Submitted:
13 August 2023
Posted:
15 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Material Preparation and Characterization
3. Z-scan Measurements
4. Conclusion
Conflicts of Interest
References
- Moss, D. J.; Morandotti, R.; Gaeta, A. L.; Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature Photonics 2013, 7 (8), 597–607. [Google Scholar] [CrossRef]
- Leuthold, J.; Koos, C.; Freude, W. Nonlinear silicon photonics. Nature Photonics 2010, 4 (8), 535–544. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Jia, L.; Qu, Y.; Yang, Y.; Jia, B.; Moss, D. J. Graphene Oxide for Nonlinear Integrated Photonics. Laser & Photonics Reviews 2023, 17 (3), 2200512. [Google Scholar] [CrossRef]
- Koos, C.; Vorreau, P.; Vallaitis, T.; Dumon, P.; Bogaerts, W.; Baets, R.; Esembeson, B.; Biaggio, I.; Michinobu, T.; Diederich, F.; et al. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics 2009, 3 (4), 216–219. [Google Scholar] [CrossRef]
- Nielsen, M. P.; Shi, X.; Dichtl, P.; Maier, S. A.; Oulton, R. F. Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing. Science 2017, 358 (6367), 1179–1181. [Google Scholar] [CrossRef]
- Autere, A.; Jussila, H.; Dai, Y.; Wang, Y.; Lipsanen, H.; Sun, Z. Nonlinear Optics with 2D Layered Materials. Advanced Materials 2018, 30 (24), 1705963, (acccessed 2023/05/16). [Google Scholar] [CrossRef]
- Jiang, T.; Huang, D.; Cheng, J.; Fan, X.; Zhang, Z.; Shan, Y.; Yi, Y.; Dai, Y.; Shi, L.; Liu, K.; et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nature Photonics 2018, 12 (7), 430–436. [Google Scholar] [CrossRef]
- Trovatello, C.; Marini, A.; Xu, X.; Lee, C.; Liu, F.; Curreli, N.; Manzoni, C.; Dal Conte, S.; Yao, K.; Ciattoni, A.; et al. Optical parametric amplification by monolayer transition metal dichalcogenides. Nature Photonics 2021, 15 (1), 6–10. [Google Scholar] [CrossRef]
- Abdelwahab, I.; Dichtl, P.; Grinblat, G.; Leng, K.; Chi, X.; Park, I.-H.; Nielsen, M. P.; Oulton, R. F.; Loh, K. P.; Maier, S. A. Giant and Tunable Optical Nonlinearity in Single-Crystalline 2D Perovskites due to Excitonic and Plasma Effects. Advanced Materials 2019, 31 (29), 1902685, https://doi.org/10.1002/adma.201902685 (acccessed 2023/05/16). [Google Scholar] [CrossRef]
- Alonso Calafell, I.; Rozema, L. A.; Alcaraz Iranzo, D.; Trenti, A.; Jenke, P. K.; Cox, J. D.; Kumar, A.; Bieliaiev, H.; Nanot, S.; Peng, C.; et al. Giant enhancement of third-harmonic generation in graphene–metal heterostructures. Nature Nanotechnology 2021, 16 (3), 318–324. [Google Scholar] [CrossRef]
- Jia, L.; Wu, J.; Zhang, Y.; Qu, Y.; Jia, B.; Moss, D. J. Third-Order Optical Nonlinearities of 2D Materials at Telecommunications Wavelengths. Micromachines, 2023; Vol. 14.
- Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353 (6298), aac9439. DOI: 10.1126/science.aac9439 (acccessed 2023/05/16). [CrossRef]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nature Photonics 2014, 8 (12), 899–907. [Google Scholar] [CrossRef]
- Sun, Z.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nature Photonics 2016, 10 (4), 227–238. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photonics 2010, 4 (9), 611–622. [Google Scholar] [CrossRef]
- Gu, T.; Petrone, N.; McMillan, J. F.; van der Zande, A.; Yu, M.; Lo, G. Q.; Kwong, D. L.; Hone, J.; Wong, C. W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics 2012, 6 (8), 554–559. [Google Scholar] [CrossRef]
- Wu, J.; Lin, H.; Moss, D. J.; Loh, K. P.; Jia, B. Graphene oxide for photonics, electronics and optoelectronics. Nature Reviews Chemistry 2023, 7 (3), 162–183. [Google Scholar] [CrossRef]
- Wu, J.; Jia, L.; Zhang, Y.; Qu, Y.; Jia, B.; Moss, D. J. Graphene Oxide for Integrated Photonics and Flat Optics. Advanced Materials 2021, 33 (3), 2006415. [CrossRef]
- Zhang, Y.; Tao, L.; Yi, D.; Xu, J.-B.; Tsang, H. K. Enhanced four-wave mixing with MoS2 on a silicon waveguide. Journal of Optics 2020, 22 (2), 025503. [Google Scholar] [CrossRef]
- Chen, H.; Corboliou, V.; Solntsev, A. S.; Choi, D.-Y.; Vincenti, M. A.; de Ceglia, D.; de Angelis, C.; Lu, Y.; Neshev, D. N. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light: Science & Applications 2017, 6 (10), e17060–e17060. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, R.; Shi, G.; Zhang, J.; Xu, Z.; Cheng, X. a.; Jiang, T. Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements. Optics Letters 2015, 40 (15), 3480–3483. [Google Scholar] [CrossRef]
- Spencer, D. T.; Drake, T.; Briles, T. C.; Stone, J.; Sinclair, L. C.; Fredrick, C.; Li, Q.; Westly, D.; Ilic, B. R.; Bluestone, A.; et al. An optical-frequency synthesizer using integrated photonics. Nature 2018, 557 (7703), 81–85. [Google Scholar] [CrossRef]
- Luo, Z.-C.; Liu, M.; Guo, Z.-N.; Jiang, X.-F.; Luo, A.-P.; Zhao, C.-J.; Yu, X.-F.; Xu, W.-C.; Zhang, H. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Optics Express 2015, 23 (15), 20030–20039. [Google Scholar] [CrossRef]
- Saouma, F. O.; Stoumpos, C. C.; Wong, J.; Kanatzidis, M. G.; Jang, J. I. Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites. Nature Communications 2017, 8 (1), 742. [Google Scholar] [CrossRef]
- Song, Y.; Chen, Y.; Jiang, X.; Ge, Y.; Wang, Y.; You, K.; Wang, K.; Zheng, J.; Ji, J.; Zhang, Y.; et al. Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band. Advanced Optical Materials 2019, 7 (18), 1801777, https://doi.org/10.1002/adom.201801777. DOI: https://doi.org/10.1002/adom.201801777 (acccessed 2023/03/19).
- Jiang, X.; Liu, S.; Liang, W.; Luo, S.; He, Z.; Ge, Y.; Wang, H.; Cao, R.; Zhang, F.; Wen, Q.; et al. Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH). Laser & Photonics Reviews 2018, 12 (2), 1700229, https://doi.org/10.1002/lpor.201700229. DOI: https://doi.org/10.1002/lpor.201700229 (acccessed 2023/03/19). [CrossRef]
- Wang, G.; Bennett, D.; Zhang, C.; Ó Coileáin, C.; Liang, M.; McEvoy, N.; Wang, J. J.; Wang, J.; Wang, K.; Nicolosi, V.; et al. Two-Photon Absorption in Monolayer MXenes. Advanced Optical Materials 2020, 8 (9), 1902021. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Advanced Functional Materials 2009, 19 (19), 3077–3083, (acccessed 2023/05/16). [Google Scholar] [CrossRef]
- Zhang, B.; Liu, J.; Wang, C.; Yang, K.; Lee, C.; Zhang, H.; He, J. Recent Progress in 2D Material-Based Saturable Absorbers for All Solid-State Pulsed Bulk Lasers. Laser & Photonics Reviews 2020, 14 (2), 1900240, (acccessed 2023/05/16). [Google Scholar] [CrossRef]
- Ono, M.; Hata, M.; Tsunekawa, M.; Nozaki, K.; Sumikura, H.; Chiba, H.; Notomi, M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics 2020, 14 (1), 37–43. [Google Scholar] [CrossRef]
- Li, W.; Chen, B.; Meng, C.; Fang, W.; Xiao, Y.; Li, X.; Hu, Z.; Xu, Y.; Tong, L.; Wang, H.; et al. Ultrafast All-Optical Graphene Modulator. Nano Letters 2014, 14 (2), 955–959. [Google Scholar] [CrossRef]
- Jiang, H.; Zhao, Y.; Ma, H.; Wu, Y.; Chen, M.; Wang, M.; Zhang, W.; Peng, Y.; Leng, Y.; Cao, Z.; et al. Broad-Band Ultrafast All-Optical Switching Based on Enhanced Nonlinear Absorption in Corrugated Indium Tin Oxide Films. ACS Nano 2022, 16 (8), 12878–12888. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Y.; Qu, Y.; Jia, L.; Zhang, Y.; Xu, X.; Chu, S. T.; Little, B. E.; Morandotti, R.; Jia, B.; et al. 2D Layered Graphene Oxide Films Integrated with Micro-Ring Resonators for Enhanced Nonlinear Optics. Small 2020, 16 (16), 1906563. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Yang, Y.; Qu, Y.; Jia, L.; Moein, T.; Jia, B.; Moss, D. J. Enhanced Kerr Nonlinearity and Nonlinear Figure of Merit in Silicon Nanowires Integrated with 2D Graphene Oxide Films. ACS Applied Materials & Interfaces 2020, 12 (29), 33094–33103. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Yang, Y.; Qu, Y.; Jia, L.; Dirani, H. E.; Kerdiles, S.; Sciancalepore, C.; Demongodin, P.; Grillet, C.; et al. Enhanced Supercontinuum Generation in Integrated Waveguides Incorporated with Graphene Oxide Films. Advanced Materials Technologies 2023, 8 (9), 2201796, https://doi.org/10.1002/admt.202201796. DOI: https://doi.org/10.1002/admt.202201796 (acccessed 2023/05/19). [CrossRef]
- Qu, Y.; Wu, J.; Yang, Y.; Zhang, Y.; Liang, Y.; El Dirani, H.; Crochemore, R.; Demongodin, P.; Sciancalepore, C.; Grillet, C.; et al. Enhanced Four-Wave Mixing in Silicon Nitride Waveguides Integrated with 2D Layered Graphene Oxide Films. Advanced Optical Materials 2020, 8 (23), 2001048, https://doi.org/10.1002/adom.202001048. DOI: https://doi.org/10.1002/adom.202001048 (acccessed 2021/09/08). [CrossRef]
- Zhang, Y.; Wu, J.; Yang, Y.; Qu, Y.; Dirani, H. E.; Crochemore, R.; Sciancalepore, C.; Demongodin, P.; Grillet, C.; Monat, C.; et al. Enhanced self-phase modulation in silicon nitride waveguides integrated with 2D graphene oxide films. IEEE Journal of Selected Topics in Quantum Electronics 2022, 1–1. [Google Scholar] [CrossRef]
- Fu, B.; Sun, J.; Wang, C.; Shang, C.; Xu, L.; Li, J.; Zhang, H. MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small 2021, 17 (11), 2006054. [Google Scholar] [CrossRef]
- Zhan, X.; Si, C.; Zhou, J.; Sun, Z. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons 2020, 5 (2), 235–258. [Google Scholar] [CrossRef]
- An, X.; Wang, W.; Wang, J.; Duan, H.; Shi, J.; Yu, X. The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Physical Chemistry Chemical Physics 2018, 20 (16), 11405–11411. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Gao, G.; Li, F.-T.; Ma, T.-Y.; Du, A.; Qiao, S.-Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications 2017, 8 (1), 13907. [Google Scholar] [CrossRef]
- Xu, D.; Li, Z.; Li, L.; Wang, J. Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications. Advanced Functional Materials 2020, 30 (47), 2000712, (acccessed 2023/05/20). [Google Scholar] [CrossRef]
- Pavlov, N. G.; Lihachev, G.; Koptyaev, S.; Lucas, E.; Karpov, M.; Kondratiev, N. M.; Bilenko, I. A.; Kippenberg, T. J.; Gorodetsky, M. L. Soliton dual frequency combs in crystalline microresonators. Opt. Lett. 2017, 42 (3), 514–517. [Google Scholar] [CrossRef]
- Anasori, B.; Gogotsi, Y. Introduction to 2D Transition Metal Carbides and Nitrides (MXenes). In 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications, Anasori, B., Gogotsi, Y. Eds.; Springer International Publishing, 2019; pp 3-12.
- El-Demellawi, J. K.; Lopatin, S.; Yin, J.; Mohammed, O. F.; Alshareef, H. N. Tunable Multipolar Surface Plasmons in 2D Ti3C2Tx MXene Flakes. ACS Nano 2018, 12 (8), 8485–8493. [Google Scholar] [CrossRef]
- Lu, S. B.; Miao, L. L.; Guo, Z. N.; Qi, X.; Zhao, C. J.; Zhang, H.; Wen, S. C.; Tang, D. Y.; Fan, D. Y. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt Express 2015, 23 (9), 11183–11194. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.; Fan, J.; Lotya, M.; O’Neill, A.; Fox, D.; Feng, Y.; Zhang, X.; Jiang, B.; Zhao, Q.; et al. Ultrafast Saturable Absorption of Two-Dimensional MoS2 Nanosheets. ACS Nano 2013, 7 (10), 9260–9267. [Google Scholar] [CrossRef]
- Wu, Q.; Jin, X.; Chen, S.; Jiang, X.; Hu, Y.; Jiang, Q.; Wu, L.; Li, J.; Zheng, Z.; Zhang, M.; et al. MXene-based saturable absorber for femtosecond mode-locked fiber lasers. Optics Express 2019, 27 (7), 10159–10170. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Advanced Materials 2014, 26 (7), 992–1005, https://doi.org/10.1002/adma.201304138 (acccessed 2023/05/19). [Google Scholar] [CrossRef]
- Berdiyorov, G. R. Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: First-principles calculations. AIP Advances 2016, 6 (5), 055105, (acccessed 5/20/2023). [Google Scholar] [CrossRef]
- Zhang, T.; Pan, L.; Tang, H.; Du, F.; Guo, Y.; Qiu, T.; Yang, J. Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: Enhanced exfoliation and delamination. Journal of Alloys and Compounds 2017, 695, 818–826. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474 (7349), 64–67. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, R.; Wu, J.; Jiang, X.; Cao, P.; Hu, X.; Pan, T.; Qiu, C.; Yang, J.; Song, Y.; et al. Bottom-up Fabrication of Graphene on Silicon/Silica Substrate via a Facile Soft-hard Template Approach. Scientific Reports 2015, 5 (1), 13480. [Google Scholar] [CrossRef]
- Lin, H.; Sturmberg, B. C. P.; Lin, K.-T.; Yang, Y.; Zheng, X.; Chong, T. K.; de Sterke, C. M.; Jia, B. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nature Photonics 2019, 13 (4), 270–276. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Y.; Qu, Y.; Xu, X.; Liang, Y.; Chu, S. T.; Little, B. E.; Morandotti, R.; Jia, B.; Moss, D. J. Graphene Oxide Waveguide and Micro-Ring Resonator Polarizers. Laser Photonics Rev. 2019, 13 (9), 1900056, (acccessed 2021/09/08). [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Zhang, J.; Zheng, X.; Gan, Z.; Lin, H.; Hong, M.; Jia, B. Graphene Metamaterial 3D Conformal Coating for Enhanced Light Harvesting. ACS Nano 2023, 17 (3), 2611–2619. [Google Scholar] [CrossRef]
- Sarycheva, A.; Gogotsi, Y. Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx MXene. Chemistry of Materials 2020, 32 (8), 3480–3488. [Google Scholar] [CrossRef]
- Sarycheva, A.; Shanmugasundaram, M.; Krayev, A.; Gogotsi, Y. Tip-Enhanced Raman Scattering Imaging of Single- to Few-Layer Ti3C2Tx MXene. ACS Nano 2022, 16 (4), 6858–6865. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. physica status solidi (b) 1966, 15 (2), 627–637, https://doi.org/10.1002/pssb.19660150224 (acccessed 2023/05/24).. [Google Scholar] [CrossRef]
- Bury, D.; Jakubczak, M.; Purbayanto, M. A. K.; Wojciechowska, A.; Moszczyńska, D.; Jastrzębska, A. M. Photocatalytic Activity of the Oxidation Stabilized Ti3C2Tx MXene in Decomposing Methylene Blue, Bromocresol Green and Commercial Textile Dye. Small Methods 2023, n/a (n/a), 2201252, https://doi.org/10.1002/smtd.202201252. DOI: https://doi.org/10.1002/smtd.202201252 (acccessed 2023/05/24). [CrossRef]
- Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic properties and applications of MXenes: a theoretical review. Journal of Materials Chemistry C 2017, 5 (10), 2488–2503. [Google Scholar] [CrossRef]
- Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. Advanced Functional Materials 2016, 26 (23), 4162–4168, https://doi.org/10.1002/adfm.201600357 (acccessed 2023/05/30).. [Google Scholar] [CrossRef]
- Zheng, X.; Jia, B.; Chen, X.; Gu, M. In Situ Third-Order Non-linear Responses During Laser Reduction of Graphene Oxide Thin Films Towards On-Chip Non-linear Photonic Devices. Advanced Materials 2014, 26 (17), 2699–2703, https://doi.org/10.1002/adma.201304681 (acccessed 2023/02/03). [Google Scholar] [CrossRef]
- Jia, L.; Cui, D.; Wu, J.; Feng, H.; Yang, Y.; Yang, T.; Qu, Y.; Du, Y.; Hao, W.; Jia, B.; et al. Highly nonlinear BiOBr nanoflakes for hybrid integrated photonics. APL Photonics 2019, 4 (9), 090802. [Google Scholar] [CrossRef]
- Jia, L.; Wu, J.; Yang, T.; Jia, B.; Moss, D. J. Large Third-Order Optical Kerr Nonlinearity in Nanometer-Thick PdSe2 2D Dichalcogenide Films: Implications for Nonlinear Photonic Devices. ACS Applied Nano Materials 2020, 3 (7), 6876–6883. [Google Scholar] [CrossRef]
- Li, P.; Chen, Y.; Yang, T.; Wang, Z.; Lin, H.; Xu, Y.; Li, L.; Mu, H.; Shivananju, B. N.; Zhang, Y.; et al. Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. ACS Applied Materials & Interfaces 2017, 9 (14), 12759–12765. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; McEvoy, N.; Sun, Y.-y.; Huang, J.; Xie, Y.; Dong, N.; Zhang, X.; Kislyakov, I. M.; Nunzi, J.-M.; et al. Nonlinear Optical Signatures of the Transition from Semiconductor to Semimetal in PtSe2. Laser & Photonics Reviews 2019, 13 (8), 1900052, https://doi.org/10.1002/lpor.201900052 (acccessed 2023/07/22). [Google Scholar] [CrossRef]
- Lu, C.; Luo, M.; Ge, Y.; Huang, Y.; Zhao, Q.; Zhou, Y.; Xu, X. Layer-Dependent Nonlinear Optical Properties of WS2, MoS2, and Bi2S3 Films Synthesized by Chemical Vapor Deposition. ACS Applied Materials & Interfaces 2022, 14 (1), 2390–2400. [Google Scholar] [CrossRef]
- Chen, R.; Zheng, X.; Zhang, Y.; Tang, Y.; Jiang, T. Z-scan measurement of nonlinear optical properties of BiOCl nanosheets. Appl. Opt. 2015, 54 (21), 6592–6597. [Google Scholar] [CrossRef]
- Bikorimana, S.; Lama, P.; Walser, A.; Dorsinville, R.; Anghel, S.; Mitioglu, A.; Micu, A.; Kulyuk, L. Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo 0.5 W0.5 S2. Optics Express 2016, 24 (18), 20685–20695. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, L.; Liu, S.; Zhang, Y.; He, Z.; Li, W.; Zhang, F.; Shi, Y.; Lü, W.; Li, Y.; et al. Ultrathin Metal–Organic Framework: An Emerging Broadband Nonlinear Optical Material for Ultrafast Photonics. Advanced Optical Materials 2018, 6 (16), 1800561, https://doi.org/10.1002/adom.201800561 (acccessed 2023/07/23). [Google Scholar] [CrossRef]
- Demetriou, G.; Bookey, H. T.; Biancalana, F.; Abraham, E.; Wang, Y.; Ji, W.; Kar, A. K. Nonlinear optical properties of multilayer graphene in the infrared. Optics Express 2016, 24 (12), 13033–13043. [Google Scholar] [CrossRef]
- Dong, N.; Li, Y.; Zhang, S.; McEvoy, N.; Zhang, X.; Cui, Y.; Zhang, L.; Duesberg, G. S.; Wang, J. Dispersion of nonlinear refractive index in layered WS2 and WSe2 semiconductor films induced by two-photon absorption. Optics Letters 2016, 41 (17), 3936–3939. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zhang, K.; Chen, W.; Zhou, F.; Ji, W. Nonlinear absorption and nonlinear refraction in a chemical vapor deposition-grown, ultrathin hexagonal boron nitride film. Optics Letters 2016, 41 (7), 1368–1371. [Google Scholar] [CrossRef]
- Qiao, J.; Chuang, M.-Y.; Lan, J.-C.; Lin, Y.-Y.; Sung, W.-H.; Fan, R.; Wu, M.-Y.; Lee, C.-Y.; Chen, C.-H.; Liu, H.; et al. Two-photon absorption within layered Bi2Te3 topological insulators and the role of nonlinear transmittance therein. Journal of Materials Chemistry C 2019, 7 (23), 7027-7034. [CrossRef]
- Chang, H.-W., Tsai, Y.-C., Cheng, C.-W., Lin, C.-Y. & Wu, P.-H. Reduction of graphene oxide in aqueous solution by femtosecond laser and its effect on electroanalysis. Electrochemistry Communications 23, 37-40 (2012).
- Prezioso, S. et al. Large area extreme-uv lithography of graphene oxide via spatially resolved photoreduction. Langmuir 28, 5489-5495 (2012). [CrossRef]
- Lin, H. et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 13, 270-276 (2019). [CrossRef]
- Linnan Jia, Jiayang Wu, Yuning Zhang, Yang Qu, Baohua Jia, Zhigang Chen, and David J. Moss, “Fabrication Technologies for the On-Chip Integration of 2D Materials”, Small: Methods 6, 2101435 (2022). [CrossRef]
- Y. Qu, J. Wu, Y. Zhang, L. Jia, Y. Yang, X. Xu, S. T. Chu, B. E. Little, R. Morandotti, B. Jia, and D. J. Moss, “Graphene oxide for.
- Yunyi Yang, Jiayang Wu, Xingyuan Xu, Sai T. Chu, Brent E. Little, Roberto Morandotti, Baohua Jia, and David J. Moss, “Enhanced four-wave mixing in graphene oxide coated waveguides”, Applied Physics Letters Photonics vol. 3 120803 (2018). [CrossRef]
- Linnan Jia, Yang Qu, Jiayang Wu, Yuning Zhang, Yunyi Yang, Baohua Jia, and David J. Moss, “Third-order optical nonlinearities of 2D materials at telecommunications wavelengths”, Micromachines (MDPI), 14, 307 (2023). [CrossRef]
- Bagri, A. et al. Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry 2, 581 (2010). [CrossRef]
- Williams, G., Seger, B. & Kamat, P. V. Tio2-graphene nanocomposites. Uv-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487-1491 (2008). [CrossRef]
- Levis, R. J., Menkir, G. M. & Rabitz, H. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292, 709-713 (2001). [CrossRef]
- Huang, L. et al. Pulsed laser assisted reduction of graphene oxide. Carbon 49, 2431-2436 (2011). [CrossRef]
- Yang Qu, Jiayang Wu, Yuning Zhang, Yunyi Yang, Linnan Jia, Baohua Jia, and David J. Moss, “Photo thermal tuning in GO-coated integrated waveguides”, Micromachines 13 1194 (2022).
- Yuning Zhang, Jiayang Wu, Yunyi Yang, Yang Qu, Houssein El Dirani, Romain Crochemore, Corrado Sciancalepore, Pierre Demongodin, Christian Grillet, Christelle Monat, Baohua Jia, and David J. Moss, “Enhanced self-phase modulation in silicon nitride waveguides integrated with 2D graphene oxide films”, IEEE Journal of Selected Topics in Quantum Electronics 29 (1) 5100413 (2023). [CrossRef]
- Yuning Zhang, Jiayang Wu, Yunyi Yang, Yang Qu, Linnan Jia, Baohua Jia, and David J. Moss, “Enhanced spectral broadening of femtosecond optical pulses in silicon nanowires integrated with 2D graphene oxide films”, Micromachines 13 756 (2022). [CrossRef]
- Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457-460 (2007). [CrossRef]
- Yang, Y. Y. et al. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photonics 6, 1033-1040 (2019). [CrossRef]
- Dong, L. et al. Reactivity-controlled preparation of ultralarge graphene oxide by chemical expansion of graphite. Chem. Mater. 29, 564-572 (2017). [CrossRef]
- Zhang, W. H. et al. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat. Nanotechnol. (2021). [CrossRef]
- Brisebois, P. P. & Siaj, M. Harvesting graphene oxide – years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C 8, 1517-1547 (2020).
- Dideikin, A. T. & Vul, A. Y. Graphene oxide and derivatives: The place in graphene family. Front. Phys. 6 (2019). [CrossRef]
- Zhang, J. et al. Reduction of graphene oxide via l-ascorbic acid. Chem. Commun. 46, 1112-1114 (2010).
- Ghofraniha, N. & Conti, C. Graphene oxide photonics. J. Opt. 21, 053001 (2019). [CrossRef]
- Eigler, S. et al. Wet chemical synthesis of graphene. Adv. Mater. 25, 3583-3587 (2013). [CrossRef]
- Lin, K. T., Lin, H., Yang, T. & Jia, B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 11, 1389 (2020). [CrossRef]
- Gusev, A. et al. Medium-dependent antibacterial properties and bacterial filtration ability of reduced graphene oxide. Nanomaterials 9, 1454 (2019). [CrossRef]
- Yan, J. A., Xian, L. & Chou, M. Y. Structural and electronic properties of oxidized graphene. Phys. Rev. Lett. 103, 086802 (2009). [CrossRef]
- Wong, S. I., Lin, H., Sunarso, J., Wong, B. T. & Jia, B. Triggering a self-sustaining reduction of graphene oxide for high-performance energy storage devices. ACS Applied Nano Materials (2020). [CrossRef]
- Furio, A. et al. Light irradiation tuning of surface wettability, optical, and electric properties of graphene oxide thin films. Nanotechnology 28, 054003 (2016). [CrossRef]
- Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806-4814 (2010). [CrossRef]
- Yuning Zhang, Jiayang Wu, Yang Qu, Linnan Jia, Baohua Jia, and David J. Moss, “Design and optimization of four-wave mixing in microring resonators integrated with 2D graphene oxide films”, Journal of Lightwave Technology 39 (20) 6553-6562 (2021). DOI:10.1109/JLT.2021.3101292. Print ISSN: 0733-8724, Online ISSN: 1558-2213 (2021). [CrossRef]
- Pei, S. & Cheng, H.-M. The reduction of graphene oxide. Carbon 50, 3210-3228 (2012).
- Hong, J. et al. Terahertz conductivity of reduced graphene oxide films. Optics Express 21, 7633-7640 (2013). [CrossRef]
- Zheng, X. et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun. 6, 8433 (2015). [CrossRef]
- Zheng, X., Lin, H., Yang, T. & Jia, B. Laser trimming of graphene oxide for functional photonic applications. Journal of Physics D: Applied Physics (2016). [CrossRef]
- Zhang, Y. et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5, 15-20 (2010). [CrossRef]
- Chua, C. K. & Pumera, M. The reduction of graphene oxide with hydrazine: Elucidating its reductive capability based on a reaction-model approach. Chemical Communications 52, 72-75 (2016). [CrossRef]
- Yuning Zhang, Jiayang Wu, Yang Qu, Linnan Jia, Baohua Jia, and David J. Moss, “Optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D graphene oxide films”, Journal of Lightwave Technology 39 (14) 4671-4683 (2021). [CrossRef]
- Yang Qu, Jiayang Wu, Yuning Zhang, Yao Liang, Baohua Jia, and David J. Moss, “Analysis of four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films”, Journal of Lightwave Technology 39 (9) 2902-2910 (2021). [CrossRef]
- Guo, Y. et al. General route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating. ACS Nano 4, 5749-5754 (2010). [CrossRef]
- Zheng, X. et al. Free-standing graphene oxide mid-infrared polarizers. Nanoscale 12, 11480 (2020). [CrossRef]
- Zhao, Y., Han, Q., Cheng, Z., Jiang, L. & Qu, L. Integrated graphene systems by laser irradiation for advanced devices. Nano Today 12, 14-30 (2017). [CrossRef]
- Park, H., Lim, S., Nguyen, D. D. & Suk, J. W. Electrical measurements of thermally reduced graphene oxide powders under pressure. Nanomaterials 9, 1387 (2019). [CrossRef]
- Li, X. et al. Graphene metalens for particle nanotracking. Photonics Res. 8, 1316 (2020). [CrossRef]
- Yang, T., Lin, H., Zheng, X., Loh, K. P. & Jia, B. Tailoring pores in graphene-based materials: From generation to applications. Journal of Materials Chemistry A 5, 16537-16558 (2017). [CrossRef]
- Zhang, Y.-L., Chen, Q.-D., Xia, H. & Sun, H.-B. Designable 3d nanofabrication by femtosecond laser direct writing. Nano Today 5, 435-448 (2010). [CrossRef]
- Guo, L. et al. Laser-mediated programmable n doping and simultaneous reduction of graphene oxides. Advanced Optical Materials 2, 120-125 (2014). [CrossRef]
- Zhang, Y. L. et al. Photoreduction of graphene oxides: Methods, properties, and applications. Advanced Optical Materials 2, 10-28 (2014). 2014. [CrossRef]
- Li, X. H. et al. A green chemistry of graphene: Photochemical reduction towards monolayer graphene sheets and the role of water adlayers. ChemSusChem 5, 642-646 (2012). [CrossRef]
- M. Tan, et al., “Microwave and RF photonic fractional Hilbert transformer based on a 50 GHz Kerr micro-comb”, Journal of Lightwave Technology, vol. 37, no. 24, pp. 6097 – 6104, 2019. [CrossRef]
- M. Tan, et al., “RF and microwave fractional differentiator based on photonics”, IEEE Transactions on Circuits and Systems: Express Briefs, vol. 67, no.11, pp. 2767-2771, 2020. [CrossRef]
- M. Tan, et al., “Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source”, Journal of Lightwave Technology, vol. 38, no. 22, pp. 6221-6226 (2020). [CrossRef]
- M. Tan, X. Xu, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “RF and microwave high bandwidth signal processing based on Kerr Micro-combs”, Advances in Physics X, VOL. 6, NO. 1, 1838946 (2021). [CrossRef]
- T. G. Nguyen et al., “Integrated frequency comb source-based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express, vol. 23, no. 17, pp. 22087-22097, Aug. 2015. [CrossRef]
- X. Xu, et al., “Broadband RF channelizer based on an integrated optical frequency Kerr comb source,” Journal of Lightwave Technology, vol. 36, no. 19, pp. 4519-4526, 2018. [CrossRef]
- X. Xu, et al., “Continuously tunable orthogonally polarized RF optical single sideband generator based on micro-ring resonators,” Journal of Optics, vol. 20, no. 11, 115701. 2018. [CrossRef]
- X. Xu, et al., “Orthogonally polarized RF optical single sideband generation and dual-channel equalization based on an integrated microring resonator,” Journal of Lightwave Technology, vol. 36, no. 20, pp. 4808-4818. 2018. [CrossRef]
- X. Xu, et al., “Photonic RF phase-encoded signal generation with a microcomb source”, J. Lightwave Technology, vol. 38, no. 7, 1722-1727, 2020. [CrossRef]
- X. Xu, et al., Broadband microwave frequency conversion based on an integrated optical micro-comb source”, Journal of Lightwave Technology, vol. 38 no. 2, pp. 332-338, 2020. [CrossRef]
- M. Tan, et al., “Photonic RF and microwave filters based on 49GHz and 200GHz Kerr microcombs”, Optics Comm. vol. 465,125563, Feb. 22. 2020. [CrossRef]
- X. Xu, et al., “Broadband photonic RF channelizer with 90 channels based on a soliton crystal microcomb”, Journal of Lightwave Technology, Vol. 38, no. 18, pp. 5116 – 5121 (2020). [CrossRef]
- B. Corcoran, et al., “Ultra-dense optical data transmission over standard fiber with a single chip source”, Nature Communications, vol. 11, Article:2568, 2020.
- X. Xu, et al., “11 TOPs photonic convolutional accelerator for optical neural networks”, Nature 589, 44-51 (2021). [CrossRef]
- X. Xu et al., “Neuromorphic computing based on wavelength-division multiplexing”, IEEE Journal of Selected Topics in Quantum Electronics Vol. 29 Issue: 2, Article 7400112 (2023). [CrossRef]
- Yang Sun, Jiayang Wu, Mengxi Tan, Xingyuan Xu, Yang Li, Roberto Morandotti, Arnan Mitchell, and David Moss, “Applications of optical micro-combs”, Advances in Optics and Photonics 15 (1) 86-175 (2023).
- Yunping Bai, Xingyuan Xu,1, Mengxi Tan, Yang Sun, Yang Li, Jiayang Wu, Roberto Morandotti, Arnan Mitchell, Kun Xu, and David J. Moss, “Photonic multiplexing techniques for neuromorphic computing”, Nanophotonics 12 (5): 795–817 (2023). [CrossRef]
- X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics, vol. 2, no. 9, 096104, Sep. 2017. [CrossRef]
- Xu, X., et al., Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated micro-comb source, Photonics Research, 6, B30-B36 (2018). [CrossRef]
- X. Xu, M. Tan, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “Microcomb-based photonic RF signal processing”, IEEE Photonics Technology Letters, vol. 31 no. 23 1854-1857, 2019. [CrossRef]
- Xu, et al., “Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source,” Journal of Lightwave Technology, vol. 37, no. 4, pp. 1288-1295 (2019).
- X. Xu, et al., “Photonic RF and microwave integrator with soliton crystal microcombs”, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3582-3586, 2020. [CrossRef]
- X. Xu, et al., “High performance RF filters via bandwidth scaling with Kerr micro-combs,” APL Photonics, vol. 4 (2) 026102. 2019. [CrossRef]
- X. Xu, et al., “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express, vol. 26 (3) 2569 (2018). [CrossRef]
- M. Tan, X. Xu, J. Wu, B. Corcoran, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R.Morandotti, A. Lowery, A. Mitchell, and D. J. Moss, “"Highly Versatile Broadband RF Photonic Fractional Hilbert Transformer Based on a Kerr Soliton Crystal Microcomb”, Journal of Lightwave Technology vol. 39 (24) 7581-7587 (2021).
- Wu, J. et al. RF Photonics: An Optical Microcombs’ Perspective. IEEE Journal of Selected Topics in Quantum Electronics Vol. 24, 6101020, 1-20 (2018).






| Material | Laser parameter | Film thickness | β(cm/GW) | Ref. |
|---|---|---|---|---|
| Graphene | 1550 nm, 100 fs | 5−7 layers | 9 × 103 | [72] |
| GO | 800 nm, 100 fs | ∼2 µm | 4 × 104 | [63] |
| MoS2 | 1064 nm, 25 ps | ~25 µm | −3.8 ± 0.59 | [70] |
| WS2 | 1040 nm, 340 fs | ∼57.9 nm | (1.81 ± 0.08) × 103 | [73] |
| WSe2 | 1040 nm, 340 fs | 25.1 nm | 2.14 × 103 | [73] |
| PdSe2 | 800 nm, 140 fs | ∼8 nm | (3.26 ± 0.19) × 103 | [65] |
| PtSe2 | 1030 nm, 340 fs | 4 layers | 2.96 ± 0.05 | [67] |
| BP | 800 nm, 100 fs | 30 – 60 nm | 45 ± 2 | [21] |
| h-BN | 400 nm, 150 fs | ∼2.5 nm | 5 × 104 | [74] |
| Bi2Te3 | 1056 nm, 100 fs | 24 – 25 nm | 2.29 × 106 | [75] |
| BiOCl | 800 nm, 100 fs | 20 – 140 nm | 4.25 × 102 | [69] |
| BiOBr | 800 nm, 140 fs | 140 | 1.869 × 104 | [64] |
| Ni-MOF | 800 nm, 95 ± 10 fs | ∼4.2 nm | -3 × 10-2 | [71] |
| MXene | 800 nm, 140 fs | 5 layers | 7.13 × 102 | This work |
| MXene | 800 nm, 140 fs | 30 layers | -2.69 × 102 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).