in Blood Plasma during the Peripartal Period in Dairy Cows with Different Liver Functionality Index. J. Dairy Sci. 2016, 99, 2257–2267. [Google Scholar] [CrossRef]
- Rohn, M.; Tenhagen, B.A.; Hofmann, W. Survival of Dairy Cows after Surgery to Correct Abomasal Displacement: 1. Clinical and Laboratory Parameters and Overall Survival. J. Vet. Med. Ser. A Physiol. Pathol. Clin. Med. 2004, 51, 294–299. [Google Scholar] [CrossRef]
- González, F.D.; Muiño, R.; Pereira, V.; Campos, R.; Benedito, J.L. Relationship among Blood Indicators of Lipomobilization and Hepatic Function during Early Lactation in High-Yielding Dairy Cows. J. Vet. Sci. 2011, 12, 251–255. [Google Scholar] [CrossRef]
- Moreira, C.N.; Souza, S.N.; Barini, A.C.; Araújo, E.G.; Fioravanti, M.C.S. Serum γ-Glutamyltransferase Activity as an Indicator of Chronic Liver Injury in Cattle with No Clinical Signs. Arq. Bras. Med. Vet. e Zootec. 2012, 64, 1403–1410. [Google Scholar] [CrossRef]
- Fürll, M. Stoffwechselkontrollen Und Stoffwechselüberwachung Bei Rindern. Nutztierpraxis Actuell 2004, 9, 8–17. [Google Scholar]
| Feeding group | Total | |||
|---|---|---|---|---|
| 1 | 2 | |||
| N | 11 | 11 | 22 | |
| Lactation number | X | 4.9 | 4.3 | 4.6 |
| SD | 2.4 | 2.5 | 2.4 | |
| Day of gestation (days) – start of winter feeding | X | 76.1 | 81.5 | 78.8 |
| SD | 31.7 | 34.7 | 32.6 | |
| Day of gestation (days) – end of winter feeding | X | 213.1 | 218.5 | 215.8 |
| SD | 31.7 | 34.7 | 32.6 | |
| Feedstuff | Dry matter (%) | Content of nutrients in per kg d.m. | |||||||
|---|---|---|---|---|---|---|---|---|---|
| UFL | PDIN (k/kg) | PDIE (g/kg) | FUC | Crude protein (g/kg) | Crude fat (g/kg) | Crude fibre (g/kg) | Crude ash (g/kg) | ||
| Group 1 (hay, straw) | |||||||||
| Wheat straw | 93.85 | 0.42 | 38 | 44 | 1.60 | 6.06 | 2.07 | 31.2 | 3.71 |
| Rye straw | 93.25 | 0.42 | 39 | 44 | 1.60 | 6.19 | 1.47 | 37.9 | 3.3 |
| Straw from cereal blend | 94.32 | 0.42 | 33 | 44 | 1.60 | 5.25 | 1.93 | 43 | 3.85 |
| Meadow hay (2nd cut) | 93.36 | 0.70 | 44 | 67 | 1.10 | 7.00 | 1.23 | 29.9 | 4.08 |
| Group 2 (hay, haylage) | |||||||||
| Meadow hay (1st cut) | 92.73 | 0.77 | 78 | 84 | 1.0 | 12.62 | 1.53 | 28.5 | 4.47 |
| Haylage from permanent grassland (1st cut) | 62.84 | 0.74 | 83 | 84 | 1.10 | 13.37 | 1.73 | 24.3 | 6.16 |
| Haylage from permanent grassland (2nd cut) | 66.08 | 0.83 | 78 | 87 | 1.00 | 12.62 | 2.37 | 25.4 | 5.72 |
| Parameter | Feeding group | Total | ||
|---|---|---|---|---|
| 1 | 2 | |||
| N | 11 | 11 | 22 | |
| Birth weight (kg) | X | 32.0 | 33.4 | 32.7 |
| SD | 2.5 | 3.6 | 3.1 | |
| Age at weaning (days) | X | 211.5 | 215.7 | 213.6 |
| SD | 21.4 | 20.9 | 20.8 | |
| Body weight at weaning (kg) | X | 204.5B | 233.5A | 219.0 |
| SD | 12.0 | 19.8 | 21.8 | |
| Daily gains until weaning (kg) | X | 0.82B | 0.93A | 0.88 |
| SD | 0.08 | 0.08 | 0.10 | |
| 210-day standardized body weight (kg) | X | 204.4B | 228.9A | 216.6 |
| SD | 16.5 | 15.3 | 20.0 | |
| Mothers’ milk yield (kg) | X | 1655.2B | 1848.8A | 1752.0 |
| SD | 157.4 | 139.9.5 | 175.9 | |
| Parameter | Feeding group | Total | ||
|---|---|---|---|---|
| 1 | 2 | |||
| N | 11 | 11 | 22 | |
| Body weight of cows (start of winter feeding) (kg) | X | 531.1 | 576.4 | 553.7 |
| SD | 52.8 | 61.7 | 60.6 | |
| Body weight of cows (end of winter feeding) (kg) | X | 532.4 | 566.4 | 549.4 |
| SD | 57.7 | 65.1 | 62.5 | |
| Changes in body weight in winter feeding period (kg) | X | 1.27 | -10.0 | -4.4 |
| SD | 40.6 | 36.4 | 38.1 | |
| Body condition of cows (start of winter feeding) (BCS, pts.) | X | 3.5 | 3.8 | 3.7 |
| SD | 0.6 | 0.5 | 0.5 | |
| Body condition of cows (end of winter feeding) (BCS, pts.) | X | 2.9 | 3.2 | 3.1 |
| SD | 0.5 | 0.4 | 0.5 | |
| Changes in body condition in winter feeding period (BCS, pts.) | X | -0.6 | -0.6 | -0.6 |
| SD | 0.3 | 0.3 | 0.3 | |
| Parameter | Ref. range* | Feeding group | Total | ||||
|---|---|---|---|---|---|---|---|
| 1 | 2 | ||||||
| X | SD | X | SD | X | SD | ||
| Start of winter feeding season | |||||||
| WBC (white blood cells) (109) | 4.0-12.0 | 6.71 | 1.43 | 7.01 | 1.38 | 6.86 | 1.38 |
| RBC (red blood cells)(1012) | 5.0-10.0 | 6.20 | 0.56 | 6.41 | 0.49 | 6.31 | 0.52 |
| HCT (haematocrit) (%) | 24.0-46.0 | 28.52 | 2.19 | 29.72 | 3.14 | 29.12 | 2.71 |
| HGB (haemoglobin) (g/dl) | 8.0-15.0 | 11.04 | 0.80 | 11.58 | 1.04 | 11.31 | 0.95 |
| MCV (mean corpuscular volume) (fl) | 40.0-60.0 | 46.08 | 2.60 | 46.42 | 4.55 | 46.25 | 3.62 |
| MCH (mean corpuscular haemoglobin) (pg) | 11.0-17.0 | 17.85 | 0.80 | 18.14 | 1.51 | 18.00 | 1.19 |
| MCHC (mean corpuscular haemoglobin concentration) (g/dl) | 30.0-36.0 | 38.77 | 0.79 | 39.14 | 0.70 | 38.95 | 0.75 |
| PLT (platelets) (109) | 100-800 | 164.91 | 23.94 | 174.09 | 47.95 | 169.50 | 37.28 |
| End of winter feeding season | |||||||
| WBC (white blood cells) (109) | 4.0-12.0 | 6.68 | 1.28 | 7.75 | 1.26 | 7.22 | 1.35 |
| RBC (red blood cells)(1012) | 5.0-10.0 | 5.86 | 0.55 | 6.24 | 0.43 | 6.05 | 0.52 |
| HCT (haematocrit) (%) | 24.0-46.0 | 30.98 | 3.70 | 32.55 | 2.69 | 31.76 | 3.25 |
| HGB (haemoglobin) (g/dl) | 8.0-15.0 | 10.95 | 1.16 | 11.62 | 0.87 | 11.28 | 1.06 |
| MCV (mean corpuscular volume) (fl) | 40.0-60.0 | 52.81 | 2.77 | 52.32 | 4.90 | 52.56 | 3.89 |
| MCH (mean corpuscular haemoglobin) (pg) | 11.0-17.0 | 18.71 | 0.85 | 18.70 | 1.53 | 18.70 | 1.21 |
| MCHC (mean corpuscular haemoglobin concentration) (g/dl) | 30.0-36.0 | 35.48 | 0.77 | 35.82 | 0.57 | 35.65 | 0.69 |
| PLT (platelets) (109) | 100-800 | 140.73 | 37.83 | 137.18 | 26.75 | 138.95 | 32.02 |
| Parameter | Ref. range* | Feeding group | Total | ||||
|---|---|---|---|---|---|---|---|
| 1 | 2 | ||||||
| X | SD | X | SD | X | SD | ||
| Start of winter feeding season | |||||||
| ALAT (U/l) | 11-40 | 27.92 | 5.69 | 28.52 | 2.70 | 28.22 | 4.36 |
| ALP (U/l) | 0-500 | 30.89 | 6.68 | 31.97 | 9.67 | 31.43 | 8.13 |
| AST (U/l) | 60-125 | 61.22b | 10.34 | 74.91a | 13.47 | 68.06 | 13.66 |
| BIL (mg/dl) | 0.0-1,6 | 0.43B | 0.08 | 0.66A | 0.26 | 0.54 | 0.22 |
| Ca (mg/dl) | 8.0-11.4 | 10.53 | 0.35 | 10.72 | 0.16 | 10.63 | 0.28 |
| CHOL (mg/dl) | 65-220 | 113.94 | 35.55 | 138.05 | 29.74 | 126.00 | 34.29 |
| CREA (mg/dl) | 0.5-2.2 | 1.27 | 0.29 | 1.10 | 0.22 | 1.18 | 0.26 |
| Mg (mg/dl) | 1.5-2.9 | 2.22 | 0.22 | 2.19 | 0.17 | 2.21 | 0.19 |
| Phos (mg/dl) | 5.6-8.0 | 5.20 | 1.12 | 5.75 | 0.85 | 5.47 | 1.01 |
| Urea (mg/dl) | 10-25 | 13.63 | 4.31 | 15.29 | 4.32 | 14.46 | 4.30 |
| TP (g/dl) | 6.7-7.5 | 7.82 | 0.63 | 7.69 | 0.54 | 7.75 | 0.58 |
| End of winter feeding season | |||||||
| ALAT (U/l) | 11-40 | 21.97 | 2.66 | 21.15 | 3.27 | 21.56 | 2.94 |
| ALP (U/l) | 0-500 | 22.02 | 4.15 | 22.08 | 7.59 | 22.05 | 5.97 |
| AST (U/l) | 60-125 | 44.85 | 9.66 | 44.42 | 8.22 | 44.63 | 8.75 |
| BIL (mg/dl) | 0.0-1,6 | 1.48b | 0.44 | 1.98a | 0.47 | 1.73 | 0.51 |
| Ca (mg/dl) | 8.0-11.4 | 7.58 | 0.66 | 8.05 | 0.48 | 7.81 | 0.61 |
| CHOL (mg/dl) | 65-220 | 92.76 | 21.23 | 95.86 | 22.85 | 94.31 | 21.58 |
| CREA (mg/dl) | 0.5-2.2 | 0.71 | 0.17 | 0.74 | 0.21 | 0.73 | 0.19 |
| Mg (mg/dl) | 1.5-2.9 | 1.54 | 0.23 | 1.48 | 0.17 | 1.51 | 0.20 |
| Phos (mg/dl) | 5.6-8.0 | 2.34 | 0.83 | 2.10 | 0.65 | 2.22 | 0.74 |
| Urea (mg/dl) | 10-25 | 18.04 | 6.91 | 21.90 | 6.98 | 19.97 | 7.06 |
| TP (g/dl) | 6.7-7.5 | 2.41 | 1.00 | 2.82 | 1.00 | 2.62 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
