Submitted:
28 January 2026
Posted:
29 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Historical Data and a Few Key Points in Tissue Engineering
3. Key Points in Stem Cells and Regenerative Medicine
4. Conclusions
References
- Li, M.; Ma, J.; Gao, Y.; Yang, L. Cell sheet technology: a promising strategy in regenerative medicine. Cytotherapy 2019, 21, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, R.S. Transfusion medicine and hemostasis. Elsevier; 2019. Overview of cellular therapy; pp. 505–512.
- Mahla, R.S. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016, 2016, 6940283. [Google Scholar] [CrossRef] [PubMed]
- Barker, C.F.; Markmann, J.F. Historical overview of transplantation. Cold Spring Harb. Perspect. Med. 2013, 3, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Sampogna, G.; Guraya, S.Y.; Forgione, A. Regenerative medicine: historical roots and potential strategies in modern medicine. J. Microsc. Ultrastruct. 2015, 3, 101–107. [Google Scholar] [CrossRef]
- Yamanaka, S.; Li, J.; Kania, G.; et al. Pluripotency of embryonic stem cells. Cell Tissue Res. 2008, 331, 5–22. [Google Scholar] [CrossRef]
- Ptaszek, L.M.; Mansour, M.; Ruskin, J.N.; Chien, K.R. Towards regenerative therapy for cardiac disease. Lancet. 2012, 379, 933–942. 22. Li M., Ma J., Gao Y., Yang L. Cell sheet technology: a promising strategy in regenerative medicine. Cytotherapy. 2019, 21, 3–16.
- Li, M.; Ma, J.; Gao, Y.; Yang, L. Cell sheet technology: a promising strategy in regenerative medicine. Cytotherapy 2019, 21, 3–16. [Google Scholar] [CrossRef]
- Weinberg, R.S. Transfusion medicine and hemostasis. Elsevier; 2019. Overview of cellular therapy; pp. 505–512.
- Mahla, R.S. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016, 2016, 6940283. [Google Scholar] [CrossRef]
- Kolios, G.; Moodley, Y. Introduction to stem cells and regenerative medicine. Respiration 2013, 85, 3–10. [Google Scholar] [CrossRef]
- Vacanti, J.P.; Otte, J.-B.; Wertheim, J.A. Introduction: Regenerative medicine and solid organ transplantation from a historical perspective. Regenerative Medicine Applications in Organ Transplantation.; Orlando, G, Lerut, J, Soker, S, Stratta, RJ, Eds.; Elsevier: London, 2014; pp. 1–15. [Google Scholar]
- Buckler, L. Opportunities in regenerative medicine. Bioprocess Int. 2011, 2011, 14–18. [Google Scholar]
- Fisher, M.B.; Mauck, R.L. Tissue engineering and regenerative medicine: Recent innovations and the transition to translation. Tissue Eng Part B Rev. 2013, 19, 1–13. [Google Scholar] [CrossRef]
- Dewan, A.K.; Gibson, M.A.; Elisseeff, J.H.; Trice, M.E. Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. BioMed Res Int. 2014, 2014, 272481. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.M.; Bissell, M.J. Of extracellular matrix, scaffolds, and signaling: Tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006, 22, 287–309. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Lee, Y.D.; Wagers, A.J. Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nat Med. 2014, 20, 870–880. [Google Scholar] [CrossRef] [PubMed]
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med. 2014, 6, 265sr6. [Google Scholar] [CrossRef]
- Scales, B.S.; Huffnagle, G.B. The microbiome in wound repair and tissue fibrosis. J Pathol. 2013, 229, 323–331. [Google Scholar] [CrossRef]
- Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in wound repair: Molecular and cellular mechanisms. J Invest Dermatol. 2007, 127, 514–525. [Google Scholar] [CrossRef]
- Schmidt-Bleek, K.; Kwee, B.J.; Mooney, D.J.; Duda, G.N. Boon and bane of inflammation in bone tissue regeneration and its link with angiogenesis. Tissue Eng Part B Rev. 2015, 21, 354–364. [Google Scholar] [CrossRef]
- Abo, K.M.; et al. Human iPSC-derived alveolar and airway epithelial cells can be cultured at air-liquid interface and express SARS-CoV-2 host factors. bioRxiv 2020. [Google Scholar]
- Bianchi, F.; et al. Rapid and efficient differentiation of functional motor neurons from human iPSC for neural injury modelling. Stem Cell Res 2018, 32, 126–134. [Google Scholar] [CrossRef]
- Corbett, J.L.; Duncan, S.A. iPSC-Derived Hepatocytes as a Platform for Disease Modeling and Drug Discovery. Front Med (Lausanne) 2019, 6, 265. [Google Scholar] [CrossRef]
- .
- Ehrlich, M.; et al. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A 2017, 114, E2243–E225. [Google Scholar] [CrossRef]
- Hallett, P.J.; et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 2015, 16, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Karakikes, I.; Ameen, M.; Termglinchan, V.; Wu, J.C. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res 2015, 117, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wert, K.J.; Shvartsman, D.; Melton, D.A.; Jaenisch, R. Establishment of human pluripotent stem cell-derived pancreatic beta-like cells in the mouse pancreas. Proc Natl Acad Sci U S A 2018, 115, 3924–3929. [Google Scholar] [CrossRef] [PubMed]
- Soubannier, V.; Maussion, G.; Chaineau, M.; Sigutova, V.; Rouleau, G.; Durcan, T.M.; Stifani, S. Characterization of human iPSC-derived astrocytes with potential for disease modeling and drug discovery. Neurosci Lett 2020, 731, 135028. [Google Scholar] [CrossRef]
- Slingerland, A.S.; Smits, A.I.P.M.; Bouten, C.V.C. Then and now: hypes and hopes of regenerative medicine. Trends Biotechnol. 2013, 31, 121–123. [Google Scholar] [CrossRef]
- Park, I.H.; Zhao, R.; West, J.A.; et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008, 451, 141–146. [Google Scholar] [CrossRef]
- Terzic, A.; Pfenning, M.A.; Gores, G.J.; Harper, C.M., Jr. Regenerative medicine build-out. Stem Cells Transl. Med. 2015, 4, 1373–1379. [Google Scholar] [CrossRef]
- Kaul, H.; Ventikos, Y. On the genealogy of tissue engineering and regenerative medicine. Tissue Eng. Part B Rev. 2015, 21, 203–217. [Google Scholar] [CrossRef]
- Broughton, K.M.; Sussman, M.A. Enhancement strategies for cardiac regenerative cell therapy. Circ. Res. 2018, 123, 177–187. [Google Scholar] [CrossRef]
- Allickson, J.G. Emerging translation of regenerative therapies. Clin. Pharmacol. Ther. 2017, 101, 28–30. [Google Scholar] [CrossRef]
- Heathman, T.R.; Nienow, A.W.; McCall, M.J.; Coopman, K.; Kara, B.; Hewitt, C.J. The translation of cellbased therapies: clinical landscape and manufacturing challenges. Regen. Med. 2015, 10, 49–64. 13. Aoi, T.; Yae, K.; Nakagawa, M.; et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008 Epub ahead of print.
- Mount, N.M.; Ward, S.J.; Kefalas, P.; Hyllner, J. Cell-based therapy technology classifications and translational challenges. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20150017. [Google Scholar] [CrossRef]
- Yang, L.; Soonpaa, M.H.; Adler, E.D.; et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 2008, 453, 524. [Google Scholar] [CrossRef]
- Nakagawa, M.; Koyanagi, M.; Tanabe, K.; et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotech. 2008, 26, 101–106. [Google Scholar] [CrossRef]
- Smit, F.E.; Dohmen, P.M. Cardiovascular tissue engineering: where we come from and where are we now? Med. Sci. Monit. Basic Res. 2014, 20, 1–3. [Google Scholar] [CrossRef]
- Wernig, M.; Zhao, J.P.; Pruszak, J.; et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with parkinson’s disease. Proc Natl Acad Sci USA 2008, 105, 5856–5861. [Google Scholar] [CrossRef]
- Greenfield, J.P.; Ayuso-Sacido, A.; Schwartz, T.H.; et al. Use of human neural tissue for the generation of progenitors. Neurosurgery 2008, 62, 21–37. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).