Submitted:
17 August 2023
Posted:
18 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Classical Information and Collapse
2.1. Effective Collapse
2.2. Partial Collapse
2.3. Local Friendliness Inequalities and Communication
3. Conclusions
References
- E. P. Wigner, “The problem of measurement,” American Journal of Physics, vol. 31, no. 1, pp. 6–15, 1963. [CrossRef]
- J. Bub and I. Pitowsky, “Two dogmas about quantum mechanics,” Many worlds, pp. 433–459, 2010.
- P. Busch, P. J. Lahti, and P. Mittelstaedt, The quantum theory of measurement. Springer, 1996. [CrossRef]
- T. Maudlin, “Three measurement problems,” Topoi, vol. 14, no. 1, pp. 7–15, 1995. [CrossRef]
- D. Deutsch, “Quantum theory as a universal physical theory,” International Journal of Theoretical Physics, vol. 24, no. 1, pp. 1–41, 1985. [CrossRef]
- V. Baumann and S. Wolf, “On formalisms and interpretations,” Quantum, vol. 2, p. 99, 2018. [CrossRef]
- E. G. Cavalcanti, “The view from a wigner bubble,” Foundations of Physics, vol. 51, no. 2, p. 39, 2021. [CrossRef]
- V. Baumann and Č. Brukner, “Wigner’s friend as a rational agent,” in Quantum, Probability, Logic, pp. 91–99, Springer, 2020. [CrossRef]
- P. Allard Guérin, V. Baumann, F. Del Santo, and Č. Brukner, “A no-go theorem for the persistent reality of wigner’s friend’s perception,” arXiv e-prints, pp. arXiv–2009, 2020. [CrossRef]
- M. Haddara and E. G. Cavalcanti, “A possibilistic no-go theorem on the wigner’s friend paradox,” arXiv preprint arXiv:2205.12223, 2022. [CrossRef]
- N. Ormrod and J. Barrett, “A no-go theorem for absolute observed events without inequalities or modal logic,” arXiv preprint arXiv:2209.03940, 2022. [CrossRef]
- G. Leegwater, “When greenberger, horne and zeilinger meet wigner’s friend,” Foundations of Physics, vol. 52, no. 4, p. 68, 2022. [CrossRef]
- M. Żukowski and M. Markiewicz, “Even performed pre-measurements have no results,” pp. 1–10, 2020. [CrossRef]
- K.-W. Bong, A. Utreras-Alarcón, F. Ghafari, Y.-C. Liang, N. Tischler, E. G. Cavalcanti, G. J. Pryde, and H. M. Wiseman, “A strong no-go theorem on the Wigner’s friend paradox,” Nat. Phys., aug 2020. [CrossRef]
- Č. Brukner, “A no-go theorem for observer-independent facts,” Entropy, vol. 20, no. 5, p. 350, 2018. [CrossRef]
- D. Frauchiger and R. Renner, “Quantum theory cannot consistently describe the use of itself,” Nature communications, vol. 9, no. 1, p. 3711, 2018. [CrossRef]
- Č. Brukner, “On the quantum measurement problem,” in Quantum [Un] Speakables II, pp. 95–117, Springer, 2017. [CrossRef]
- V. Vilasini, N. Nurgalieva, and L. del Rio, “Multi-agent paradoxes beyond quantum theory,” New Journal of Physics, vol. 21, no. 11, p. 113028, 2019. [CrossRef]
- V. Vilasini and M. P. Woods, “A general framework for consistent logical reasoning in wigner’s friend scenarios: Subjective perspectives of agents within a single quantum circuit,” arXiv preprint arXiv:2209.09281, 2022. [CrossRef]
- M. Proietti, A. Pickston, F. Graffitti, P. Barrow, D. Kundys, C. Branciard, M. Ringbauer, and A. Fedrizzi, “Experimental test of local observer independence,” Science advances, vol. 5, no. 9, p. eaaw9832, 2019. [CrossRef]
- Č. Brukner, “Qubits are not observers–a no-go theorem,” arXiv preprint arXiv:2107.03513, 2021. [CrossRef]
- H. M. Wiseman, E. G. Cavalcanti, and E. G. Rieffel, “A" thoughtful" local friendliness no-go theorem: A prospective experiment with new assumptions to suit,” arXiv preprint arXiv:2209.08491, 2022. A. [CrossRef]
- W. H. Zurek, “Quantum reversibility is relative, or does a quantum measurement reset initial conditions?,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 376, no. 2123, p. 20170315, 2018. [CrossRef]
- A. S. Holevo, “Quantum coding theorems,” Russian Mathematical Surveys, vol. 53, no. 6, p. 1295, 1998. [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).