Submitted:
26 July 2023
Posted:
27 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental Location and Climatic
| Organic matter (g/kg) |
Total N (g/kg) |
Total phosphorus (g/kg) |
Total potassium (g/kg) |
Available N (mg/kg) |
Available phosphorus (mg/kg) |
Available potassium (mg/kg) |
pH |
| 23.76 | 1.25 | 0.58 | 25.36 | 112.75 | 19.31 | 70.28 | 6.20 |
2.2. Experimental Design
2.3. Sample Collection and Measurement Methods
2.4. Data Analyses and Statistics
3. Results
3.1. The Effects of Basic Chemical Properties in Paddy Soil with Long-Term Application of Stabilized and Coated Urea Fertilizers
3.1.1. The Differences in Soil Chemical Properties Between the Long-Term Application of Stabilized and Coated Urea Fertilizer Treatments and the Initial Soil Conditions before the Experiment
3.1.2. Characteristics of Changes in Soil Chemical Properties of Treatments after 16 Years of Application of Stabilized and Coated Urea Fertilizers
3.2. Characteristics of Soil Bacterial and Fungal Communities in Rice Fields with Long-Term Application of Stabilized and Coated Urea Fertilisers
3.3. Abundance of Functional Genes of Microorganisms Involved in Nitrogen Cycling in Rice Field Soils with Long-Term Application Stabilized and Coated Urea Fertilizers
3.4. The Relation to Microbial Composition and Basic Soil Chemistry of Rice Field Soils with Long-Term Application Stabilized and Coated Urea Fertilisers
3.5. The Correlation Analysis of Soil Basic Chemical Properties and Abundance of Functional Genes of Nitrogen-Cycling Microorganisms in Soil with Long-Term Application Stabilized and Coated Urea Fertilizers
3.6. The RDA Analysis of the Relationship Between Soil Basic Chemical Properties and Abundance of Functional Genes of Nitrogen-Cycling Microorganisms in Soil with Long-Term Application of Stabilized and Coated Urea Fertilisers
3.7. Alpha Diversity of Bacterial in Soil
3.8. Alpha Diversity of Fungi in Soil
3.9. The Relationship Between Soil Chemistry and Alpha Diversity of Microbial Communities in Paddies Soil with Long-Term Application of Stabilized and Coated Urea Fertilizers
3.10. The β-Diversity Indices of Soil Bacterial and Fungal Communities in Rice Fields with Long-Term Application Stabilized and Coated Urea Fertilizers
4. Discussion
4.1. The Effect of Long-Term Application Stabilized and Coated Urea Fertilizers on pH in Rice Field Soils
4.2. The Effects of Long-Term Application Stabilized and Coated Urea Fertilizers on the Abundance of Functional Genes of Nitrogen-Cycling Microorganisms in Rice Field Soils
4.3. The Effects of Long-Term Application of Stabilized and Coated Urea Fertilizers on Microbial Community Succession in Rice Field Soils
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giordano, M.; Petropoulos, S.A.; Rouphael, Y. The Fate of Nitrogen from Soil to Plants: Influence of Agricultural Practices in Modern Agriculture. Agriculture-Basel 2021, 11. [Google Scholar] [CrossRef]
- Abdo, A.I.I.; Sun, D.; Li, Y.; Yang, J.; Metwally, M.S.S.; Abdel-Hamed, E.M.W.; Wei, H.; Zhang, J. Coupling the environmental impacts of reactive nitrogen losses and yield responses of staple crops in China. Frontiers in Plant Science 2022, 13. [Google Scholar] [CrossRef]
- Kumar, A.; Medhi, K.; Fagodiya, R.K.; Subrahmanyam, G.; Mondal, R.; Raja, P.; Malyan, S.K.; Gupta, D.K.; Gupta, C.K.; Pathak, H. Molecular and ecological perspectives of nitrous oxide producing microbial communities in agro-ecosystems. Reviews in Environmental Science and Bio-Technology 2020, 19, 717–750. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Pan, S.-Y.; He, K.-H.; Lin, K.-T.; Fan, C.; Chang, C.-T. Addressing nitrogenous gases from croplands toward low-emission agriculture. Npj Climate and Atmospheric Science 2022, 5. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; Sanchez-Martin, L.; Garcia-Torres, L.; Vallejo, A. Gaseous emissions of N2O and NO and NO3- leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop. Agriculture Ecosystems & Environment 2012, 149, 64–73. [Google Scholar] [CrossRef]
- Arrobas, M.; Chiochetta, J.C.; Damo, L.; Julio, A.C.; Hendges, I.P.; Wagner, A.; Godoy, W.I.; Cassol, L.C.; Rodrigues, M.A. Controlled-release and stabilized fertilizers are equivalent options to split application of ammonium nitrate in a double maize-oats cropping system. Journal of Plant Nutrition 2022. [Google Scholar] [CrossRef]
- Dalal, R.C.; Wang, W.J.; Robertson, G.P.; Parton, W.J. Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Australian Journal of Soil Research 2003, 41, 165–195. [Google Scholar] [CrossRef]
- Adu-Poku, D.; Ackerson, N.O.B.; Devine, R.N.O.A.; Addo, A.G. Climate mitigation efficiency of nitrification and urease inhibitors: impact on N2O emission-A review. Scientific African 2022, 16. [Google Scholar] [CrossRef]
- Dong, X.X.; Zhang, L.L.; Wu, Z.J.; Zhang, H.W.; Gong, P. The response of nitrifier, N-fixer and denitrifier gene copy numbers to the nitrification inhibitor 3,4-dimethylpyrazole phosphate. Plant Soil and Environment 2013, 59, 398–403. [Google Scholar] [CrossRef]
- Florio, A.; Clark, I.M.; Hirsch, P.R.; Jhurreea, D.; Benedetti, A. Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on abundance and activity of ammonia oxidizers in soil. Biology and Fertility of Soils 2014, 50, 795–807. [Google Scholar] [CrossRef]
- Kong, X.; Duan, Y.; Schramm, A.; Eriksen, J.; Petersen, S.O. 3,4-Dimethylpyrazole phosphate (DMPP) reduces activity of ammonia oxidizers without adverse effects on non-target soil microorganisms and functions. Applied Soil Ecology 2016, 105, 67–75. [Google Scholar] [CrossRef]
- Cassman, N.A.; Soares, J.R.; Pijl, A.; Lourenco, K.S.; van Veen, J.A.; Cantarella, H.; Kuramae, E.E. Nitrification inhibitors effectively target N2O-producing Nitrosospira spp. in tropical soil. Environmental Microbiology 2019, 21, 1241–1254. [Google Scholar] [CrossRef]
- Sigurdarson, J.J.; Svane, S.; Karring, H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Reviews in Environmental Science and Bio-Technology 2018, 17, 241–258. [Google Scholar] [CrossRef]
- Xi, R.; Long, X.-E.; Huang, S.; Yao, H. pH rather than nitrification and urease inhibitors determines the community of ammonia oxidizers in a vegetable soil. Amb Express 2017, 7. [Google Scholar] [CrossRef]
- Fan, X.; Yin, C.; Yan, G.; Cui, P.; Shen, Q.; Wang, Q.; Chen, H.; Zhang, N.; Ye, M.; Zhao, Y.; et al. The contrasting effects of N-(n-butyl) thiophosphoric triamide (NBPT) on N2O emissions in arable soils differing in pH are underlain by complex microbial mechanisms. Science of the Total Environment 2018, 642, 155–167. [Google Scholar] [CrossRef]
- Silva, A.G.B.; Sequeira, C.H.; Sermarini, R.A.; Otto, R. Urease Inhibitor NBPT on Ammonia Volatilization and Crop Productivity: A Meta-Analysis. Agronomy Journal 2017, 109, 1–13. [Google Scholar] [CrossRef]
- Guo, B.; Zheng, X.; Yu, J.; Ding, H.; Luo, S.; Carswell, A.; Misselbrook, T.; Zhang, J.; Mueller, C.; Shen, J.; et al. Liming and nitrification inhibitor affects crop N uptake efficiency and N loss through changing soil N processes. Biology and Fertility of Soils 2022, 58, 949–959. [Google Scholar] [CrossRef]
- Wang, J.; Kang, J.; Sha, Z.; Qu, Z.; Niu, X.; Xu, W.; Zhang, H.; Goulding, K.; Liu, X. Mitigation of ammonia volatilization on farm using an N stabilizer - A demonstration in Quzhou, North China Plain. Agriculture Ecosystems & Environment 2022, 336. [Google Scholar] [CrossRef]
- Sahrawat, K.L. Nitrification inhibitors for controlling methane emission from submerged rice soils. Current Science 2004, 87, 1084–1087. [Google Scholar]
- Jariwala, H.; Santos, R.M.; Lauzon, J.D.; Dutta, A.; Wai Chiang, Y. Controlled release fertilizers (CRFs) for climate-smart agriculture practices: a comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters. Environmental Science and Pollution Research 2022, 29, 53967–53995. [Google Scholar] [CrossRef] [PubMed]
- Irfan, S.A.; Razali, R.; KuShaari, K.; Mansor, N.; Azeem, B.; Versypt, A.N.F. A review of mathematical modeling and simulation of controlled-release fertilizers. Journal of Controlled Release 2018, 271, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.-t.; Du, X.; Zhou, J.-c.; Peng, Y.; Li, X.-l.; Tao, P.-j.; Zhang, Y.-c. Network Analysis Reveals the Combination of Controlled-Release and Regular Urea Enhances Microbial Interactions and Improves Maize Yields. Frontiers in Microbiology 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Gao, Y.; Chen, Q.; Li, Z.; Gao, F.; Meng, Q.; Li, T.; Liu, A.; Wang, Q.; Wu, L.; et al. Blended controlled-release nitrogen fertilizer with straw returning improved soil nitrogen availability, soil microbial community, and root morphology of wheat. Soil & Tillage Research 2021, 212. [Google Scholar] [CrossRef]
- Turan, M.A.; Taban, S.; Katkat, A.V.; Kucukyumuk, Z. The evaluation of the elemental sulfur and gypsum effect on soil pH, EC, SO4-S and available Mn content. Journal of Food Agriculture & Environment 2013, 11, 572–575. [Google Scholar]
- Glaser, K.; Hackl, E.; Inselsbacher, E.; Strauss, J.; Wanek, W.; Zechmeister-Boltenstern, S.; Sessitsch, A. Dynamics of ammonia-oxidizing communities in barley-planted bulk soil and rhizosphere following nitrate and ammonium fertilizer amendment. Fems Microbiology Ecology 2010, 74, 575–591. [Google Scholar] [CrossRef]
- Shi, X.; Hu, H.-W.; Kelly, K.; Chen, D.; He, J.-Z.; Suter, H. Response of ammonia oxidizers and denitrifiers to repeated applications of a nitrification inhibitor and a urease inhibitor in two pasture soils. Journal of Soils and Sediments 2017, 17, 974–984. [Google Scholar] [CrossRef]
- Zhang, K.; Li, D.; Du, Y.; Xue, Y.; Song, Y.; Zhang, Y.; Li, Y.; Zheng, Y.; Zhang, J.; Cui, Y. Coated and stable nitrogen fertilizers improve physico-chemical and biological quality and delay acidification in brown soil. Journal of Plant Nutrition and Fertilizers 2023, 29, 472–482. [Google Scholar]
- Shen, X.-Y.; Zhang, L.-M.; Shen, J.-P.; Li, L.-H.; Yuan, C.-L.; He, J.-Z. Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. Journal of Soils and Sediments 2011, 11, 1243–1252. [Google Scholar] [CrossRef]
- Erguder, T.H.; Boon, N.; Wittebolle, L.; Marzorati, M.; Verstraete, W. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. Fems Microbiology Reviews 2009, 33, 855–869. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C.; Shen, J.-P.; Winefield, C.S.; O'Callaghan, M.; Bowatte, S.; He, J.-Z. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. Fems Microbiology Ecology 2010, 72, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wang, L.; Chen, H.; Chen, G.; Wang, S.; Zhao, X.; Wang, Y. Responses of soil phosphorus pools accompanied with carbon composition and microorganism changes to phosphorus-input reduction in paddy soils. Pedosphere 2021, 31, 83–93. [Google Scholar] [CrossRef]
- Li, Y.N.; Wang, T.Y.; Wang, C.Y.; Li, M.S.; Wang, Y.; Liu, S.X. RESPONSES OF SOIL RHIZOSPHERE FUNGI TO N APPLICATION LEVELS IN DIFFERENT TYPES OF SOIL. Applied Ecology and Environmental Research 2021, 19, 1645–1659. [Google Scholar] [CrossRef]
- Jiang, Y.; Qian, H.; Wang, X.; Chen, L.; Liu, M.; Li, H.; Sun, B. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biology & Biochemistry 2018, 119, 22–31. [Google Scholar] [CrossRef]
- Kou, Y.P.; Wei, K.; Chen, G.X.; Wang, Z.Y.; Xu, H. Effects of 3,4-dimethylpyrazole phosphate and dicyandiamide on nitrous oxide emission in a greenhouse vegetable soil. Plant Soil and Environment 2015, 61, 29–35. [Google Scholar] [CrossRef]
- Dong, D.; Kou, Y.; Yang, W.; Chen, G.; Xu, H. Effects of urease and nitrification inhibitors on nitrous oxide emissions and nitrifying/denitrifying microbial communities in a rainfed maize soil: A 6-year field observation. Soil & Tillage Research 2018, 180, 82–90. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Z.; Du, J.; He, A.; Yang, H.; Xue, G.; Yu, C.; Zhang, Y. Adding NBPT to urea increases N use efficiency of maize and decreases the abundance of N-cycling soil microbes under reduced fertilizer-N rate on the North China Plain. Plos One 2020, 15. [Google Scholar] [CrossRef]
- Seo, J.; Jang, I.; Gebauer, G.; Kang, H. Abundance of Methanogens, Methanotrophic Bacteria, and Denitrifiers in Rice Paddy Soils. Wetlands 2014, 34, 213–223. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, H.; Wang, R.; Guo, S. Responses of nitrification and denitrification to nitrogen and phosphorus fertilization: does the intrinsic soil fertility matter? Plant and Soil 2019, 440, 443–456. [Google Scholar] [CrossRef]
- Wei, X.; Hu, Y.; Peng, P.; Zhu, Z.; Atere, C.T.; O'Donnell, A.G.; Wu, J.; Ge, T. Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil. Biology and Fertility of Soils 2017, 53, 767–776. [Google Scholar] [CrossRef]
- Ma, Q.; Qian, Y.; Yu, Q.; Cao, Y.; Tao, R.; Zhu, M.; Ding, J.; Li, C.; Guo, W.; Zhu, X. Controlled-release nitrogen fertilizer application mitigated N losses and modified microbial community while improving wheat yield and N use efficiency. Agriculture Ecosystems & Environment 2023, 349. [Google Scholar] [CrossRef]
- Shannon, C.E. A MATHEMATICAL THEORY OF COMMUNICATION. Bell System Technical Journal 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, L.; Deng, Y.; Zhi, X.; Jiang, Y.H.; Tu, Q.; Xie, J.; Van Nostrand, J.D.; He, Z.; Yang, Y. Reproducibility and Quantitation of Amplicon Sequencing-Based Detection. Abstracts of the General Meeting of the American Society for Microbiology 2011, 111, 793–793. [Google Scholar] [CrossRef]
- Chao, A. NONPARAMETRIC-ESTIMATION OF THE NUMBER OF CLASSES IN A POPULATION. Scandinavian Journal of Statistics 1984, 11, 265–270. [Google Scholar]
- Enguita, F.J.; Leitao, A.L. Hydroquinone: Environmental Pollution, Toxicity, and Microbial Answers. Biomed Research International 2013, 2013. [Google Scholar] [CrossRef]
- Li, W.X.; Wang, C.; Zheng, M.M.; Cai, Z.J.; Wang, B.R.; Shen, R.F. Fertilization strategies affect soil properties and abundance of N-cycling functional genes in an acidic agricultural soil. Applied Soil Ecology 2020, 156. [Google Scholar] [CrossRef]














Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
