Submitted:
07 August 2023
Posted:
09 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Overview
1.2. Environmental and Hereditary Risk factors for Urothelial Cancers
2. Divergent Mechanisms Underlying Urothelial Tumorigenesis
2.1. Invasive and non-invasive UCC
2.2. Cell cycle alterations
2.3. Intricate relationship between cell signaling and gene regulation
2.4. Immune dysregulation and cytokine signaling
2.5. Influence of angiogenesis on UCC invasion and metastasis
3. Screening, Diagnostic Approach and Staging of Urothelial Carcinoma
4. Standard of care therapy for UCC
4.1. Initial treatment
4.2. Bladder preservation in UCC
5. Emerging strategies to improve the treatment of UCC
5.1. Surgical
5.2. Single agent and combination chemotherapy
5.3. Targeting FGFR
5.4. Immune checkpoint inhibitors
5.5. Antibody-drug conjugates
5.6. Cellular vaccines and oncolytic viruses
5.7. CAR-T therapy
5.8. Antiangiogenics
6. Conclusions
7. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Kaseb H, Aeddula NR. Bladder Cancer. [Updated 2022 Oct 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. available from: https://www.ncbi.nlm.nih.gov/books/NBK536923/.
- Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM. Cancer Invasion: Patterns and Mechanisms. Acta Naturae. Acta Naturae 2015;7, 7, 17–28. [PubMed]
- Wu, X.R. Urothelial Tumorigenesis: A Tale of Divergent Pathways. Nat Rev Cancer 2005, 5. [Google Scholar] [CrossRef] [PubMed]
- khtar, Mohammed MD, FCAP, FRCPA, FRCPath; Al-Bozom, Issam A. MD, FCAP; Ben Gashir, Mohamed MBChB, FRCPath, PhD; Taha, Noheir M. MBBCh; Rashid, Sameera MD; Al-Nabet, Ajayeb D.M.H. PhD. Urothelial Carcinoma In Situ (CIS): New Insights. Advances In Anatomic Pathology 26(5):p 313-319, September 2019. [CrossRef]
- Wenzel M, Deuker M, Nocera L, Collà Ruvolo C, Tian Z, Shariat SF, Saad F, Briganti A, Becker A, Kluth LA, Chun FKH and Karakiewicz PI (2021) Comparison Between Urothelial and Non-Urothelial Urethral Cancer. Front. Oncol. 10:629692. [CrossRef]
- Yin H, Leong AS. Histologic grading of noninvasive papillary urothelial tumors: validation of the 1998 WHO/ISUP system by immunophenotyping and follow-up. Am J Clin Pathol. 2004;121(5):679-87. https://doi.org/10.1309/0KAT-YHQB-JD5X-HQ8J. PMID: 15151208. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J Clin 2023, 73, doi:10.3322/caac.21763.
- Ren X, Guo S, Guan X, Kang Y, Liu J and Yang X (2022) Immunological Classification of Tumor Types and Advances in Precision Combination Immunotherapy. Front. Immunol. 13:790113. [CrossRef]
- Freedman, N.D.; Silverman, D.T.; Hollenbeck, A.R.; Schatzkin, A.; Abnet, C.C. Association between Smoking and Risk of Bladder Cancer among Men and Women. JAMA 2011, 306. [Google Scholar] [CrossRef] [PubMed]
- Cumberbatch, M.G.; Rota, M.; Catto, J.W.F.; La Vecchia, C. The Role of Tobacco Smoke in Bladder and Kidney Carcinogenesis: A Comparison of Exposures and Meta-Analysis of Incidence and Mortality Risks. Eur Urol 2016, 70. [Google Scholar] [CrossRef] [PubMed]
- Miyake, H.; Hara, I.; Kamidono, S.; Eto, H. Multifocal Transitional Cell Carcinoma of the Bladder and Upper Urinary Tract: Molecular Screening of Clonal Origin by Characterizing CD44 Alternative Splicing Patterns. Journal of Urology 2004, 172. [Google Scholar] [CrossRef]
- Kantor, A.F.; Hartge, P.; Hoover, R.N.; Fraumeni, J.F. Familial and Environmental Interactions in Bladder Cancer Risk. Int J Cancer 1985, 35. [Google Scholar] [CrossRef]
- Hartmann, A.; Cheville, J.C.; Dietmaier, W.; Hofstädter, F.; Burgart, L.J.; Blaszyk, H. Hereditary Nonpolyposis Colorectal Cancer Syndrome in a Patient with Urothelial Carcinoma of the Upper Urothelial Tract. Arch Pathol Lab Med 2003, 127. [Google Scholar] [CrossRef]
- Mitra, A.P.; Jordà, M.; Cote, R.J. Pathological Possibilities and Pitfalls in Detecting Aggressive Bladder Cancer. Curr Opin Urol 2012, 22. [Google Scholar] [CrossRef]
- Rieger-Christ, K.M.; Mourtzinos, A.; Lee, P.J.; Zagha, R.M.; Cain, J.; Silverman, M.; Libertino, J.A.; Summerhayes, I.C. Identification of Fibroblast Growth Factor Receptor 3 Mutations in Urine Sediment DNA Samples Complements Cytology in Bladder Tumor Detection. Cancer 2003, 98. [Google Scholar] [CrossRef]
- Droller, M.J. FGFR3 and P53 Characterize Alternative Genetic Pathways in the Pathogenesis of Urothelial Cell Carcinoma. Journal of Urology 2004, 172. [Google Scholar] [CrossRef]
- Bakkar, A.A.; Wallerand, H.; Radvanyi, F.; Lahaye, J.B.; Pissard, S.; Lecerf, L.; Kouyoumdjian, J.C.; Abbou, C.C.; Pairon, J.C.; Jaurand, M.C.; et al. FGFR3 and TP53 Gene Mutations Define Two Distinct Pathways in Urothelial Cell Carcinoma of the Bladder. Cancer Res 2003, 63. [Google Scholar]
- Orlow, I.; LaRue, H.; Osman, I.; Lacombe, L.; Moore, L.; Rabbani, F.; Meyer, F.; Fradet, Y.; Cordon-Cardo, C. Deletions of the INK4A Gene in Superficial Bladder Tumors: Association with Recurrence. American Journal of Pathology 1999, 155. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.P.; Datar, R.H.; Cote, R.J. Molecular Pathways in Invasive Bladder Cancer: New Insights into Mechanisms, Progression, and Target Identification. Journal of Clinical Oncology 2006, 24. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.R. Urothelial Tumorigenesis: A Tale of Divergent Pathways. Nat Rev Cancer 2005, 5. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171. [Google Scholar] [CrossRef]
- Kamoun, A.; de Reyniès, A.; Allory, Y.; Sjödahl, G.; Robertson, A.G.; Seiler, R.; Hoadley, K.A.; Groeneveld, C.S.; Al-Ahmadie, H.; Choi, W.; et al. A Consensus Molecular Classification of Muscle-Invasive Bladder Cancer. Eur Urol 2020, 77. [Google Scholar] [CrossRef]
- Weinstein, J.N.; Akbani, R.; Broom, B.M.; Wang, W.; Verhaak, R.G.W.; McConkey, D.; Lerner, S.; Morgan, M.; Creighton, C.J.; Smith, C.; et al. Comprehensive Molecular Characterization of Urothelial Bladder Carcinoma. Nature 2014, 507. [Google Scholar] [CrossRef]
- Nordentoft, I.; Lamy, P.; Birkenkamp-Demtröder, K.; Shumansky, K.; Vang, S.; Hornshøj, H.; Juul, M.; Villesen, P.; Hedegaard, J.; Roth, A.; et al. Mutational Context and Diverse Clonal Development in Early and Late Bladder Cancer. Cell Rep 2014, 7. [Google Scholar] [CrossRef]
- Mitra, A.P.; Cote, R.J. Molecular Pathogenesis and Diagnostics of Bladder Cancer. Annual Review of Pathology: Mechanisms of Disease 2009, 4. [Google Scholar] [CrossRef]
- Youssef, R.F.; Mitra, A.P.; Bartsch, G.; Jones, P.A.; Skinner, D.G.; Cote, R.J. Molecular Targets and Targeted Therapies in Bladder Cancer Management. World J Urol 2009, 27. [Google Scholar] [CrossRef]
- Mitra, A.P.; Hansel, D.E.; Cote, R.J. Prognostic Value of Cell-Cycle Regulation Biomarkers in Bladder Cancer. Semin Oncol 2012, 39. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.P.; Birkhahn, M.; Cote, R.J. P53 and Retinoblastoma Pathways in Bladder Cancer. World J Urol 2007, 25. [Google Scholar] [CrossRef] [PubMed]
- Shariat, S.F.; Chade, D.C.; Karakiewicz, P.I.; Ashfaq, R.; Isbarn, H.; Fradet, Y.; Bastian, P.J.; Nielsen, M.E.; Capitanio, U.; Jeldres, C.; et al. Combination of Multiple Molecular Markers Can Improve Prognostication in Patients With Locally Advanced and Lymph Node Positive Bladder Cancer. Journal of Urology 2010, 183. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.P.; Datar, R.H.; Cote, R.J. Molecular Staging of Bladder Cancer. BJU Int 2005, 96. [Google Scholar] [CrossRef]
- Mitra, A.P.; Datar, R.H.; Cote, R.J. Molecular Pathways in Invasive Bladder Cancer: New Insights into Mechanisms, Progression, and Target Identification. Journal of Clinical Oncology 2006, 24. [Google Scholar] [CrossRef] [PubMed]
- Shariat, S.F.; Chade, D.C.; Karakiewicz, P.I.; Ashfaq, R.; Isbarn, H.; Fradet, Y.; Bastian, P.J.; Nielsen, M.E.; Capitanio, U.; Jeldres, C.; et al. Combination of Multiple Molecular Markers Can Improve Prognostication in Patients With Locally Advanced and Lymph Node Positive Bladder Cancer. Journal of Urology 2010, 183. [Google Scholar] [CrossRef] [PubMed]
- Grossfeld, G.D.; Freeman, J.A.; Esrig, D.; Dickinson, M.G.; Groshen, S.; Taylor, C.R.; Skinner, D.G.; Cote, R.J. The Effect of P21waf1/Iip1 Expression and Tumor Progression in Bladder Cancer John p. Stein, David a. Ginsberg. Br J Urol.
- Shariat, S.F.; Zlotta, A.R.; Ashfaq, R.; Sagalowsky, A.I.; Lotan, Y. Cooperative Effect of Cell-Cycle Regulators Expression on Bladder Cancer Development and Biologic Aggressiveness. Modern Pathology 2007, 20. [Google Scholar] [CrossRef]
- Simon, R.; Struckmann, K.; Schraml, P.; Wagner, U.; Forster, T.; Moch, H.; Fijan, A.; Bruderer, J.; Wilber, K.; Mihatsch, M.J.; et al. Amplification Pattern of 12q13-Q15 Genes (MDM2, CDK4, GLI) in Urinary Bladder Cancer. Oncogene 2002, 21. [Google Scholar] [CrossRef]
- Miyamoto, H.; Shuin, T.; Torigoe, S.; Iwasaki, Y.; Kubota, Y. Retinoblastoma Gene Mutations in Primary Human Bladder Cancer. Br J Cancer 1995, 71. [Google Scholar] [CrossRef]
- Shariat, S.F.; Chade, D.C.; Karakiewicz, P.I.; Ashfaq, R.; Isbarn, H.; Fradet, Y.; Bastian, P.J.; Nielsen, M.E.; Capitanio, U.; Jeldres, C.; et al. Combination of Multiple Molecular Markers Can Improve Prognostication in Patients With Locally Advanced and Lymph Node Positive Bladder Cancer. Journal of Urology 2010, 183. [Google Scholar] [CrossRef]
- Shariat, S.F.; Zlotta, A.R.; Ashfaq, R.; Sagalowsky, A.I.; Lotan, Y. Cooperative Effect of Cell-Cycle Regulators Expression on Bladder Cancer Development and Biologic Aggressiveness. Modern Pathology 2007, 20. [Google Scholar] [CrossRef]
- Kapur, P.; Lotan, Y.; King, E.; Kabbani, W.; Mitra, A.P.; Mosbah, A.; Abol-Enein, H.; Ghoneim, M.; Youssef, R.F. Primary Adenocarcinoma of the Urinary Bladder: Value of Cell Cycle Biomarkers. Am J Clin Pathol 2011, 135. [Google Scholar] [CrossRef] [PubMed]
- Karam, J.A.; Lotan, Y.; Karakiewicz, P.I.; Ashfaq, R.; Sagalowsky, A.I.; Roehrborn, C.G.; Shariat, S.F. Use of Combined Apoptosis Biomarkers for Prediction of Bladder Cancer Recurrence and Mortality after Radical Cystectomy. Lancet Oncology 2007, 8. [Google Scholar] [CrossRef] [PubMed]
- Shariat, S.F.; Ashfaq, R.; Karakiewicz, P.I.; Saeedi, O.; Sagalowsky, A.I.; Lotan, Y. Survivin Expression Is Associated with Bladder Cancer Presence, Stage, Progression, and Mortality. Cancer 2007, 109. [Google Scholar] [CrossRef] [PubMed]
- Ong, F.; Moonen, L.M.F.; Gallee, M.P.W.; Ten Bosch, C.; Zerp, S.F.; Hart, A.A.M.; Bartelink, H.; Verheij, M. Prognostic Factors in Transitional Cell Cancer of the Bladder: An Emerging Role for Bcl-2 and P53. Radiotherapy and Oncology 2001, 61. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.A.; Ganesan, R.; Hiller, L.; Cooke, P.W.; Murray, P.; Young, L.S.; James, N.D. BCL2 Expression Predicts Survival in Patients Receiving Synchronous Chemoradiotherapy in Advanced Transitional Cell Carcinoma of the Bladder. Oncol Rep 2003, 10. [Google Scholar]
- Mirra, A.P.; Lin, H.; Datar, R.H.; Cote, R.J. Molecular Biology of Bladder Cancer: Prognostic, and Clinical Implications. Clin Genitourin Cancer 2006, 5. [Google Scholar] [CrossRef]
- Korkolopoulou, P.; Lazaris, A.C.; Konstantinidou, A.E.; Kavantzas, N.; Patsouris, E.; Christodoulou, P.; Thomas-Tsagli, E.; Davaris, P. Differential Expression of Bcl-2 Family Proteins in Bladder Carcinomas Relationship with Apoptotic Rate and Survival. Eur Urol 2002, 41. [Google Scholar] [CrossRef]
- Gonzalez-Campora, R.; Davalos-Casanova, G.; Beato-Moreno, A.; Garcia-Escudero, A.; Pareja Megia, M.J.; Montironi, R.; Lopez-Beltran, A. BCL-2, TP53 and BAX Protein Expression in Superficial Urothelial Bladder Carcinoma. Cancer Lett 2007, 250. [Google Scholar] [CrossRef]
- Pasin, E.; Josephson, D.Y.; Mitra, A.P.; Cote, R.J.; Stein, J.P. Superficial Bladder Cancer: An Update on Etiology, Molecular Development, Classification, and Natural History. Rev Urol 2008, 10. [Google Scholar]
- Van Rhijn, B.W.G.; Zuiverloon, T.C.M.; Vis, A.N.; Radvanyi, F.; Van Leenders, G.J.L.H.; Ooms, B.C.M.; Kirkels, W.J.; Lockwood, G.A.; Boevé, E.R.; Jöbsis, A.C.; et al. Molecular Grade (FGFR3/MIB-1) and EORTC Risk Scores Are Predictive in Primary Non-Muscle-Invasive Bladder Cancer. Eur Urol 2010, 58. [Google Scholar] [CrossRef] [PubMed]
- Birkhahn, M.; Mitra, A.P.; Williams, A.J.; Lam, G.; Ye, W.; Datar, R.H.; Balic, M.; Groshen, S.; Steven, K.E.; Cote, R.J. Predicting Recurrence and Progression of Noninvasive Papillary Bladder Cancer at Initial Presentation Based on Quantitative Gene Expression Profiles. Eur Urol 2010, 57. [Google Scholar] [CrossRef] [PubMed]
- Tuygun, C.; Kankaya, D.; Imamoglu, A.; Sertcelik, A.; Zengin, K.; Oktay, M.; Sertcelik, N. Sex-Specific Hormone Receptors in Urothelial Carcinomas of the Human Urinary Bladder: A Comparative Analysis of Clinicopathological Features and Survival Outcomes According to Receptor Expression. Urologic Oncology: Seminars and Original Investigations, 2011; 29. [Google Scholar] [CrossRef]
- Ide, H.; Inoue, S.; Miyamoto, H. Histopathological and Prognostic Significance of the Expression of Sex Hormone Receptors in Bladder Cancer: A Meta-Analysis of Immunohistochemical Studies. PLoS One 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Tuygun, C.; Kankaya, D.; Imamoglu, A.; Sertcelik, A.; Zengin, K.; Oktay, M.; Sertcelik, N. Sex-Specific Hormone Receptors in Urothelial Carcinomas of the Human Urinary Bladder: A Comparative Analysis of Clinicopathological Features and Survival Outcomes According to Receptor Expression. Urologic Oncology: Seminars and Original Investigations, 2011; 29. [Google Scholar] [CrossRef]
- Boorjian, S.; Ugras, S.; Mongan, N.P.; Gudas, L.J.; You, X.; Tickoo, S.K.; Scherr, D.S. Androgen Receptor Expression Is Inversely Correlated with Pathologic Tumor Stage in Bladder Cancer. Urology 2004, 64. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.P.; Pagliarulo, V.; Yang, D.; Waldman, F.M.; Datar, R.H.; Skinner, D.G.; Groshen, S.; Cote, R.J. Generation of a Concise Gene Panel for Outcome Prediction in Urinary Bladder Cancer. Journal of Clinical Oncology 2009, 27. [Google Scholar] [CrossRef]
- Laurberg, J.R.; Brems-Eskildsen, A.S.; Nordentoft, I.; Fristrup, N.; Schepeler, T.; Ulhøi, B.P.; Agerbæk, M.; Hartmann, A.; Bertz, S.; Wittlinger, M.; et al. Expression of TIP60 (Tat-Interactive Protein) and MRE11 (Meiotic Recombination 11 Homolog) Predict Treatment-Specific Outcome of Localised Invasive Bladder Cancer. BJU Int 2012, 110. [Google Scholar] [CrossRef]
- Andrews, B.; Shariat, S.F.; Kim, J.H.; Wheeler, T.M.; Slawin, K.M.; Lerner, S.P. Preoperative Plasma Levels of Interleukin-6 and Its Soluble Receptor Predict Disease Recurrence and Survival of Patients with Bladder Cancer. Journal of Urology 2002, 167. [Google Scholar] [CrossRef]
- Riemann, K.; Becker, L.; Struwe, H.; Rübben, H.; Eisenhardt, A.; Siffert, W. Insertion/Deletion Polymorphism in the Promoter of NFKB1 as a Potential Molecular Marker for the Risk of Recurrence in Superficial Bladder Cancer. Int J Clin Pharmacol Ther 2007, 45. [Google Scholar] [CrossRef]
- Nakanishi, J.; Wada, Y.; Matsumoto, K.; Azuma, M.; Kikuchi, K.; Ueda, S. Overexpression of B7-H1 (PD-L1) Significantly Associates with Tumor Grade and Postoperative Prognosis in Human Urothelial Cancers. Cancer Immunology, Immunotherapy. [CrossRef]
- Boorjian, S.A.; Sheinin, Y.; Crispen, P.L.; Farmer, S.A.; Lohse, C.M.; Kuntz, S.M.; Leibovich, B.C.; Kwon, E.D.; Frank, I. T-Cell Coregulatory Molecule Expression in Urothelial Cell Carcinoma: Clinicopathologic Correlations and Association with Survival. Clinical Cancer Research 2008, 14. [Google Scholar] [CrossRef]
- Crew, J.P.; O’Brien, T.; Bradburn, M.; Fuggle, S.; Bicknell, R.; Cranston, D.; Harris, A.L. Vascular Endothelial Growth Factor Is a Predictor of Relapse and Stage Progression in Superficial Bladder Cancer. Cancer Res 1997, 57. [Google Scholar] [CrossRef]
- Jaeger, T.M.; Weidner, N.; Chew, K.; Moore, D.H.; Kerschmann, R.L.; Waldman, F.M.; Carroll, P.R. Tumor Angiogenesis Correlates with Lymph Node Metastases in Invasive Bladder Cancer. J Urol 1995, 154. [Google Scholar] [CrossRef]
- Shariat, S.F.; Monoski, M.A.; Andrews, B.; Wheeler, T.M.; Lerner, S.P.; Slawin, K.M. Association of Plasma Urokinase-Type Plasminogen Activator and Its Receptor with Clinical Outcome in Patients Undergoing Radical Cystectomy for Transitional Cell Carcinoma of the Bladder. Urology 2003, 61. [Google Scholar] [CrossRef] [PubMed]
- Ioachim, E.; Michael, M.C.; Salmas, M.; Damala, K.; Tsanou, E.; Michael, M.M.; Malamou-Mitsi, V.; Stavropoulos, N.E. Thrombospondin-1 Expression in Urothelial Carcinoma: Prognostic Significance and Association with P53 Alterations, Tumour Angiogenesis and Extracellular Matrix Components. BMC Cancer 2006, 6. [Google Scholar] [CrossRef] [PubMed]
- Shariat, S.F.; Youssef, R.F.; Gupta, A.; Chade, D.C.; Karakiewicz, P.I.; Isbarn, H.; Jeldres, C.; Sagalowsky, A.I.; Ashfaq, R.; Lotan, Y. Association of Angiogenesis Related Markers With Bladder Cancer Outcomes and Other Molecular Markers. Journal of Urology 2010, 183. [Google Scholar] [CrossRef]
- Paul Bringuier, P.; Umbas, R.; Ewout Schaafsma, H.; Karthaus, H.F.M.; Debruyne, F.M.J.; Schalken, J.A. Decreased E-Cadherin Immunoreactivity Correlates with Poor Survival in Patients with Bladder Thmors. Cancer Res 1993, 53. [Google Scholar]
- Guan, K.P.; Ye, H.Y.; Yan, Z.; Wang, Y.; Hou, S.K. Serum Levels of Endostatin and Matrix Metalloproteinase-9 Associated with High Stage and Grade Primary Transitional Cell Carcinoma of the Bladder. Urology 2003, 61. [Google Scholar] [CrossRef]
- Ozer, G.; Altinel, M.; Kocak, B.; Balci, M.; Altan, A.; Gonenc, F. Potential Value of Soluble Intercellular Adhesion Molecule-1 in the Serum of Patients with Bladder Cancer. Urol Int 2003, 70. [Google Scholar] [CrossRef]
- Bazargani, S.T.; Clifford, T.; Djaladat, H.; Schuckman, A.; Sadeghi, S.; Dorff, T.; Quinn, D.; Daneshmand, S. Association between Epithelial Tumor Markers’ Trends during the Course of Treatment and Oncological Outcomes in Urothelial Bladder Cancer. Urologic Oncology: Seminars and Original Investigations. [CrossRef]
- Moyer, V.A. Screening for Bladder Cancer: U.S. Preventive Services Task Force Recommendation Statement. S. Preventive Services Task Force Recommendation Statement. Ann Intern Med 2011, 155. [Google Scholar] [CrossRef]
- Lotan, Y.; Roehrborn, C.G. Sensitivity and Specificity of Commonly Available Bladder Tumor Markers versus Cytology: Results of a Comprehensive Literature Review and Meta-Analyses. Urology 2003, 61. [Google Scholar] [CrossRef]
- Apolo, A.B.; Riches, J.; Schöder, H.; Akin, O.; Trout, A.; Milowsky, M.I.; Bajorin, D.F. Clinical Value of Fluorine-18 2-Fluoro-2-Deoxy-D-Glucose Positron Emission Tomography/Computed Tomography in Bladder Cancer. Journal of Clinical Oncology 2010, 28. [Google Scholar] [CrossRef]
- Soubra, A.; Hayward, D.; Dahm, P.; Goldfarb, R.; Froehlich, J.; Jha, G.; Konety, B.R. The Diagnostic Accuracy of 18F-Fluorodeoxyglucose Positron Emission Tomography and Computed Tomography in Staging Bladder Cancer: A Single-Institution Study and a Systematic Review with Meta-Analysis. World J Urol 2016, 34. [Google Scholar] [CrossRef]
- Msaouel, P.; Koutsilieris, M. Diagnostic Value of Circulating Tumor Cell Detection in Bladder and Urothelial Cancer: Systematic Review and Meta-Analysis. BMC Cancer 2011, 11. [Google Scholar] [CrossRef]
- Shelley, M.; Court, J.B.; Kynaston, H.; Wilt, T.J.; Fish, R.; Mason, M. Intravesical Bacillus Calmette-Guérin in Ta and T1 Bladder Cancer. Cochrane Database of Systematic Reviews 2000. [CrossRef]
- Bevers, R.F.M.; Kurth, K.H.; Schamhart, D.H.J. Role of Urothelial Cells in BCG Immunotherapy for Superficial Bladder Cancer. Br J Cancer 2004, 91. [Google Scholar] [CrossRef]
- SEER Cancer Stat Facts: Bladder Cancer. Surveillance, Epidemiology and End Results Program 2018.
- Scher, H.I.; Yagoda, A.; Herr, H.W.; Sternberg, C.N.; Morse, M.J.; Sogani, P.C.; Watson, R.C.; Reuter, V.; Whitmore, W.F.; Fair, W.R. Neoadjuvant M-VAC (Methotrexate, Vinblastine, Doxorubicin and Cisplatin) for Extravesical Urinary Tract Tumors. Journal of Urology 1988, 139. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Citrin, D.E.; Agarwal, P.K.; Apolo, A.B. Multimodal Management of Muscle-Invasive Bladder Cancer. Curr Probl Cancer 2014, 38. [Google Scholar] [CrossRef]
- Galsky, M.D.; Hahn, N.M.; Rosenberg, J.; Sonpavde, G.; Hutson, T.; Oh, W.K.; Dreicer, R.; Vogelzang, N.; Sternberg, C.N.; Bajorin, D.F.; et al. Treatment of Patients with Metastatic Urothelial Cancer “Unfit” for Cisplatin-Based Chemotherapy. Journal of Clinical Oncology 2011, 29. [Google Scholar] [CrossRef] [PubMed]
- Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Compérat, E.M.; Cowan, N.C.; Gakis, G.; Hernández, V.; Linares Espinós, E.; Lorch, A.; Neuzillet, Y.; et al. European Association of Urology Guidelines on Muscle-Invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur Urol 2021, 79. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.C.; Shipley, W.U.; Efstathiou, J.A.; Zietman, A.L. Trimodality Bladder Preservation Therapy for Muscle-Invasive Bladder Cancer. JNCCN Journal of the National Comprehensive Cancer Network 2013, 11. [Google Scholar] [CrossRef]
- Donat, S.M.; Shabsigh, A.; Savage, C.; Cronin, A.M.; Bochner, B.H.; Dalbagni, G.; Herr, H.W.; Milowsky, M.I. Potential Impact of Postoperative Early Complications on the Timing of Adjuvant Chemotherapy in Patients Undergoing Radical Cystectomy: A High-Volume Tertiary Cancer Center Experience. Eur Urol 2009, 55. [Google Scholar] [CrossRef]
- Shabsigh, A.; Korets, R.; Vora, K.C.; Brooks, C.M.; Cronin, A.M.; Savage, C.; Raj, G.; Bochner, B.H.; Dalbagni, G.; Herr, H.W.; et al. Defining Early Morbidity of Radical Cystectomy for Patients with Bladder Cancer Using a Standardized Reporting Methodology. Eur Urol 2009, 55. [Google Scholar] [CrossRef] [PubMed]
- James, N.D.; Hussain, S.A.; Hall, E.; Jenkins, P.; Tremlett, J.; Rawlings, C.; Crundwell, M.; Sizer, B.; Sreenivasan, T.; Hendron, C.; et al. Radiotherapy with or without Chemotherapy in Muscle-Invasive Bladder Cancer. New England Journal of Medicine 2012, 366. [Google Scholar] [CrossRef] [PubMed]
- Arcangeli, G.; Arcangeli, S.; Strigari, L. A Systematic Review and Meta-Analysis of Clinical Trials of Bladder-Sparing Trimodality Treatment for Muscle-Invasive Bladder Cancer (MIBC). Crit Rev Oncol Hematol 2015, 94. [Google Scholar] [CrossRef] [PubMed]
- Mak, R.H.; Hunt, D.; Shipley, W.U.; Efstathiou, J.A.; Tester, W.J.; Hagan, M.P.; Kaufman, D.S.; Heney, N.M.; Zietman, A.L. Long-Term Outcomes in Patients with Muscle-Invasive Bladder Cancer after Selective Bladder-Preserving Combined-Modality Therapy: A Pooled Analysis of Radiation Therapy Oncology Group Protocols 8802, 8903, 9506, 9706, 9906, and 0233. Journal of Clinical Oncology 2014, 32. [Google Scholar] [CrossRef]
- Griffiths, G. International Phase III Trial Assessing Neoadjuvant Cisplatin, Methotrexate, and Vinblastine Chemotherapy for Muscle-Invasive Bladder Cancer: Long-Term Results of the BA06 30894 Trial. Journal of Clinical Oncology 2011, 29. [Google Scholar] [CrossRef]
- Kapoor, A.; Niazi, T.; Noonan, K.; Rendon, R.A.; Alimohamed, N.; Kassouf, W.; Berlin, A.; Chu, W.; Kollmannsberger, C.; So, A.I. 2022 American Society of Clinical Oncology (ASCO) Genitourinary Cancers Symposium: Meeting Highlights. Yosetsu Gakkai Shi/Journal of the Japan Welding Society. [CrossRef]
- Plimack, E.R.; Dunbrack, R.L.; Brennan, T.A.; Andrake, M.D.; Zhou, Y.; Serebriiskii, I.G.; Slifker, M.; Alpaugh, K.; Dulaimi, E.; Palma, N.; et al. Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-Based Chemotherapy in Muscle-Invasive Bladder Cancer. Eur Urol 2015, 68. [Google Scholar] [CrossRef]
- Geynisman, D.M.; Abbosh, P.; Ross, E.A.; Zibelman, M.R.; Ghatalia, P.; Anari, F.; Ansel, K.; Mark, J.R.; Stamatakis, L.; Hoffman-Censits, J.H.; et al. A Phase II Trial of Risk-Enabled Therapy after Initiating Neoadjuvant Chemotherapy for Bladder Cancer (RETAIN). Journal of Clinical Oncology 2023, 41. [Google Scholar] [CrossRef]
- Geynisman, D.M.; Abbosh, P.; Ross, E.A.; Zibelman, M.R.; Ghatalia, P.; Anari, F.; Ansel, K.; Mark, J.R.; Stamatakis, L.; Hoffman-Censits, J.H.; et al. A Phase II Trial of Risk Enabled Therapy after Initiating Neoadjuvant Chemotherapy for Bladder Cancer (RETAIN BLADDER): Interim Analysis. Journal of Clinical Oncology 2021, 39. [Google Scholar] [CrossRef]
- Babjuk, M.; Burger, M.; Compérat, E.M.; Gontero, P.; Mostafid, A.H.; Palou, J.; van Rhijn, B.W.G.; Rouprêt, M.; Shariat, S.F.; Sylvester, R.; et al. European Association of Urology Guidelines on Non-Muscle-Invasive Bladder Cancer (TaT1 and Carcinoma In Situ) - 2019 Update. Eur Urol 2019, 76. [Google Scholar] [CrossRef]
- Chang, S.S.; Bochner, B.H.; Chou, R.; Dreicer, R.; Kamat, A.M.; Lerner, S.P.; Lotan, Y.; Meeks, J.J.; Michalski, J.M.; Morgan, T.M.; et al. Treatment of Non-Metastatic Muscle-Invasive Bladder Cancer: AUA/ASCO/ASTRO/SUO Guideline. Journal of Urology 2017, 198. [Google Scholar] [CrossRef]
- Yu, H.; Friedlander, D.F.; Patel, S.; Hu, J.C. The Current Status of Robotic Oncologic Surgery. CA Cancer J Clin 2013, 63. [Google Scholar] [CrossRef]
- Falagario, U.; Veccia, A.; Weprin, S.; Albuquerque, E. V.; Nahas, W.C.; Carrieri, G.; Pansadoro, V.; Hampton, L.J.; Porpiglia, F.; Autorino, R. Robotic-Assisted Surgery for the Treatment of Urologic Cancers: Recent Advances. Expert Rev Med Devices 2020, 17. [Google Scholar] [CrossRef]
- Jocham, D.; von Wietersheim, J.; Pflüger, H.; Steiner, H.; Doehn, C.; Büttner, H.; Böhle, A.; Kausch, I. BCG versus Photodynamic Therapy (PDT) for Nonmuscle Invasive Bladder Cancer - A Multicentre Clinical Phase III Study. Aktuelle Urol 2009, 40. [Google Scholar] [CrossRef]
- Von der Maase, H.; Hansen, S.W.; Roberts, J.T.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Bodrogi, I.; Albers, P.; Knuth, A.; Lippert, C.M.; et al. Gemcitabine and Cisplatin versus Methotrexate, Vinblastine, Doxorubicin, and Cisplatin in Advanced or Metastatic Bladder Cancer: Results of a Large, Randomized, Multinational, Multicenter, Phase III Study. Journal of Clinical Oncology 2000, 18. [Google Scholar] [CrossRef]
- De Santis, M.; Bellmunt, J.; Mead, G.; Kerst, J.M.; Leahy, M.; Maroto, P.; Gil, T.; Marreaud, S.; Daugaard, G.; Skoneczna, I.; et al. Randomized Phase II/III Trial Assessing Gemcitabine/Carboplatin and Methotrexate/Carboplatin/Vinblastine in Patients with Advanced Urothelial Cancer Who Are Unfit for Cisplatin-Based Chemotherapy: EORTC Study 30986. Journal of Clinical Oncology 2012, 30. [Google Scholar] [CrossRef]
- Gitlitz, B.J.; Baker, C.; Chapman, Y.; Allen, H.J.; Bosserman, L.D.; Patel, R.; Sanchez, J.D.; Shapiro, R.M.; Figlin, R.A. A Phase II Study of Gemcitabine and Docetaxel Therapy in Patients with Advanced Urothelial Carcinoma. Cancer 2003, 98. [Google Scholar] [CrossRef]
- Witte, R.S.; Elson, P.; Bono, B.; Knop, R.; Richardson, R.R.; Dreicer, R.; Loehrer, P.J. Eastern Cooperative Oncology Group Phase II Trial of Ifosfamide in the Treatment of Previously Treated Advanced Urothelial Carcinoma. Journal of Clinical Oncology 1997, 15. [Google Scholar] [CrossRef]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. New England Journal of Medicine 2019, 381. [Google Scholar] [CrossRef]
- Li, Q.; Bagrodia, A.; Cha, E.K.; Coleman, J.A. Prognostic Genetic Signatures in Upper Tract Urothelial Carcinoma. Curr Urol Rep 2016, 17. [Google Scholar] [CrossRef]
- Donin, N.M.; Lenis, A.T.; Holden, S.; Drakaki, A.; Pantuck, A.; Belldegrun, A.; Chamie, K. Immunotherapy for the Treatment of Urothelial Carcinoma. Journal of Urology 2017, 197. [Google Scholar] [CrossRef]
- Zibelman, M.; Ramamurthy, C.; Plimack, E.R. Emerging Role of Immunotherapy in Urothelial Carcinoma—Advanced Disease. Urologic Oncology: Seminars and Original Investigations.
- Stenehjem, D.D.; Tran, D.; Nkrumah, M.A.; Gupta, S. PD1/PDL1 Inhibitors for the Treatment of Advanced Urothelial Bladder Cancer. Onco Targets Ther 2018, 11. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. New England Journal of Medicine 2017, 376. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulović, S.; Demey, W.; Ullén, A.; et al. Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. New England Journal of Medicine 2020, 383. [Google Scholar] [CrossRef] [PubMed]
- Bajorin, D.F.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; Park, S.H.; et al. Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma. New England Journal of Medicine 2021, 384. [Google Scholar] [CrossRef]
- Galsky, M.D.; Arija, J.Á.A.; Bamias, A.; Davis, I.D.; De Santis, M.; Kikuchi, E.; Garcia-del-Muro, X.; De Giorgi, U.; Mencinger, M.; Izumi, K.; et al. Atezolizumab with or without Chemotherapy in Metastatic Urothelial Cancer (IMvigor130): A Multicentre, Randomised, Placebo-Controlled Phase 3 Trial. The Lancet 2020, 395. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Rosenberg, J.E.; Sonpavde, G.P.; Loriot, Y.; Durán, I.; Lee, J.-L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Wu, C.; et al. Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. New England Journal of Medicine 2021, 384. [Google Scholar] [CrossRef] [PubMed]
- Bedke, J.; Maas, M. Re: Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. Eur Urol 2021, 80. [Google Scholar] [CrossRef]
- Wu, Q.; Qin, Y.; Liao, W.; Zhang, M.; Yang, Y.; Zhang, P.; Li, Q. Cost-Effectiveness of Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. Ther Adv Med Oncol 2022, 14. [Google Scholar] [CrossRef]
- Tagawa, S.T.; Balar, A. V.; Petrylak, D.P.; Kalebasty, A.R.; Loriot, Y.; Fléchon, A.; Jain, R.K.; Agarwal, N.; Bupathi, M.; Barthelemy, P.; et al. TROPHY-U-01: A Phase II Open-Label Study of Sacituzumab Govitecan in Patients With Metastatic Urothelial Carcinoma Progressing After Platinum-Based Chemotherapy and Checkpoint Inhibitors. Journal of Clinical Oncology 2021, 39. [Google Scholar] [CrossRef]
- Petrulio, C.A.; Kaufman, H.L. Development of the PANVACTM-VF Vaccine for Pancreatic Cancer. Expert Rev Vaccines 2006, 5. [Google Scholar]
- Wang, J.P.; Jiao, Y.; Wang, C.Y.; Xu, Z. Bin; Zhang, B. Rb Knockdown Accelerates Bladder Cancer Progression through E2F3 Activation. Int J Oncol 2017, 50. [Google Scholar] [CrossRef] [PubMed]
- Donin, N.M.; Lenis, A.T.; Holden, S.; Drakaki, A.; Pantuck, A.; Belldegrun, A.; Chamie, K. Immunotherapy for the Treatment of Urothelial Carcinoma. Journal of Urology 2017, 197. [Google Scholar] [CrossRef] [PubMed]
- Safarzadeh Kozani, P.; Safarzadeh Kozani, P.; Ahmadi Najafabadi, M.; Yousefi, F.; Mirarefin, S.M.J.; Rahbarizadeh, F. Recent Advances in Solid Tumor CAR-T Cell Therapy: Driving Tumor Cells From Hero to Zero? Front Immunol 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Kloss, C.C.; Condomines, M.; Cartellieri, M.; Bachmann, M.; Sadelain, M. Combinatorial Antigen Recognition with Balanced Signaling Promotes Selective Tumor Eradication by Engineered T Cells. Nat Biotechnol 2013, 31. [Google Scholar] [CrossRef]
- Rosenberg, J.E.; Ballman, K.A.; Halabi, S.; Atherton, P.J.; Mortazavi, A.; Sweeney, C.; Stadler, W.M.; Teply, B.A.; Picus, J.; Tagawa, S.T.; et al. Randomized Phase III Trial of Gemcitabine and Cisplatin With Bevacizumab or Placebo in Patients With Advanced Urothelial Carcinoma: Results of CALGB 90601 (Alliance). Journal of Clinical Oncology 2021, 39. [Google Scholar] [CrossRef]
- Petrylak, D.; de Wit, R.; Chi, K.N.; Drakaki, A.; Sternberg, C.N.; Nishiyama, H.; Castellano, D.; Hussain, S.; Fléchon, A.; Bamias, A.; et al. Ramucirumab plus Docetaxel versus Placebo plus Docetaxel in Patients with Locally Advanced or Metastatic Urothelial Carcinoma after Platinum-Based Therapy (RANGE): A Randomised, Double-Blind, Phase 3 Trial. The Lancet 2017, 390. [Google Scholar] [CrossRef]
- Apolo, A.B.; Nadal, R.; Tomita, Y.; Davarpanah, N.N.; Cordes, L.M.; Steinberg, S.M.; Cao, L.; Parnes, H.L.; Costello, R.; Merino, M.J.; et al. Cabozantinib in Patients with Platinum-Refractory Metastatic Urothelial Carcinoma: An Open-Label, Single-Centre, Phase 2 Trial. Lancet Oncol 2020, 21. [Google Scholar] [CrossRef]
- Gupta, S.; Bellmunt, J.; Plimack, E.R. Defining “platinum-ineligible” patients with metastatic urothelial cancer (mUC). J Clin Oncol. 2022, 40, 4577. [Google Scholar] [CrossRef]
- Powles, T.; Park, S.H.; Voog, E.; et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med. 2020, 383, 1218–1230. [Google Scholar] [CrossRef]
- Zhu, A.; Garcia, J.A.; Faltas, B.; Grivas, P.; Barata, P.; Shoag, J.E. Immune Checkpoint Inhibitors and Long-term Survival of Patients With Metastatic Urothelial Cancer. JAMA Netw Open. 2023, 6, e237444. [Google Scholar] [CrossRef]
| Gene | Cytogenic location | Alteration | Frequency of alteration |
|---|---|---|---|
| Chromosome | |||
| 9p | Deletion | 21–30 % | |
| 9q | Deletion | 17 % | |
| Oncogenes | |||
| HRAS | 11p15 | Activating mutation | 10–15 % |
| FGFR3 | 4p16 | Activating mutation | ~50 % overexpression 15 % Mutation |
| PIK3CA | 3q26 | Activating mutation | 25 % |
| MDM2 | 12q13 | Overexpression | 4 % overexpression |
| Tumor suppressor genes | |||
| TP53 | 17p13 | Deletion or mutation | 70 % |
| RB1 | 13q14 | Deletion or mutation | 37 % |
| PTEN | 10q23 | Homozygous deletion or mutation | LOH 30–35 % Mutation 17 % |
| CDKN2A | 9p21 | Homozygous deletion or methylation or mutation | HD 20–30 % LOH ~60 % |
| PTCH | 9q22 | Deletion or mutation | LOH ~60 % Mutations are rare |
| DBC1 | 9q32-33 | Deletion or methylation | LOH ~60 % |
| TSC1 | 9q34 | Deletion or mutation | LOH ~60 % Mutation ~15 % |
| Trial | Patient Characteristics | Regimen | Primary, Secondary End points | Most Common Adverse Events | Results |
|---|---|---|---|---|---|
|
BLC2001 Phase 2 study in mUCC patients |
99 patients with FGFR alteration who had progressed on chemotherapy or immunotherapy | Erdafitinib 8 mg in either an intermittent or continuous regimen. | Primary end point was ORR. Secondary end points were PFS, OS and duration of response. | Hyperphosphatemia, stomatitis and diarrhea. |
ORR was 40%. |
|
KEYNOTE-045 Phase 3 trial in mUCC |
542 patients who recurred or progressed after platinum-based chemotherapy | Pembrolizumab at 200 mg every 3 weeks or the investigator’s choice of chemotherapy with paclitaxel, docetaxel, or vinflunine | Co-primary endpoints were OS and PFS, among all patients and among patients who had a PD-L1 CPS of 10% or more. |
Pruritus, fatigue, and nausea | OS was 8 vs. 5.2 mos. PFS did not demonstrate a significant difference. |
| JAVELIN Bladder-100 Phase 3 trial in unresectable locally advanced and mUCC | 700 patients who completed 1st line chemotherapy without progression. | Maintenance avelumab 10 mg/kg IV q2 weekly vs. best supportive care | Primary end point was OS. Secondary end points included PFS and safety. | Fatigue, pruritus and urinary tract infections. | OS at 1 year was 71.3 compared to 58.4%. Median PFS was 3.7 vs 2.0 mos. |
| CheckMate-274Phase 3 trialwith MIBC. | 709 in patients with MIBC who had undergone radical cystectomy. Neoadjuvant cisplatin-based chemotherapy before trial entry was allowed. | Adjuvant nivolumab 240 mg IV or placebo q2 weeks for up to 1 year vs. placebo. | Primary endpoint was DFS. Secondary end point was survival free from recurrence outside the urothelial tract. | Pruritus, fatigue, and diarrhea | DFS was 20.8 mos with nivolumab and 10.8 mos with placebo. Patients who were free from recurrence outside the urothelial tract at 6 mos was 77 vs 63%. |
|
EV-301 Phase 3 trial in locally advanced or mUCC |
608 patients who had previously received platinum-containing CHT and had disease progression during or after treatment with a PD-1 or PD-L1 inhibitor | enfortumab vedotin 1.25 mg/kg on days 1,8,15 of a 28-day cycle or investigator-choice CHT on day 1 of a 21-day cycle. | Primary endpoint was OS. | Alopecia, peripheral sensory neuropathy, pruritus. | Median OS was 12.8 vs. 8.9 mos. |
| TROPHY-U-01 Phase II in mUCC | 113 patients who previously received platinum-containing CHT and had disease progression during or after treatment with a PD-1 or PD-L1 inhibitor. | Sacituzumab govitecan 10 mg/kg on days 1 and 8 of 21-day cycles | The primary outcome was centrally reviewed ORR; secondary outcomes were PFS, OS, duration of response, and safety. | Key grade ≥ 3 treatment-related adverse events included neutropenia (35%), leukopenia (18%), anemia (14%), diarrhea (10%), and febrile neutropenia (10%), with 6% discontinuing treatment because of treatment-related adverse events. | At median follow-up of 9.1 mos, ORR was 27% (31 of 113; 19.5 to 36.6); 77% had measurable disease reduction. Median duration of response was 7.2 mos (4.7 to 8.6 months), with median PFS and OS of 5.4 mos (3.5 to 7.2 mos) and 10.9 mos (9.0 to 13.8 mos). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).