Submitted:
13 September 2023
Posted:
13 September 2023
You are already at the latest version
Abstract
Keywords:
Different models of testicular hyperthermia but similar outcomes.
Testicular hyperthermia-induced oxidative stress in mice
Is ”heat-stress” physiologically relevant?
Emerging evidence shows there are “degrees” of heat-sensitivity within species.
Evidence of genetic heritability of “testicular heat-sensitivity”
Testicular heat stress and its relation to male-factor infertility.
Overcoming the impact of testicular hyperthermia.
Concluding remarks.
Author Contributions
Conflicts of Interest
References
- J. Griffiths, The structural changes in the testicle of the dog when it is replaced within the abdominal cavity. Journal of anatomy and physiology, 1893, 27, 482–481.
- Z.H. Zheng, Q. Tian, J.P. He, J.L. Yuan, S.H. Yang, J.L. Liu, Comparative transcriptome analysis of experimental cryptorchidism: of mice and cynomolgus monkeys. Physiol Genomics, 2022, 54, 187–195. [CrossRef]
- A. Wanta, K. Noguchi, T. Sugawara, K. Sonoda, S. Duangchit, T. Wakayama, Expression of Protein Markers in Spermatogenic and Supporting Sertoli Cells Affected by High Abdominal Temperature in Cryptorchidism Model Mice. J Histochem Cytochem, 2023, 71, 387–408. [CrossRef]
- J.L. Yuan, Y.T. Zhang, Y. Wang, Increased apoptosis of spermatogenic cells in cryptorchidism rat model and its correlation with transforming growth factor beta type II receptor. Urology, 2010, 75, 992–998. [CrossRef]
- R.A. Aldahhan, P.G. Stanton, H. Ludlow, D.M. de Kretser, M.P. Hedger, Experimental Cryptorchidism Causes Chronic Inflammation and a Progressive Decline in Sertoli Cell and Leydig Cell Function in the Adult Rat Testis. Reprod Sci, 2021, 28, 2916–2928. [CrossRef]
- G.D. Sagaradze, N.A. Basalova, V.I. Kirpatovsky, D.A. Ohobotov, O.A. Grigorieva, V.Y. Balabanyan, A.A. Kamalov, A.Y. Efimenko, Application of rat cryptorchidism model for the evaluation of mesenchymal stromal cell secretome regenerative potential. Biomed Pharmacother, 2019, 109, 1428–1436. [CrossRef]
- R.M. Vigueras-Villasenor, T. Jimenez Cabrera, M. Chavez Saldana, F. Jimenez Trejo, O. Cuevas Alpuche, J.C. Rojas-Castaneda, Epigallocatechin-3-gallate protects the testis from damage generated by experimental cryptorchidism in rabbits. Histol Histopathol, 2019, 34, 931–942.
- X.C. Zhou, X.B. Han, Z.Y. Hu, R.J. Zhou, Y.X. Liu, Expression of Hsp70-2 in unilateral cryptorchid testis of rhesus monkey during germ cell apoptosis. Endocrine, 2001, 16, 89–95. [CrossRef]
- R.W. Phillips, Observations on the Spermatozoa of the Ram and Their Application to the Determination of Fertility, University of Missouri--Columbia, 1931.
- R.W. Phillips, F.F. McKenzie, The thermo-regulatory function and mechanism of the scrotum, 1934.
- C.C. Júnior, C. Lucci, V. Peripolli, A. Silva, A. Menezes, S. Morais, M. Araújo, L. Ribeiro, R. Mattos, C. McManus, Effects of testicle insulation on seminal traits in rams: preliminary study. Small Ruminant Research, 2015, 130, 157–165.
- T. Hamilton, G.E. Duarte, J.A. Visintin, M. Assumpcao, Immunolocalization of antioxidant enzymes in testis of rams submitted to long-term heat stress. Zygote, 2019, 27, 432–435. [CrossRef]
- A. Ross, K. Entwistle, The effect of scrotal insulation on spermatozoal morphology and the rates of spermatogenesis and epididymal passage of spermatozoa in the bull. Theriogenology 1979, 11, 111–129. [CrossRef] [PubMed]
- C. Vogler, R. Saacke, J. Bame, J. Dejarnette, M. McGilliard, Effects of scrotal insulation on viability characteristics of cryopreserved bovine semen. Journal of Dairy Science, 1991, 74, 3827–3835. [CrossRef] [PubMed]
- A.D. Barth, P.A. Bowman, The sequential appearance of sperm abnormalities after scrotal insulation or dexamethasone treatment in bulls. The Canadian Veterinary Journal, 1994, 35, 93.
- J. Kastelic, R. Cook, G. Coulter, R. Saacke, Insulating the scrotal neck affects semen quality and scrotal/testicular temperatures in the bull. Theriogenology, 1996, 45, 935–942. [CrossRef] [PubMed]
- L.F. Brito, A.E. Silva, R.T. Barbosa, M.M. Unanian, J.P. Kastelic, Effects of scrotal insulation on sperm production, semen quality, and testicular echotexture in Bos indicus and Bos indicus× Bos taurus bulls. Animal reproduction science, 2003, 79, 1–15. [CrossRef]
- L.D. Newton, J.P. Kastelic, B. Wong, F. Van der Hoorn, J. Thundathil, Elevated testicular temperature modulates expression patterns of sperm proteins in Holstein bulls. Molecular Reproduction and Development: Incorporating Gamete Research, 2009, 76, 109–118. [CrossRef]
- M.B. Rahman, L. Vandaele, T. Rijsselaere, D. Maes, M. Hoogewijs, A. Frijters, J. Noordman, A. Granados, E. Dernelle, M. Shamsuddin, Scrotal insulation and its relationship to abnormal morphology, chromatin protamination and nuclear shape of spermatozoa in Holstein-Friesian and Belgian Blue bulls. Theriogenology, 2011, 76, 1246–1257.
- S. Menegassi, G. Pereira, E. Dias, M. Rocha, H. Carvalho, C. Koetz Jr, E. Oberst, J. Barcellos, Infrared thermography as a noninvasive method to assess scrotal insulation on sperm production in beef bulls. Andrologia, 2018, 50, e12904. [CrossRef]
- G.R. Pereira, F.L. de Lazari, P.F. Dalberto, C.V. Bizarro, E.R. Sontag, C.K. Junior, S.R.O. Menegassi, J.O.J. Barcellos, I.C. Bustamante-Filho, Effect of scrotal insulation on sperm quality and seminal plasma proteome of Brangus bulls. Theriogenology, 2020, 144, 194–203. [CrossRef]
- J.J. Parrish, K.L. Willenburg, K.M. Gibbs, K.B. Yagoda, M.M. Krautkramer, T.M. Loether, F. Melo, Scrotal insulation and sperm production in the boar. Mol Reprod Dev, 2017, 84, 969–978.
- H. Henning, C. Masal, A. Herr, K. Wolf, C. Urhausen, A. Beineke, M. Beyerbach, S. Kramer, A.R. Gunzel-Apel, Effect of short-term scrotal hyperthermia on spermatological parameters, testicular blood flow and gonadal tissue in dogs. Reprod Domest Anim, 2014, 49, 145–157. [CrossRef] [PubMed]
- G. Waites, B. Setchell, Effect of local heating on blood flow and metabolism in the testis of the conscious ram. Reproduction, 1964, 8, 339–349. [CrossRef] [PubMed]
- B. Setchell, J. Voglmayr, N. Hinks, The effect of local heating on the flow and composition of rete testis fluid in the conscious ram. Reproduction, 1971, 24, 81–89. [CrossRef] [PubMed]
- Y. Lue, A.P. Sinha Hikim, C. Wang, M. Im, A. Leung, R.S. Swerdloff, Testicular heat exposure enhances the suppression of spermatogenesis by testosterone in rats: the “two-hit” approach to male contraceptive development. Endocrinology, 2000, 141, 1414–1424. [CrossRef]
- B. Setchell, L. Ploen, E. Ritzen, Reduction of long-term effects of local heating of the testis by treatment of rats with a GnRH agonist and an anti-androgen. REPRODUCTION-CAMBRIDGE-, 2001, 122, 255–263. [CrossRef]
- B.O. Reid, K.A. Mason, H.R. Withers, J. West, Effects of hyperthermia and radiation on mouse testis stem cells, AACR, 1981.
- B.J. Sailer, Sarkar, Linda J, Bjordahl, Janet A, Jost, Lorna K, Evenston, Donald P, Effects of heat stress on mouse testicular cells and sperm chromatin structure. Journal of Andrology, 1997, 18, 294–301.
- M. Pérez-Crespo, B. Pintado, A. Gutiérrez-Adán, Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Molecular Reproduction and Development: Incorporating Gamete Research, 2008, 75, 40–47. [CrossRef]
- A. Hasani, A. Khosravi, K. Rahimi, A. Afshar, F. Fadaei-Fathabadi, A. Raoofi, P. Raee, F. Aghajanpour, A. Aliaghaei, S. Abdi, Photobiomodulation restores spermatogenesis in the transient scrotal hyperthermia-induced mice. Life Sciences, 2020, 254, 117767.
- S. Ilkhani, A. Moradi, A. Aliaghaei, M. Norouzian, S. Abdi, E. Rojhani, A. Ebadinejad, E. Sajadi, M.A. Abdollahifar, Spatial arrangement of testicular cells disrupted by transient scrotal hyperthermia and subsequent impairment of spermatogenesis. Andrologia, 2020, 52, e13664.
- A. Khosravi, A. Hasani, P. Behnam, A. Piryaei, M. Pirani, A. Aliaghaei, P. Raee, S. Abdi, F.F. Fathabadi, M.A. Abdollahifar, An effective method for establishing animal models of azoospermia and oligospermia. Andrologia, 2021, 53, e14095.
- S. Ziaeipour, A. Piryaei, A. Aliaghaei, H. Nazarian, P. Naserzadeh, V. Ebrahimi, S. Abdi, F. Shahi, H. Ahmadi, F.F. Fathabadi, Chronic scrotal hyperthermia induces azoospermia and severe damage to testicular tissue in mice. Acta Histochemica, 2021, 123, 151712. [CrossRef] [PubMed]
- M. Rao, X.L. Zhao, J. Yang, S.F. Hu, H. Lei, W. Xia, C.H. Zhu, Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical markers, and oxidative stress in men. Asian J Androl, 2015, 17, 668–675. [CrossRef] [PubMed]
- R. Dutt, P.T. Hamm, Effect of exposure to high environmental temperature and shearing on semen production of rams in winter. Journal of Animal Science, 1957, 16, 328–334. [CrossRef]
- A.S. El-Sheikh, L. Casida, Motility and fertility of spermatozoa as affected by increased ambient temperature. Journal of Animal Science, 1955, 14, 1146–1150. [CrossRef]
- D.C. Meyerhoeffer, R.P. Wettemann, S.W. Coleman, M.E. Wells, Reproductive criteria of beef bulls during and after exposure to increased ambient temperature. J Anim Sci, 1985, 60, 352–357. [CrossRef]
- X. Fan, H. Xi, Z. Zhang, Y. Liang, Q. Li, J. He, Germ cell apoptosis and expression of Bcl-2 and Bax in porcine testis under normal and heat stress conditions. Acta Histochem, 2017, 119, 198–204. [CrossRef]
- G.M.J. Costa, S. Lacerda, A.F.A. Figueiredo, M.C. Leal, J.V. Rezende-Neto, L.R. Franca, Higher environmental temperatures promote acceleration of spermatogenesis in vivo in mice (Mus musculus). J Therm Biol, 2018, 77, 14–23. [CrossRef] [PubMed]
- J.P. Kastelic, R.E. Wilde, A. Bielli, P. Genovese, G. Rizzoto, J. Thundathil, Hyperthermia is more important than hypoxia as a cause of disrupted spermatogenesis and abnormal sperm. Theriogenology, 2019, 131, 177–181. [CrossRef]
- Y.M. El-Gindy, S.M. Zahran, M.H. Ahmed, A.M. Ali, A.Z. Mohamed, S.A. Morshedy, Counteract severe heat stress by including different forms of zinc in the rabbit bucks' diet. Sci Rep, 2023, 13, 12987. [CrossRef]
- C. Paul, A.A. Murray, N. Spears, P.T. Saunders, A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction, 2008, 136, 73. [CrossRef]
- A. Kobayashi, M.-I. Kang, H. Okawa, M. Ohtsuji, Y. Zenke, T. Chiba, K. Igarashi, M. Yamamoto, Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and cellular biology, 2004, 24, 7130–7139. [CrossRef] [PubMed]
- R.F. Morgan, H. Davis, Influence of age of dairy cattle and season of the year on the sex ratio of calves and services required for conception. 1938.
- D. Seath, C.H. Staples, Some factors influencing the reproductive efficiency of Louisiana herds. J. Dairy Sci, 1941, 24, 510.
- R. Erb, F. Andrews, J. Hilton, Seasonal variation in semen quality of the dairy bull. Journal of dairy science, 1942, 25, 815–826. [CrossRef]
- E. Mercier, G. Salisbury, Fertility level in artificial breeding associated with season, hours of daylight, and the age of cattle. Journal of Dairy Science, 1947, 30, 817–826. [CrossRef]
- R. Casady, R. Myers, J. Legates, The effect of exposure to high ambient temperature on spermatogenesis in the dairy bull. journal of Dairy Science, 1953, 36, 14–23. [CrossRef]
- L. Capela, I. Leites, R. Romão, L. Lopes-da-Costa, R.M.L.N. Pereira, Impact of Heat Stress on Bovine Sperm Quality and Competence. Animals, 2022, 12, 975. [CrossRef]
- E. Mercier, G. Salisbury, Seasonal variations in hours of daylight associated with fertility level of cattle under natural breeding conditions. Journal of Dairy Science, 1947, 30, 747–756. [CrossRef]
- M. Mathevon, M. Buhr, J. Dekkers, Environmental, management, and genetic factors affecting semen production in Holstein bulls. Journal of dairy science, 1998, 81, 3321–3330. [CrossRef]
- E.W. Swanson, H. Herman, Seasonal variation in semen quality of some Missouri dairy bulls. Journal of Dairy Science, 1944, 27, 303–310. [CrossRef]
- T. Nongbua, A. Utta, N. Am-In, J. Suwimonteerabutr, A. Johannisson, J.M. Morrell, Effects of season and single layer centrifugation on bull sperm quality in Thailand. Asian-Australasian journal of animal sciences, 2020, 33, 1411. [CrossRef] [PubMed]
- M. Fields, W. Burns, A. Warnick, Age, season and breed effects on testicular volume and semen traits in young beef bulls. Journal of Animal Science, 1979, 48, 1299–1304. [CrossRef] [PubMed]
- L. Brito, A. Silva, L. Rodrigues, F. Vieira, L. Deragon, J. Kastelic, Effects of environmental factors, age and genotype on sperm production and semen quality in Bos indicus and Bos taurus AI bulls in Brazil. Animal reproduction science, 2002, 70, 181–190. [CrossRef] [PubMed]
- S. Koonjaenak, V. Chanatinart, S. Aiumlamai, T. Pinyopumimintr, H. Rodriguez-Martinez, Seasonal variation in semen quality of swamp buffalo bulls (Bubalus bubalis) in Thailand. Asian journal of andrology, 2007, 9, 92–101. [CrossRef]
- G. Igboeli, A. Rakha, Seasonal changes in the ejaculate characteristics of Angoni (short horn zebu) bulls. Journal of animal science, 1971, 33, 651–654. [CrossRef]
- J. Anderson, The periodicity and duration of oestrus in Zebu and grade cattle. The Journal of Agricultural Science, 1944, 34, 57–68. [CrossRef]
- M. Nichi, P. Bols, R.M. Züge, V.H. Barnabe, I. Goovaerts, R.C. Barnabe, C.N.M. Cortada, Seasonal variation in semen quality in Bos indicus and Bos taurus bulls raised under tropical conditions. Theriogenology, 2006, 66, 822–828. [CrossRef]
- S. Valeanu, A. Johannisson, N. Lundeheim, J. Morrell, Seasonal variation in sperm quality parameters in Swedish red dairy bulls used for artificial insemination. Livestock Science, 2015, 173, 111–118. [CrossRef]
- E. Malama, Y. Zeron, F. Janett, M. Siuda, Z. Roth, H. Bollwein, Use of computer-assisted sperm analysis and flow cytometry to detect seasonal variations of bovine semen quality. Theriogenology, 2017, 87, 79–90. [CrossRef]
- L. Söderquist, L. Janson, M. Håård, S. Einarsson, Influence of season, age, breed and some other factors on the variation in sperm morphological abnormalities in Swedish dairy AI bulls. Animal Reproduction Science, 1996, 44, 91–98. [CrossRef]
- M. Sabés-Alsina, A. Johannisson, N. Lundeheim, M. Lopez-Bejar, J. Morrell, Effects of season on bull sperm quality in thawed samples in northern Spain. Veterinary Record, 2017, 180, 251–251. [CrossRef] [PubMed]
- G. Igboeli, L. Nwakalor, B. Orji, G. Onuora, Seasonal variation in the semen characteristics of Muturu (Bos brachyceros) bulls. Animal Reproduction Science, 1987, 14, 31–38. [CrossRef]
- M. Sharma, Y. Bhat, N. Sharma, A. Singh, Comparative study of seasonal variation in semen characteristics of buffalo bull. J. Entomol. Zool. Stud, 2018, 6, 52–109.
- N. Isnaini, S. Wahjuningsih, E. Adhitama, Seasonal effects on semen quality of Ongole crossbred and Simmental bulls used for artificial insemination. Livest. Res. Rural Dev, 2019, 31, 16.
- D. Vilakazi, E. Webb, Effect of age and season on sperm morphology of Friesland bulls at an artificial insemination centre in South Africa. South African Journal of Animal Science, 2004, 34, 62–69.
- V. Sekoni, B. Gustafsson, Seasonal variations in the incidence of sperm morphological abnormalities in dairy bulls regularly used for artificial insemination. British Veterinary Journal, 1987, 143, 312–317. [CrossRef] [PubMed]
- A. Seifi-Jamadi, M. Zhandi, H. Kohram, N.L. Luceño, B. Leemans, E. Henrotte, C. Latour, K. Demeyere, E. Meyer, A. Van Soom, Influence of seasonal differences on semen quality and subsequent embryo development of Belgian Blue bulls. Theriogenology, 2020, 158, 8–17. [CrossRef]
- M. Sabés-Alsina, N. Lundeheim, A. Johannisson, M. López-Béjar, J. Morrell, Relationships between climate and sperm quality in dairy bull semen: A retrospective analysis. Journal of Dairy Science, 2019, 102, 5623–5633. [CrossRef]
- M. Koivisto, M. Costa, S.H.V. Perri, W. Vicente, The effect of season on semen characteristics and freezability in Bos indicus and Bos taurus bulls in the southeastern region of Brazil. Reproduction in Domestic Animals, 2009, 44, 587–592. [CrossRef]
- N. Llamas-Luceño, M. Hostens, E. Mullaart, M. Broekhuijse, P. Lonergan, A. Van Soom, High temperature-humidity index compromises sperm quality and fertility of Holstein bulls in temperate climates. Journal of dairy science, 2020, 103, 9502–9514. [CrossRef]
- E.M. Murphy, A.K. Kelly, C. O’Meara, B. Eivers, P. Lonergan, S. Fair, Influence of bull age, ejaculate number, and season of collection on semen production and sperm motility parameters in Holstein Friesian bulls in a commercial artificial insemination centre. Journal of animal science, 2018, 96, 2408–2418.
- N. Isnaini, T. Harsi, D. Maharani, Seasonal effect on semen characteristics of Murrah buffalo bulls raised under tropical climate. Jurnal Kedokteran Hewan September, 2019, 13, 73–75.
- C. McCool, K. Entwistle, Reproductive function in the Australian Swamp buffalo bull: Age effects and seasonal effects. Theriogenology, 1989, 31, 583–594. [CrossRef] [PubMed]
- L. Helbig, M. Woodbury, J. Haigh, J. Collins, A. Barth, The seasonal fertility of North American bison (Bison bison) bulls. Animal reproduction science, 2007, 97, 265–277. [CrossRef] [PubMed]
- R. Tiwari, G. Mishra, M. Shukla, R. Singh, S. Saxena, M. Siddiqui, Seasonal variations in semen production of Murrah buffalo bulls. Indian J. Anim. Reprod, 2011, 32, 52–54.
- P. Rekwot, A. Voh Jr, E. Oyedipe, G. Opaluwa, V. Sekoni, P. Dawuda, Influence of season on characteristics of the ejaculate from bulls in an artificial insemination centre in Nigeria. Animal Reproduction Science, 1987, 14, 187–194. [CrossRef]
- J. Anderson, Seasonal variation in the reproductive capacity of the bull. The Journal of Agricultural Science, 1945, 35, 184–196. [CrossRef]
- Barth, The use of bull breeding soundness evaluation to identify subfertile and infertile bulls. Animal 2018, 12, s158–s164. [CrossRef]
- J.K. Netherton, B.R. Robinson, R.A. Ogle, A. Gunn, A.I.S.B. Villaverde, K. Colyvas, C. Wise, T. Russo, A. Dowdell, M.A. Baker, Seasonal variation in bull semen quality demonstrates there are heat-sensitive and heat-tolerant bulls. Scientific Reports, 2022, 12, 1–11.
- C. Vogler, J. Bame, J. DeJarnette, M. McGilliard, R. Saacke, Effects of elevated testicular temperature on morphology characteristics of ejaculated spermatozoa in the bovine. Theriogenology, 1993, 40, 1207–1219. [CrossRef]
- A. Walters, R. Saacke, R. Pearson, F. Gwazdauskas, The incidence of apoptosis after IVF with morphologically abnormal bovine spermatozoa. Theriogenology, 2005, 64, 1404–1421. [CrossRef] [PubMed]
- W.L. Flowers, Genetic and phenotypic variation in reproductive traits of AI boars. Theriogenology, 2008, 70, 1297–1303. [CrossRef] [PubMed]
- I. Belhadj Slimen, T. Najar, A. Ghram, M. Abdrrabba, Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. Journal of animal physiology and animal nutrition, 2016, 100, 401–412. [CrossRef] [PubMed]
- C. Rohmer, J.R. David, B. Moreteau, D. Joly, Heat induced male sterility in Drosophila melanogaster: adaptive genetic variations among geographic populations and role of the Y chromosome. Journal of Experimental Biology, 2004, 207, 2735–2743. [CrossRef]
- M.M. Matzuk, D.J. Lamb, The biology of infertility: research advances and clinical challenges. Nat Med, 2008, 14, 1197–1213. [CrossRef]
- R.I. McLachlan, D.M. de Kretser, Male infertility: the case for continued research. Med J Aust, 2001, 174, 116–117.
- A. Agarwal, A. Mulgund, A. Hamada, M.R. Chyatte, A unique view on male infertility around the globe. Reproductive biology and endocrinology, 2015, 13, 1–9.
- H. Hosseinifar, M. Sabbaghian, D. Nasrabadi, T. Modarresi, A.V.T. Dizaj, H. Gourabi, M.A.S. Gilani, Study of the effect of varicocelectomy on sperm proteins expression in patients with varicocele and poor sperm quality by using two-dimensional gel electrophoresis. Journal of assisted reproduction and genetics, 2014, 31, 725–729.
- A. Zini, A. Blumenfeld, J. Libman, J. Willis, Beneficial effect of microsurgical varicocelectomy on human sperm DNA integrity. Human Reproduction, 2005, 20, 1018–1021. [CrossRef]
- L. Lund, K. Nielsen, Varicocele testis and testicular temperature. British journal of urology, 1996, 78, 113–115. [CrossRef]
- H. Yavetz, B. Harash, G. Paz, L. Yogev, A. Jaffa, J. Lessing, Z. Homonnai, Cryptorchidism: incidence and sperm quality in infertile men. Andrologia, 1992, 24, 293–297.
- S. Taskinen, O. Hovatta, S. Wikstrom, Early treatment of cryptorchidism, semen quality and testicular endocrinology. The Journal of urology, 1996, 156, 82–84. [CrossRef]
- E. Pinart, S. Sancho, M. Briz, S. Bonet, N. Garcı́a, Characterization of the semen quality of postpuberal boars with spontaneous unilateral abdominal cryptorchidism on the right side. Animal reproduction science, 1999, 55, 269–278. [CrossRef] [PubMed]
- P.A. Lee, M.T. Coughlin, Fertility after bilateral cryptorchidism. Hormone Research in Paediatrics, 2001, 55, 28–32. [CrossRef] [PubMed]
- F. Tüttelmann, C. Ruckert, A. Röpke, Disorders of spermatogenesis. medizinische genetik, 2018, 30, 12–20.
- J.K. Voglmayr, B.P. Setchell, I.G. White, The effects of heat on the metabolism and ultrastructure of ram testicular spermatozoa. J Reprod Fertil, 1971, 24, 71–80. [CrossRef]
- B.P. Setchell, The parkes lecture heat and the testis. Reproduction, 1998, 114, 179–194. [CrossRef]
- M. Spanò, J.P. Bonde, H.I. Hjøllund, H.A. Kolstad, E. Cordelli, G. Leter, D.F.P.P.S. Team, Sperm chromatin damage impairs human fertility. Fertility and sterility, 2000, 73, 43–50.
- A. Zorgniotti, A. Sealfon, A. Toth, Chronic scrotal hypothermia as a treatment for poor semen quality. The Lancet, 1980, 315, 904–906. [CrossRef]
- B. Baccetti, E. Strehler, S. Capitani, G. Collodel, M. De Santo, E. Moretti, P. Piomboni, R. Wiedeman, K. Sterzik, The effect of follicle stimulating hormone therapy on human sperm structure (Notulae seminologicae 11). Human reproduction (Oxford, England), 1997, 12, 1955–1968. [CrossRef]
- Z. Ben-Rafael, J. Farhi, D. Feldberg, B. Bartoov, M. Kovo, F. Eltes, J. Ashkenazi, Follicle-stimulating hormone treatment for men with idiopathic oligoteratoasthenozoospermia before in vitro fertilization: the impact on sperm microstructure and fertilization potential. Fertility and sterility, 2000, 73, 24–30.
- B. Baccetti, P. Piomboni, E. Bruni, S. Capitani, L. Gambera, E. Moretti, K. Sterzik, E. Strehler, Effect of follicle-stimulating hormone on sperm quality and pregnancy rate. Progressive, 2004, 8, 12–14.
- C. Gnoth, D. Godehardt, E. Godehardt, P. Frank-Herrmann, G. Freundl, Time to pregnancy: results of the German prospective study and impact on the management of infertility. Human reproduction, 2003, 18, 1959–1966. [CrossRef] [PubMed]
- A.W. Zorgniotti, M.S. Cohen, A.I. Sealfon, Chronic scrotal hypothermia: results in 90 infertile couples. The Journal of urology, 1986, 135, 944–947. [CrossRef]
- A.W. Zorgniotti, A.I. Sealfon, Scrotal Hypothermia: New theraphy for poor semen. Urology, 1984, 23, 439–441. [CrossRef]
- E. de Lamirande, A. Harakat, C. Gagnon, Human sperm capacitation induced by biological fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion. J Androl, 1998, 19, 215–225. [CrossRef]
- A.M. Shahat, J.C. Thundathil, J.P. Kastelic, Melatonin improves testicular hemodynamics and sperm quality in rams subjected to mild testicular heat stress. Theriogenology, 2022, 188, 163–169. [CrossRef]
- P. Zhang, Y. Zheng, Y. Lv, F. Li, L. Su, Y. Qin, W. Zeng, Melatonin protects the mouse testis against heat-induced damage. Molecular Human Reproduction, 2020, 26, 65–79. [CrossRef]
- Y. Guo, H. Chen, Q.-J. Wang, X. Qi, Q. Li, W. Fu, J. Huang, C.-Y. Yao, Z.-Y. Liu, M.-Z. Wang, Prolonged melatonin treatment promote testicular recovery by enhancing RAC1-mediated apoptotic cell clearance and cell junction-dependent spermatogensis after heat stress. Theriogenology, 2021, 162, 22–31.
- D. Kang, D. Kim, Antioxidant effect of Lonicera Caerulea on heat stress-treated male mice. Journal of Animal Reproduction and Biotechnology, 2021, 36, 220–229. [CrossRef]
- G.C. Xavier, P.C. Soares, V.A. da Silva Junior, S.M. de Torres, A.C.M. Maymone, R.N. de Morais, C.S. Moura, M.M.P. Guerra, Effect of dietary selenium and vitamin e supplementation on testicular morphology and serum testosterone concentration in goats following scrotal insulation. Acta Scientiae Veterinariae, 2016, 44, 1–8.
- S.T. Peña Jr, B. Gummow, A.J. Parker, D.B. Paris, Antioxidant supplementation mitigates DNA damage in boar (Sus scrofa domesticus) spermatozoa induced by tropical summer. PLoS One, 2019, 14, e0216143.
- D. Fio, O. Olalekan, O. Azu, I. Okoko, L-arginine augments oxidative stress in cryptorchid testes of adult Sprague-Dawley rats. JMMS, 2011, 2, 777–782.
- D. Kokubu, R. Ooba, Y. Abe, H. Ishizaki, S. Yoshida, A. Asano, S.-I. Kashiwabara, H. Miyazaki, Angelica keiskei (Ashitaba) powder and its functional compound xanthoangelol prevent heat stress-induced impairment in sperm density and quality in mouse testes. Journal of Reproduction and Development, 2019, 65, 139–146. [CrossRef]
- A. Kumagai, H. Kodama, J. Kumagai, J. Fukuda, K. Kawamura, H. Tanikawa, N. Sato, T. Tanaka, Xanthine oxidase inhibitors suppress testicular germ cell apoptosis induced by experimental cryptorchidism. Molecular Human Reproduction, 2002, 8, 118–123. [CrossRef]
- Y. Cao, Y. Li, Z. Li, F. Wang, C. Li, Dietary zinc may attenuate heat-induced testicular oxidative stress in mice via up-regulation of Cu-Zn SOD. Genetics and Molecular Research, 2015, 14, 16616–16626. [CrossRef] [PubMed]
- N. Ghasemi, H. Babaei, S. Azizallahi, A. Kheradmand, Effect of long-term administration of zinc after scrotal heating on mice spermatozoa and subsequent offspring quality. Andrologia, 2009, 41, 222–228. [CrossRef]
| # Bulls | Breed | # ejaculates | Motility (%) | Cell counts | Morphology (% defective) |
Country | Ave, temp (oC) |
Ave Humidity (%) |
Ref | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sum. | Win. | Sum. | Win. | Sum. | Win. | Sum. | Win. | Sum. | Win. | |||||||
| 6 | B. Indicus | n/a | 55 | 39 | 1.29 | 1.19 | 39 | 30 | Khon kaen, Thailand | 36 | 30 | 80 | 63 | [54] | ||
| 51* | Bos Indicus/indicus | ND | NSD** | NSD** | 119 | 119 | 14 | 10 | Sertãozinho, SP, Brazil Uberaba, MG, Brazil |
~26 | ~19 | 84 | 51 | [56] | ||
| 13 | Bos Taurus | 1103 | 4.2*** | 3-3.7*** | 1023/mm3 | 1015/mm3 | 14 | 14 | Missouri, USA | 24 | -3 | 60 | 65 | [53] | ||
| 9 bulls (reduced to 2 over time) | Zebu | 1049 | 75 | 80 | 600cc3 | 700cc3 | ND | ND | Kenya | 27 | 20 | 75 | 60 | [59] | ||
| 137 | Bos Taurus | 5644 | 55 | 56 | 13.5-149 | 14.5-15.59 | ND | ND | Geuth, Canada | 26 | -3 | 60 | 65 | [52] | ||
| 5 | Swamp Buffalo | 118 | 73 | 75 | 4.28 | 3.68 | 10 | 11 | Khon-Khaen, Thailand. | 35 | 33 | 89 | 92 | [57] | ||
| 27 | 16 Bos. Taurus. 11 Bos. Indicus | ND | NSD | NSD | ND | ND | 20 | 12 | Dourados, MS, Brazil | 29 | 22 | 80 | 75 | [60] | ||
| 10 | Bos Taurus | ND | 47 | 55 | ND | ND | 14 | 15 | Uppsala, Sweden | 18 | -3 | 65 | 94 | [61] | ||
| 5 | Bos Taurus | 86 | 40 | 49 | ND | ND | ND | ND | Hafetz-Haim, Israel | 31 | 16 | 84 | 46 | [62] | ||
| 52 | Bos Taurus | 86 | ND | ND | ND | ND | 12 | 11 | Sweeden | 21 | 17 | 74 | 40 | [63] | ||
| 10 | Bos Taurus | ND | 58 | 57 | 1.89 | 1.79 | 39 | 27 | Zamiba | 28 | 8 | 45 | 59 | [58] | ||
| 218 | Bos Indicus | ND | 68 | 70 | 6.68 | 5.78 | ND | ND | Brooksville, Florida, USA | 32 | 19 | 79 | 73 | [55] | ||
| 11 | Bos Taurus | ND | 58 | 51 | ND | ND | 27 | 12 | Gijon, Span | 21 | 11 | 75 | 75 | [64] | ||
| 7 | Bos Indicus | 142 | 28% | 36.2 | 4.18 | 3.98 | 21 | 30 | Nsukka, Nigernia | 27 | 24 | 83 | 44 | [65] | ||
| 2 | Buffalo bulls | 42 | ND | ND | ND | ND | 27 | 18 | Pantnagar India, | 36 | 22 | 28 | 45 | [66] | ||
| 2 | Ongole | 86 | 56 | 55 | 8.29 | 8.59 | ND | ND | Semarang, Indonesia | 27 | 27 | 81 | 82 | [67] | ||
| Simmental | 89 | 70 | 70 | 99 | 9.79 | ND | ND | |||||||||
| 271 | Bos Taurus | ND | ND | ND | ND | ND | 27 | 17 | Irene, South Africa | 28 | 20 | 60 | 37 | [68] | ||
| 19 | Bos Taurus | ND | ND | ND | ND | ND | 14 | 11 | Northern USA | ? | ? | 21 to 43 | 5 to -30 | [69] | ||
| 6 | 5 ejaculates per season | ND | 70 | 70 | 1.49 | 1.69 | 9 | 7 | 30 | 21 | 8 | 85 | 84 | [70] | ||
| 21 | Bos Taurus | ND | 51.5 | 54.6 | ND | ND | 14 | 15 | Spain/ Sweden | 18 | 2 | 78 | 88 | [71] | ||
| 11 | Bos Indicus /Taurus | 2558 (1095 B. indicus |
57 | 58 | 1.66 | 1.46 | 27 | 16 | Araçatuba, SP. Brazil | 25 | 19 | 83 | 72 | [72] | ||
| 1463 B. taurus) | 51 | 59 | 1.26 | 1.26 | 44 | 18 | ||||||||||
| 933 | Bos Taurus | 29170 | 90 | 84 | ND | ND | 3 | 7 | Netherlands | 15 | 10 | 95 | 62 | [73] | ||
| 176 | Bos Taurus | 8983 | 82 | 82 | 99 | ~99 | ND | ND | Ireland | 14 | 6 | 83 | 68 | [74] | ||
| 3 | Bubalus bubalis | ND | 65 | 64 | 5.29 | 3.49 | ND | ND | Indonesia | 23 | 23 | 79 | 74 | [75] | ||
| 155 | Bos sondaicus | 155 | ND | ND | 126 | 146 | ND | ND | Townsville, Australia | 33 | 13 | 76 | 64 | [76] | ||
| 288 abattoir/21 breeding bulls | Bison | ND | 69 | 44 | 7.18 | 5.18 | 39 | 43 | Alberta, Saskatchewan, Monitoba | 10 | 0 | [77] | ||||
| 7 | Bubalus bubalis | 4834 | 66 | 68 | 1.169 | 1.116 | ND | ND | Salon, India | 37 | 25 | 62 | 55 | [78] | ||
| 8 | Bos. Taurus and crossbred | 558 | 79 | 81 | 3.319 | 10.19 | 24 | 5 | Nigeria | 37 | 27 | 87 | 76 | [79] | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
