Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Copper and Zinc MOFs With Bipyrazole Linkers Display Strong Antibacterial Activity Against Both Gram+ and Gram- Bacterial Strains

Version 1 : Received: 27 July 2023 / Approved: 28 July 2023 / Online: 31 July 2023 (10:57:14 CEST)

A peer-reviewed article of this Preprint also exists.

Xhafa, S.; Olivieri, L.; Di Nicola, C.; Pettinari, R.; Pettinari, C.; Tombesi, A.; Marchetti, F. Copper and Zinc Metal–Organic Frameworks with Bipyrazole Linkers Display Strong Antibacterial Activity against Both Gram+ and Gram− Bacterial Strains. Molecules 2023, 28, 6160. Xhafa, S.; Olivieri, L.; Di Nicola, C.; Pettinari, R.; Pettinari, C.; Tombesi, A.; Marchetti, F. Copper and Zinc Metal–Organic Frameworks with Bipyrazole Linkers Display Strong Antibacterial Activity against Both Gram+ and Gram− Bacterial Strains. Molecules 2023, 28, 6160.

Abstract

Here we report a new synthetic protocol based on Microwave- Assisted Synthesis (MAS) for the preparation in higher yields of zinc and copper MOFs based on different bis(pyrazolyl)-tagged ligands ([M(BPZ)]n where M = Zn(II), Cu(II), H2BPZ = 4,4′-bipyrazole, [M(BPZ-NH2)]n where M = Zn(II), Cu(II); H2BPZ-NH2 = 3-amino-4,4’-bipyrazole, and [Mx(Me4BPZPh)] where M = Zn(II), x = 1; Cu(II), x = 2; H2Me4BPZPh = bis-4′-(3′,5′-dimethyl)- pyrazolylbenzene) and a detailed study of their antibacterial activity, tested against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria, as representative agents of infections. The results show that all MOFs exert a broad-spectrum activity and strong efficiency in bacterial growth inhibition, with a mechanism of action based on surface contact of MOFs particles with bacterial cells through the so-called “chelation effect” and reactive oxygen species (ROS) generation, without a significant release of Zn(II) and Cu(II) ions. In addition, morphological changes were elucidated by using scanning electron microscope (SEM) and bacterial cell damage was further confirmed by confocal laser scanning microscopy (CLSM) test.

Keywords

Cu(II) and Zn(II) MOFs; bis(pyrazolate) ligands; antibacterial activity; chelation theory; ROS generation

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.