Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Network of 17 Microtubule-Related Genes Highlights Functional Deregulations in Breast Cancer

Version 1 : Received: 2 September 2023 / Approved: 4 September 2023 / Online: 5 September 2023 (03:48:45 CEST)

A peer-reviewed article of this Preprint also exists.

Rodrigues-Ferreira, S.; Morin, M.; Guichaoua, G.; Moindjie, H.; Haykal, M.M.; Collier, O.; Stoven, V.; Nahmias, C. A Network of 17 Microtubule-Related Genes Highlights Functional Deregulations in Breast Cancer. Cancers 2023, 15, 4870. Rodrigues-Ferreira, S.; Morin, M.; Guichaoua, G.; Moindjie, H.; Haykal, M.M.; Collier, O.; Stoven, V.; Nahmias, C. A Network of 17 Microtubule-Related Genes Highlights Functional Deregulations in Breast Cancer. Cancers 2023, 15, 4870.

Abstract

A wide panel of microtubule-associated proteins and kinases is involved in coordinated regula-tion of the microtubule cytoskeleton and may thus represent valuable molecular markers contrib-uting to major cellular pathways deregulated in cancer. We previously identified a panel of 17 microtubule-related (MT-Rel) genes that are differentially expressed in breast tumors showing resistance to taxane-based chemotherapy. In the present study, we evaluated the expression, prognostic value and functional impact of these genes in breast cancer. We show that 14 MT-Rel genes (KIF4A, ASPM, KIF20A, KIF14, TPX2, KIF18B, KIFC1, AURKB, KIF2C, GTSE1, KIF15, KIF11, RACGAP1, STMN1) are up-regulated in breast tumors compared with adjacent normal tissue. Six of them (KIF4A, ASPM, KIF20A, KIF14, TPX2, KIF18B) are overexpressed by more than 10-fold in tumor samples and four of them (KIF11, AURKB, TPX2 and KIFC1) are essential for cell survival. Overexpression of all 14 genes, and underexpression of 3 other MT-Rel genes (MAST4, MAPT and MTUS1) are associated with poor breast cancer patient survival. A Systems Biology approach highlighted three major functional networks connecting the 17 MT-Rel genes and partners, which are centered on spindle assembly, chromosome segregation and cytokinesis. Together our studies identified mitotic Aurora kinases and their substrates as major targets for therapeutic approaches against breast cancer.

Keywords

Aurora kinases; biomarker; kinesins; mitotic defects; prognostic value; Systems Biology; therapeutic targets.

Subject

Medicine and Pharmacology, Oncology and Oncogenics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.