Submitted:
16 August 2023
Posted:
18 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Insect Populations
2.2. Insecticides
2.3. Laboratory spray tower bioassays
2.4. Evaluation of potential interaction of two individual component in formulated binary mixtures
2.5. Data analysis
3. Results
3.1. Toxicity of the four formulated mixtures against the laboratory susceptible strain
3.2. Toxicity of formulated mixtures against the two field-collected resistant TPB populations
3.3. Toxicity comparison of the individual pyrethroid with the binary mixture
3.4. Analysis of the potential interaction of two individual component in the four formulated binary mixtures
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Snodgrass, G.L. Insecticide restance in field populations of the tarnished plant bug (Heteroptera:Miridae) in cotton in the Mississippi Delta. J. Econ. Entomol. 1996, 89, 783-790.
- Layton, M.B. Biology and damage of the tarnished plant bug, Lygus lineolaris, in cotton; 2000; Volume 23, pp. 7-20.
- Zhu, Y.-C.; Yao, J.; Luttrell, R. Identification of genes potentially responsible for extra-oral digestion and overcoming plant defense from salivary glands of the tarnished plant bug (Hemiptera: Miridae) using cDNA sequencing. J. Insect Science 2016, 16. [CrossRef]
- George, J.; Glover, J.P.; Gore, J.; Crow, W.D.; Reddy, G.V.P. Biology, ecology, and pest management of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) in southern row crops. Insects 2021, 12. [CrossRef]
- Hollingsworth, R.; Steinkraus, D.; Tugwell, N. Responses of Arkansas populations of tarnished plant bugs (Heteroptera: Miridae) to insecticides, and tolerance differences between nymphs and adults. J. Econ. Entomol. 1997, 90, 21-26. [CrossRef]
- Pankey, J.; Leonard, B.; Graves, J.; Burris, E. Toxicity of acephate, cypermethrin, and oxamyl to tarnished plant bugs in vial bioassays and cage studies on cotton. In Proceedings of the Beltwide Cotton Conferences (USA), 1996.
- Snodgrass, G.L.; Gore, J. Status of insecticide resistance for the tarnished plant bug. In Proceedings of the Proc. Beltwide Cotton Conf., National Cotton Council, Memphis, Tennessee, 2007; pp. 56-61.
- Snodgrass, G.L.; Gore, J.; Abel, C.A.; Jackson, R. Acephate resistance in populations of the tarnished plant bug (Heteroptera: Miridae) from the Mississippi River Delta. J. Econ. Entomol. 2009, 102, 699-707. [CrossRef]
- Snodgrass, G.L.; Scott, W.P. Effect of ULV malathion use in boll weevil (Coleoptera: Curculionidae) eradication on resistance in the tarnished plant bug (Heteroptera: Miridae). J. Econ. Entomol. 2003, 96, 902-908. [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [CrossRef]
- Dong, K.; Du, Y.; Rinkevich, F.; Nomura, Y.; Xu, P.; Wang, L.; Silver, K.; Zhorov, B.S. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem. Mol. Biol. 2014, 50, 1-17. [CrossRef]
- Parys, K.A.; Luttrell, R.G.; Snodgrass, G.L.; Portilla, M.R. Patterns of tarnished plant bug (Hemiptera: Miridae) resistance to pyrethroid insecticides in the lower mississippi delta for 2008-2015: Linkage to pyrethroid use and cotton insect management. J. Insect Sci. 2018, 18. [CrossRef]
- Snodgrass, G.L. Pyrethroid resistance in a field population ot the tarnished plant bug in the Mississippi Delta. In Proceedings of the Proc. Beltwide Cotton Conf., National Cotton Council, Memphis, Tennessee, 1994; pp. 1186-1187.
- Snodgrass, G.L.; Elzen, G.W. Insecticide resistance in a tarnished plant bug population in cotton in the Mississippi Delta. Southwest Entomol 1995, 20, 317-323. [CrossRef]
- Snodgrass, G.L.; Scott, W.P. Seasonal changes in pyrethroid resistance in tarnished plant bug (Heteroptera: Miridae) populations during a three-year period in the delta area of Arkansas, Louisiana, and Mississippi. J. Econ. Entomol. 2000, 93, 441-446. [CrossRef]
- Snodgrass, G.; Scott, W. discriminating-dose bioassay for detecting pyrethroid resistance in tarnished plant bug (Heteroptera: Miridae) populations. Southwest. Entomol. 1999.
- Layton, M.B. Cotton Insect Control Guide 2002. Mississippi State University Extension Service Publication 343.Mississippi State University, MS 2003. [CrossRef]
- Hemingway, J.; Ranson, H. Insecticide resistance in insect vectors of human disease. Annual review of entomology 2000, 45, 371-391. [CrossRef]
- Corbel, V.; Raymond, M.; Chandre, F.; Darriet, F.; Hougard, J.M. Efficacy of insecticide mixtures against larvae of Culex quinquefasciatus (Say) (Diptera: Culicidae) resistant to pyrethroids and carbamates. Pest Manag. Sci. 2004, 60, 375-380. [CrossRef]
- Martin, T.; Ochou, O.G.; Vaissayre, M.; Fournier, D. Organophosphorus insecticides synergize pyrethroids in the resistant strain of cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) from West Africa. J. Econ. Entomol. 2003, 96, 468-474. [CrossRef]
- Ahmad, M. Observed potentiation between pyrethroid and organophosphorus insecticides for the management of Spodoptera litura (Lepidoptera: Noctuidae). Crop protection 2009, 28, 264-268. [CrossRef]
- Ahmad, M.; Saleem, M.A.; Sayyed, A.H. Efficacy of insecticide mixtures against pyrethroid- and organophosphate-resistant populations of Spodoptera litura (Lepidoptera: Noctuidae). Pest Manag. Sci. 2009, 65, 266-274. [CrossRef]
- Ascher, K.; Eliyahu, M.; Ishaaya, I.; Zur, M.; Ben-Moshe, E. Synergism of pyrethroid—organophosphorus insecticide mixtures in insects and their toxicity against spodoptera littoralis larvae. Phytoparasitica 1986, 14, 101-110.
- Jeschke, P.; Nauen, R. Neonicotinoids-from zero to hero in insecticide chemistry. Pest Manag. Sci. 2008, 64, 1084-1098. [CrossRef]
- Dang, K.; Doggett, S.L.; Lee, C.Y. Performance of pyrethroid-neonicotinoid mixture formulations against dield-xollected atrains of the tropical bed bug (Hemiptera: Cimicidae) on different substrates. J. Econ. Entomol. 2022. [CrossRef]
- Wolstenholme, A.J.; Rogers, A.T. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitol. 2005, 131 Suppl, S85-95. [CrossRef]
- Parys, K.A.; Snodgrass, G.L.; Luttrell, R.G.; Allen, K.C.; Little, N.S. Baseline susceptibility of Lygus lineolaris (Hemiptera: Miridae) to novaluron. J. Econ. Entomol. 2015, 109, 339-344. [CrossRef]
- Portilla, M.; Reddy, G.V.P. Development of a method for rearing Nezara viridula (Heteroptera: Pentatomidae) on a semi-solid artificial diet. J. Insect Sci. 2021, 21. [CrossRef]
- Portilla, M.; Snodgrass, G.; Streett, D. Effect of modification of the NI artificial diet on the biological fitness parameters of mass reared western tarnished plant bug, Lygus hesperus. J. Insect Sci. 2011, 11. [CrossRef]
- Marking, L. Toxicity of chemical mixtures. Fundamentals of aquatic toxicology: methods and applications. Hemisphere Publishing Corporation Washington DC 1985, 164-176.
- Sun, Y.-P.; Johnson, E.R. Analysis of joint action of insecticides against house flies. J. Econ. Entomol. 1960, 53, 887-892. [CrossRef]
- Wang, Y.; Dai, D.; Yu, Y.; Yang, G.; Shen, W.; Wang, Q.; Weng, H.; Zhao, X. Evaluation of joint effects of cyprodinil and kresoxim-methyl on zebrafish, Danio rerio. J. Hazard. Mater.2018, 352, 80-91. [CrossRef]
- Du, Y.; Zhu, Y.C.; Portilla, M.; Zhang, M.; Reddy, G.V.P. The mechanisms of metabolic resistance to pyrethroids and neonicotinoids fade away without selection pressure in the tarnished plant bug Lygus lineolaris. Pest Manag. Sci. 2023. [CrossRef]
- Fongnikin, A.; Houeto, N.; Agbevo, A.; Odjo, A.; Syme, T.; N'Guessan, R.; Ngufor, C. Efficacy of Fludora® Fusion (a mixture of deltamethrin and clothianidin) for indoor residual spraying against pyrethroid-resistant malaria vectors: laboratory and experimental hut evaluation. Parasit Vectors 2020, 13, 466. [CrossRef]
- Darriet, F.; Chandre, F. Efficacy of six neonicotinoid insecticides alone and in combination with deltamethrin and piperonyl butoxide against pyrethroid-resistant Aedes aegypti and Anopheles gambiae (Diptera: Culicidae). Pest Manag. Sci. 2013, 69, 905-910. [CrossRef]
- Ngufor, C.; Fongnikin, A.; Rowland, M.; N'Guessan, R. Indoor residual spraying with a mixture of clothianidin (a neonicotinoid insecticide) and deltamethrin provides improved control and long residual activity against pyrethroid resistant Anopheles gambiae sl in Southern Benin. PLoS One 2017, 12, e0189575. [CrossRef]
- Wang, C.; Singh, N.; Cooper, R. Field Study of the Comparative Efficacy of Three Pyrethroid/Neonicotinoid Mixture Products for the Control of the Common Bed Bug, Cimex lectularius. Insects 2015, 6, 197-205. [CrossRef]
- Yu, R.X.; Wang, Y.H.; Hu, X.Q.; Wu, S.G.; Cai, L.M.; Zhao, X.P. Individual and Joint Acute Toxicities of Selected Insecticides Against Bombyx mori (Lepidoptera: Bombycidae). J. Econ. Entomol. 2015, 109, 327-333. [CrossRef]
- Luong, H.N.B.; Damijonaitis, A.; Nauen, R.; Vontas, J.; Horstmann, S. Assessing the anti-resistance potential of public health vaporizer formulations and insecticide mixtures with pyrethroids using transgenic Drosophila lines. Parasit Vectors 2021, 14, 495. [CrossRef]
- Zoh, M.G.; Bonneville, J.-M.; Tutagata, J.; Laporte, F.; Fodjo, B.K.; Mouhamadou, C.S.; Sadia, C.G.; McBeath, J.; Schmitt, F.; Horstmann, S.; et al. Experimental evolution supports the potential of neonicotinoid-pyrethroid combination for managing insecticide resistance in malaria vectors. Sci. Rep. 2021, 11, 19501. [CrossRef]
- Scott, J.G. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol. 1999, 29, 757-777. [CrossRef]
- Khan, H.A.; Akram, W.; Shad, S.A.; Lee, J.J. Insecticide mixtures could enhance the toxicity of insecticides in a resistant dairy population of Musca domestica L [corrected]. PLoS One 2013, 8, e60929. [CrossRef]
- Fleming, D.E.; Krishnan, N.; Catchot, A.L.; Musser, F.R. Susceptibility to insecticides and activities of glutathione S-transferase and esterase in populations of Lygus lineolaris (Hemiptera: Miridae) in Mississippi. Pest Manag. Sci. 2016, 72, 1595-1603. [CrossRef]
- Jones, M.M.; Duckworth, J.L.; Robertson, J. Toxicity of Bifenthrin and Mixtures of Bifenthrin Plus Acephate, Imidacloprid, Thiamethoxam, or Dicrotophos to Adults of Tarnished Plant Bug (Hemiptera: Miridae). J. Econ. Entomol. 2018, 111, 829-835. [CrossRef]
- Studebaker, G.; Davis, J.; Hopkins, J.D.; Johnson, D.R.; Loftin, K., Lorenz,; G., S., N., ; Spradley, P.; Zawislak, J. 2016 Insecticide Recommendations for Arkansas. University of Arkansas Cooperative Extension Service 2016, MP-144.
- Ahmad, M. Potentiation/Antagonism of pyrethroids with organophosphate insecticides in Bemisia tabaci (Homoptera: Aleyrodidae). J. Econ. Entomol. 2007, 100, 886-893. [CrossRef]
- Attique, M.; Khaliq, A.; Sayyed, A. Could resistance to insecticides in Plutella xylostella (Lep., Plutellidae) be overcome by insecticide mixtures? J.Appl. Entomol. 2006, 130, 122-127. [CrossRef]
- Iwasa, T.; Motoyama, N.; Ambrose, J.T.; Roe, R.M. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop prot. 2004, 23, 371-378.
- Belden, J.B. The acute toxicity of pesticide mixtures to honeybees. Integr. Environ. Assess Manag. 2022. [CrossRef]
- Houndji, M.A.B.; Imorou Toko, I.; Guedegba, L.; Yacouto, E.; Agbohessi, P.T.; Mandiki, S.N.M.; Scippo, M.L.; Kestemont, P. Joint toxicity of two phytosanitary molecules, lambda-cyhalothrin and acetamiprid, on African catfish (Clarias gariepinus) juveniles. J. Environ. Sci. Health B 2020, 55, 669-676. [CrossRef]
- Guedegba, N.L.; Imorou Toko, I.; Agbohessi, P.T.; Zoumenou, B.; Douny, C.; Mandiki, S.N.M.; Schiffers, B.; Scippo, M.L.; Kestemont, P. Comparative acute toxicity of two phytosanitary molecules, lambda-cyhalothrin and acetamiprid, on Nile Tilapia (Oreochromis Niloticus) juveniles. J. Environ. Sci. Health B 2019, 54, 580-589. [CrossRef]
- Kunce, W.; Josefsson, S.; Örberg, J.; Johansson, F. Combination effects of pyrethroids and neonicotinoids on development and survival of Chironomus riparius. Ecotoxicol. Environ. Saf. 2015, 122, 426-431. [CrossRef]

| Commercial name | Common name (Percentage of active ingredient) | Manufacturer | Mode of action | |
|---|---|---|---|---|
| 1 | Endigo 2.06ZC | Thiamethoxam (12.60%) + λ -Cyhalothrin (9.48%) | Syngenta | 3A+4A |
| 2 | Warrior II | λ-cyhalothrin (22.8%) | Syngenta | 3A |
| 3 | Centric 40WG | Thiamethoxam (40%) | Syngenta | 4A |
| 4 | Leverage 360EC | Imidacloprid (21.0%) + β -Cyfluthrin (10.5%) | Bayer Crop Science | 4A+3A |
| 5 | Baythroid XL | β-cyfluthrin (12.7%) | Bayer | 3A |
| 6 | Advise® Four | Imidacloprid (40.4%) | Winfield | 4A |
| 7 | Hero 1.24 | Bifenthrin (11.25%) + ζ -Cypermethrin (3.75%) | FMC | 3A+3A |
| 8 | Tundra®EC | Bifenthrin (25.1%) | Winfield | 3A |
| 9 | Mustang Maxx | ζ-cypermethrin (9.15%) | FMC | 3A |
| 10 | Athena | Bifenthrin (8.84%) + Avermectin B1(1.33%) | FMC | 3A+6 |
| 11 | Epi-Mek | Abamectin (15%) | Syngenta | 6 |
| Compounds | Strain a | Slope | LC50 (μg/mL) b | 95% Confidence Limits (μg/mL) | χ2 | P | RRc |
|---|---|---|---|---|---|---|---|
| Endigo |
Lab-S | 2.877 ± 0.296 | 22.54 | 19.19 - 26.49 | 1.53 | 0.68 | -- |
| Field-R1 | 2.364 ± 0.562 | 166.64 | 113.75 - 242.05 | 4.74 | 0.32 | 7.39 | |
| Field-R2 | 1.947 ± 0.334 | 315.18 | 254.95 – 397.47 | 1.07 | 0.90 | 13.98 | |
| Leverage | Lab-S | 2.613 ± 0.278 | 20.53 | 17.35 - 24.16 | 3.27 | 0.35 | -- |
| Field-R1 | 5.049 ± 0.911 | 273.44 | 237.29 - 318.85 | 2.39 | 0.30 | 13.3 | |
| Field-R2 | 1.628 ± 0.346 | 513.94 | 384.53 – 883.0 | 1.75 | 0.78 | 25.0 | |
| Hero | Lab-S | 2.929 ± 0.285 | 20.39 | 17.59 - 23.66 | 2.20 | 0.53 | -- |
| Field-R1 | 2.308 ± 0.427 | 329.96 | 266.61 – 439.07 | 2.11 | 0.35 | 16.2 | |
| Field-R2 | 3.377 ± 0.411 | 970.67 | 836.94 – 1177.82 | 5.72 | 0.33 | 47.60 | |
| Athena | Lab-S | 2.876 ± 0.351 | 73.60 | 62.84 - 86.62 | 2.74 | 0.26 | -- |
| Field-R1 | 3.363 ± 0.648 | 479.60 | 389.88 – 598.0 | 1.07 | 0.59 | 6.56 | |
| Field-R2 | 3.283 ± 0.403 | 708.30 | 619.44 – 828.43 | 6.70 | 0.15 | 9.62 |
| Compounds | Strain | AI | CTC |
|---|---|---|---|
| Endigo |
Lab-S | 1.28 | 227.7 |
| Field-R1 | 0.26 | 126.4 | |
| Field-R2 | 0.79 | 157.4 | |
| Leverage | Lab-S | 0.32 | 131.6 |
| Field-R1 | -0.38 | 72.6 | |
| Field-R2 | -0.28 | 88.0 | |
| Hero | Lab-S | 2.71 | 369.3 |
| Field-R1 | 0.93 | 213.6 | |
| Field-R2 | 0.55 | 154.9 | |
| Athena | Lab-S | 1.22 | 222.5 |
| Field-R1 | 1.41 | 233.8 | |
| Field-R2 | 2.16 | 316.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
