Submitted:
15 July 2023
Posted:
17 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pathophysiology
2.1. Inflammation and endothelial dysfunction
2.2. Microparticles
2.3. Neutrophil extracellular traps
2.4. The role of inflammation in aneurysm formation
2.5. Vasculitis
3. Current and novel therapeutic targets and strategies
3.1. Statins
3.2. Colchicine
3.3. Eicosapentaenoic acid ethyl ester
3.4. Canakinumab and anakinra
3.5. Glucocorticoids
3.6. Antidiabetic drugs
| Standard Application | Proposed mechanism | Clinical effect | Selected evidence | |
|---|---|---|---|---|
| Statins | LDL reduction secondary prevention of CVD |
NO synthesis ↑ leukocyte adhesion ↓ |
cardiovascular events & death ↓ | Tawakol et al. [192] Ridker et al. [193] |
| Colchicine | gout familial Mediterranean fever |
leukocyte chemotaxis ↓ TNF-α ↓ exocytosis of neutrophil granules ↓ NLRP3 activation ↓ |
cardiovascular events and death following MI ↓ | Tardif et al. [202] Chen et al. [204] |
| Icosapent ethyl | no previous application | active metabolites (thromboxane A3, prostacyclin) ↑ biophysical effect on cell membranes TLP ↓ |
cardiovascular events & death in established CVD or risk for CVD & hypertriglyceridemia plaque progression ↓ |
Bhatt et al. [206] Budoff et al. [207] |
| Glucocorticoids | various inflammatory conditions | modulation of gene transcription | risk of CVD including CAD, PAD ↑ | Pujades-Rodriguez et al. [229] Macleod et al. [225] |
| IL-1β antagonists | cryopyrin-associated periodic syndromes gout familial Mediterranean fever macrophage activation syndrome recurrent pericarditis rheumatoid arthritis systemic juvenile idiopathic arthritis |
endothelial activation ↓ adhesion molecule expression ↓ smooth muscle cell proliferation ↓ MCP-1 ↓ |
cardiovascular events and death in patients with elevated CRP and MI | Ridker et al. [15] |
| SGLT-2 inhibitors | DM type 2 | NLRP3/IL-1β/MCP-1 pathway ↓ AMP-K pathway ↑ cholesterol efflux and autophagy in macrophages ↑ |
hospitalization and cardiovascular death in heart failure | McMurray et al. [232] Solomon et al. [284] Packer et al. [285] Anker et al. [235] |
| GLP-1 receptor agonists | DM type 2 | ROS generation ↓ NF-ĸB activation ↓ INF-γ, MMP, TNF-β, IL-1β, IL-2, IL-6 from macrophages↓ IL-10 ↑ |
CRP, TNF-α ↓ Trials inconclusive |
Bethel et al. [249] |
| Metformin | DM type 2 | oxLDL phagocytosis ↓ scavenger receptor A, CD36 ↓ NLRP3, ROS, MCP-1, CRP, TNF-α NET formation ↓ NF-ĸB activation ↓ AMP-K pathway ↑ |
all-cause death in DM type 2 & atherothrombosis↓ |
Roussel et al. [260] GLINT (ongoing) [265,266] |
| DDP4 inhibitors | DM type 2 | NO synthesis ↑ endothelin 1 ↓ MCP-1, TNF-α, IL-1β, IL-6 ↓ NF-ĸB activation ↓ AMP-K & c-Jun N-terminal kinase pathway ↑ NLRP3 activation ↓ TLP ↓ |
dyslipidaemia & hypertension in patients with DM type 2 ↓ cardiovascular death, MI, stroke in patients with DM type 2 ~ |
Rosenstock et al. [280] Green et al. [281] Scirica et al. [282] White et al. [283] |
3.7. Antiplatelet therapy
3.8. Attenuation of ischaemia-reperfusion injury
3.9. Physical exercise
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Roth, G. A.; Mensah, G. A.; Johnson, C. O.; Addolorato, G.; Ammirati, E.; Baddour, L. M.; Barengo, N. C.; Beaton, A.; Benjamin, E. J.; Benziger, C. P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol, 2020, 76 (25), 2982–3021. [CrossRef]
- Townsend, N.; Wilson, L.; Bhatnagar, P.; Wickramasinghe, K.; Rayner, M.; Nichols, M. Cardiovascular Disease in Europe: Epidemiological Update 2016. Eur Heart J, 2016, 37 (42), 3232–3245. [CrossRef]
- Woolf, N. The Pathology of Atherosclerosis with Particular Reference to the Effects of Hyperlipidaemia. Eur Heart J, 1987, 8 Suppl E (SUPPL. E), 3–14. [CrossRef]
- Hedin, U.; Matic, L. P. Recent Advances in Therapeutic Targeting of Inflammation in Atherosclerosis. J Vasc Surg, 2019, 69 (3), 944–951. [CrossRef]
- Raggi, P.; Genest, J.; Giles, J. T.; Rayner, K. J.; Dwivedi, G.; Beanlands, R. S.; Gupta, M. Role of Inflammation in the Pathogenesis of Atherosclerosis and Therapeutic Interventions. Atherosclerosis, 2018, 276, 98–108. [CrossRef]
- Geovanini, G. R.; Libby, P. Atherosclerosis and Inflammation: Overview and Updates. Clin Sci (Lond), 2018, 132 (12), 1243–1252. [CrossRef]
- Kong, P.; Cui, Z. Y.; Huang, X. F.; Zhang, D. D.; Guo, R. J.; Han, M. Inflammation and Atherosclerosis: Signaling Pathways and Therapeutic Intervention. Signal Transduct Target Ther, 2022, 7 (1), 131. [CrossRef]
- Soehnlein, O.; Libby, P. Targeting Inflammation in Atherosclerosis - from Experimental Insights to the Clinic. Nat Rev Drug Discov, 2021, 20 (8), 589–610. [CrossRef]
- Wadowski, P. P.; Panzer, B.; Józkowicz, A.; Kopp, C. W.; Gremmel, T.; Panzer, S.; Koppensteiner, R. Microvascular Thrombosis as a Critical Factor in Severe COVID-19. Int J Mol Sci, 2023, 24 (3), 2492. [CrossRef]
- Steven, S.; Daiber, A.; Dopheide, J. F.; Münzel, T.; Espinola-Klein, C. Peripheral Artery Disease, Redox Signaling, Oxidative Stress - Basic and Clinical Aspects. Redox Biol, 2017, 12, 787–797. [CrossRef]
- Yu, H.; Kalogeris, T.; Korthuis, R. J. Reactive Species-Induced Microvascular Dysfunction in Ischemia/Reperfusion. Free Radic Biol Med, 2019, 135, 182–197. [CrossRef]
- Mason, J. C.; Libby, P. Cardiovascular Disease in Patients with Chronic Inflammation: Mechanisms Underlying Premature Cardiovascular Events in Rheumatologic Conditions. Eur Heart J, 2015, 36 (8), 482–489. [CrossRef]
- Arida, A.; Protogerou, A.; Kitas, G.; Sfikakis, P. Systemic Inflammatory Response and Atherosclerosis: The Paradigm of Chronic Inflammatory Rheumatic Diseases. Int J Mol Sci, 2018, 19 (7), 1890. [CrossRef]
- Poledniczek, M. H. Coronary Artery Disease in Granulomatosis with Polyangiitis: A Review. SN Comprehensive Clinical Medicine 2022 4:1, 2022, 4 (1), 1–10. [CrossRef]
- Ridker, P. M.; Everett, B. M.; Thuren, T.; MacFadyen, J. G.; Chang, W. H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S. D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med, 2017, 377 (12), 1119–1131. [CrossRef]
- Nidorf, S. M.; Fiolet, A. T. L.; Mosterd, A.; Eikelboom, J. W.; Schut, A.; Opstal, T. S. J.; The, S. H. K.; Xu, X.-F.; Ireland, M. A.; Lenderink, T.; et al. Colchicine in Patients with Chronic Coronary Disease. New England Journal of Medicine, 2020, 383 (19), 1838–1847. [CrossRef]
- Deftereos, S. G.; Beerkens, F. J.; Shah, B.; Giannopoulos, G.; Vrachatis, D. A.; Giotaki, S. G.; Siasos, G.; Nicolas, J.; Arnott, C.; Patel, S.; et al. Colchicine in Cardiovascular Disease: In-Depth Review. Circulation, 2022, 145 (1), 61–78. [CrossRef]
- Visseren, F. L. J.; MacH, F.; Smulders, Y. M.; Carballo, D.; Koskinas, K. C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J. M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur Heart J, 2021, 42 (34), 3227–3337. [CrossRef]
- Darabseh, M. Z.; Maden-Wilkinson, T. M.; Welbourne, G.; Wüst, R. C. I.; Ahmed, N.; Aushah, H.; Selfe, J.; Morse, C. I.; Degens, H. Fourteen Days of Smoking Cessation Improves Muscle Fatigue Resistance and Reverses Markers of Systemic Inflammation. Sci Rep, 2021, 11 (1), 12286. [CrossRef]
- McElroy, J. P.; Carmella, S. G.; Heskin, A. K.; Tang, M. K.; Murphy, S. E.; Reisinger, S. A.; Jensen, J. A.; Hatsukami, D. K.; Hecht, S. S.; Shields, P. G. Effects of Cessation of Cigarette Smoking on Eicosanoid Biomarkers of Inflammation and Oxidative Damage. PLoS One, 2019, 14 (6), e0218386. [CrossRef]
- Koushki, K.; Shahbaz, S. K.; Mashayekhi, K.; Sadeghi, M.; Zayeri, Z. D.; Taba, M. Y.; Banach, M.; Al-Rasadi, K.; Johnston, T. P.; Sahebkar, A. Anti-Inflammatory Action of Statins in Cardiovascular Disease: The Role of Inflammasome and Toll-Like Receptor Pathways. Clin Rev Allergy Immunol, 2021, 60 (2), 175–199. [CrossRef]
- Aboyans, V.; Ricco, J. B.; Bartelink, M. L. E. L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J. P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in Collaboration with the European Society for Vascular Surgery (ESVS). Eur Heart J, 2018, 39 (9), 763–816. [CrossRef]
- Yuan, Z.; Lu, Y.; Wei, J.; Wu, J.; Yang, J.; Cai, Z. Abdominal Aortic Aneurysm: Roles of Inflammatory Cells. Front Immunol, 2020, 11, 609161. [CrossRef]
- Tilson, M. D. Decline of the Atherogenic Theory of the Etiology of the Abdominal Aortic Aneurysm and Rise of the Autoimmune Hypothesis. J Vasc Surg, 2016, 64 (5), 1523–1525. [CrossRef]
- Klopf, J.; Brostjan, C.; Neumayer, C.; Eilenberg, W. Neutrophils as Regulators and Biomarkers of Cardiovascular Inflammation in the Context of Abdominal Aortic Aneurysms. Biomedicines, 2021, 9 (9), 1236. [CrossRef]
- Reitsma, S.; Egbrink, M. G. A. O.; Heijnen, V. V. T.; Megens, R. T. A.; Engels, W.; Vink, H.; Slaaf, D. W.; van Zandvoort, M. A. M. J. Endothelial Glycocalyx Thickness and Platelet-Vessel Wall Interactions during Atherogenesis. Thromb Haemost, 2011, 106 (5), 939–946. [CrossRef]
- Reitsma, S.; Slaaf, D. W.; Vink, H.; Van Zandvoort, M. A. M. J.; Oude Egbrink, M. G. A. The Endothelial Glycocalyx: Composition, Functions, and Visualization. Pflugers Arch, 2007, 454 (3), 345–359. [CrossRef]
- Lipowsky, H. H. Protease Activity and the Role of the Endothelial Glycocalyx in Inflammation. Drug Discov Today Dis Models, 2011, 8 (1), 57. [CrossRef]
- van der Poll, T.; Parker, R. I. Platelet Activation and Endothelial Cell Dysfunction. Crit Care Clin, 2020, 36 (2), 233–253. [CrossRef]
- Dull, R. O.; Hahn, R. G. The Glycocalyx as a Permeability Barrier: Basic Science and Clinical Evidence. Crit Care, 2022, 26 (1), 273. [CrossRef]
- Fels, B.; Kusche-Vihrog, K. It Takes More than Two to Tango: Mechanosignaling of the Endothelial Surface. Pflugers Arch, 2020, 472 (4), 419–433. [CrossRef]
- Mitra, R.; O’Neil, G. L.; Harding, I. C.; Cheng, M. J.; Mensah, S. A.; Ebong, E. E. Glycocalyx in Atherosclerosis-Relevant Endothelium Function and as a Therapeutic Target. Curr Atheroscler Rep, 2017, 19 (12), 63. [CrossRef]
- Qu, J.; Cheng, Y.; Wu, W.; Yuan, L.; Liu, X. Glycocalyx Impairment in Vascular Disease: Focus on Inflammation. Front Cell Dev Biol, 2021, 9, 730621. [CrossRef]
- Panzer, B.; Kopp, C. W.; Neumayer, C.; Koppensteiner, R.; Jozkowicz, A.; Poledniczek, M.; Gremmel, T.; Jilma, B.; Panzer, S.; Wadowski, P. P. Toll- like Receptors as Prothrombotic Drivers in Viral Infections. under review.
- Maschalidi, S.; Ravichandran, K. S. Phagocytosis: Sweet Repulsions via the Glycocalyx. Current Biology, 2021, 31 (1), R20–R22. [CrossRef]
- Imbert, P. R. C.; Saric, A.; Pedram, K.; Bertozzi, C. R.; Grinstein, S.; Freeman, S. A. An Acquired and Endogenous Glycocalyx Forms a Bidirectional “Don’t Eat” and “Don’t Eat Me” Barrier to Phagocytosis. Current Biology, 2021, 31 (1), 77-89.e5. [CrossRef]
- Marki, A.; Esko, J. D.; Pries, A. R.; Ley, K. Role of the Endothelial Surface Layer in Neutrophil Recruitment. J Leukoc Biol, 2015, 98 (4), 503–515. [CrossRef]
- Möckl, L. The Emerging Role of the Mammalian Glycocalyx in Functional Membrane Organization and Immune System Regulation. Front Cell Dev Biol, 2020, 8, 253. [CrossRef]
- Doster, R. S.; Rogers, L. M.; Gaddy, J. A.; Aronoff, D. M. Macrophage Extracellular Traps: A Scoping Review. J Innate Immun, 2018, 10 (1), 3–13. [CrossRef]
- Je, S.; Quan, H.; Yoon, Y.; Na, Y.; Kim, B. J.; Seok, S. H. Mycobacterium Massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth. PLoS One, 2016, 11 (5), e0155685. [CrossRef]
- Fu, G.; Deng, M.; Neal, M. D.; Billiar, T. R.; Scott, M. J. Platelet-Monocyte Aggregates: Understanding Mechanisms and Functions in Sepsis. Shock, 2021, 55 (2), 156–166. [CrossRef]
- Kaiser, R.; Escaig, R.; Erber, J.; Nicolai, L. Neutrophil-Platelet Interactions as Novel Treatment Targets in Cardiovascular Disease. Front Cardiovasc Med, 2022, 8, 824112. [CrossRef]
- Qi, H.; Yang, S.; Zhang, L. Neutrophil Extracellular Traps and Endothelial Dysfunction in Atherosclerosis and Thrombosis. Front Immunol, 2017, 8, 928. [CrossRef]
- Banerjee, S.; Mwangi, J. G.; Stanley, T. K.; Mitra, R.; Ebong, E. E. Regeneration and Assessment of the Endothelial Glycocalyx to Address Cardiovascular Disease. Ind Eng Chem Res, 2021, 60 (48), 17328–17347. [CrossRef]
- Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Jimenez, M. T. B.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxid Med Cell Longev, 2019, 2019, 7092151. [CrossRef]
- Katakami, N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J Atheroscler Thromb, 2018, 25 (1), 27–39. [CrossRef]
- Mulivor, A. W.; Lipowsky, H. H. Inflammation- and Ischemia-Induced Shedding of Venular Glycocalyx. Am J Physiol Heart Circ Physiol, 2004, 286 (5), H1672–H1680. [CrossRef]
- Dogné, S.; Flamion, B.; Caron, N. Endothelial Glycocalyx as a Shield Against Diabetic Vascular Complications: Involvement of Hyaluronan and Hyaluronidases. Arterioscler Thromb Vasc Biol, 2018, 38 (7), 1427. [CrossRef]
- Lee, D. H.; Dane, M. J. C.; Van Den Berg, B. M.; Boels, M. G. S.; Van Teeffelen, J. W.; De Mutsert, R.; Heijer, M. Den; Rosendaal, F. R.; Van Der Vlag, J.; Van Zonneveld, A. J.; et al. Deeper Penetration of Erythrocytes into the Endothelial Glycocalyx Is Associated with Impaired Microvascular Perfusion. PLoS One, 2014, 9 (5), e96477. [CrossRef]
- Rabelink, T. J.; De Zeeuw, D. The Glycocalyx--Linking Albuminuria with Renal and Cardiovascular Disease. Nat Rev Nephrol, 2015, 11 (11), 667–676. [CrossRef]
- Liew, H.; Roberts, M. A.; MacGinley, R.; McMahon, L. P. Endothelial Glycocalyx in Health and Kidney Disease: Rising Star or False Dawn? Nephrology (Carlton), 2017, 22 (12), 940–946. [CrossRef]
- Wadowski, P. P.; Kautzky-Willer, A.; Gremmel, T.; Koppensteiner, R.; Wolf, P.; Ertl, S.; Weikert, C.; Schörgenhofer, C.; Jilma, B. Sublingual Microvasculature in Diabetic Patients. Microvasc Res, 2020, 129, 103971. [CrossRef]
- Hirano, T. Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb, 2018, 25 (9), 771–782. [CrossRef]
- Hagensen, M. K.; Mortensen, M. B.; Kjolby, M.; Palmfeldt, J.; Bentzon, J. F.; Gregersen, S. Increased Retention of LDL from Type 1 Diabetic Patients in Atherosclerosis-Prone Areas of the Murine Arterial Wall. Atherosclerosis, 2019, 286, 156–162. [CrossRef]
- Singh, S.; Siva, B. V.; Ravichandiran, V. Advanced Glycation End Products: Key Player of the Pathogenesis of Atherosclerosis. Glycoconj J, 2022, 39 (4), 547–563. [CrossRef]
- Yu, H.; Kalogeris, T.; Korthuis, R. J. Reactive Species-Induced Microvascular Dysfunction in Ischemia/Reperfusion. Free Radic Biol Med, 2019, 135, 182–197. [CrossRef]
- Steiner, S.; Schaller, G.; Puttinger, H.; Födinger, M.; Kopp, C. W.; Seidinger, D.; Grisar, J.; Hörl, W. H.; Minar, E.; Vychytil, A.; et al. History of Cardiovascular Disease Is Associated with Endothelial Progenitor Cells in Peritoneal Dialysis Patients. Am J Kidney Dis, 2005, 46 (3), 520–528. [CrossRef]
- Ambasta, R. K.; Kohli, H.; Kumar, P. Multiple Therapeutic Effect of Endothelial Progenitor Cell Regulated by Drugs in Diabetes and Diabetes Related Disorder. Journal of Translational Medicine 2017 15:1, 2017, 15 (1), 1–17. [CrossRef]
- He, J.; Xiao, Z.; Chen, X.; Chen, M.; Fang, L.; Yang, M.; Lv, Q.; Li, Y.; Li, G.; Hu, J.; et al. The Expression of Functional Toll-like Receptor 4 Is Associated with Proliferation and Maintenance of Stem Cell Phenotype in Endothelial Progenitor Cells (EPCs). J Cell Biochem, 2010, 111 (1), 179–186. [CrossRef]
- Matsumoto, Y.; Adams, V.; Walther, C.; Kleinecke, C.; Brugger, P.; Linke, A.; Walther, T.; Mohr, F. W.; Schuler, G. Reduced Number and Function of Endothelial Progenitor Cells in Patients with Aortic Valve Stenosis: A Novel Concept for Valvular Endothelial Cell Repair. Eur Heart J, 2009, 30 (3), 346–355. [CrossRef]
- Stoiber, W.; Obermayer, A.; Steinbacher, P.; Krautgartner, W. D. The Role of Reactive Oxygen Species (ROS) in the Formation of Extracellular Traps (ETs) in Humans. Biomolecules 2015, Vol. 5, Pages 702-723, 2015, 5 (2), 702–723. [CrossRef]
- Ali, M. A. M.; Spinler, S. A. COVID-19 and Thrombosis: From Bench to Bedside. Trends Cardiovasc Med, 2021, 31 (3), 143–160. [CrossRef]
- Wadowski, P. P.; Jilma, B.; Kopp, C. W.; Ertl, S.; Gremmel, T.; Koppensteiner, R. Glycocalyx as Possible Limiting Factor in COVID-19. Front Immunol, 2021, 12, 607306. [CrossRef]
- Borrmann, M.; Brandes, F.; Kirchner, B.; Klein, M.; Billaud, J. N.; Reithmair, M.; Rehm, M.; Schelling, G.; Pfaffl, M. W.; Meidert, A. S. Extensive Blood Transcriptome Analysis Reveals Cellular Signaling Networks Activated by Circulating Glycocalyx Components Reflecting Vascular Injury in COVID-19. Front Immunol, 2023, 14, 1129766. [CrossRef]
- Varga, Z.; Flammer, A. J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A. S.; Mehra, M. R.; Schuepbach, R. A.; Ruschitzka, F.; Moch, H. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet, 2020, 395 (10234), 1417–1418. [CrossRef]
- Xu, S. W.; Ilyas, I.; Weng, J. P. Endothelial Dysfunction in COVID-19: An Overview of Evidence, Biomarkers, Mechanisms and Potential Therapies. Acta Pharmacol Sin, 2023, 44 (4), 695–709. [CrossRef]
- Ratajczak, J.; Wysoczynski, M.; Hayek, F.; Janowska-Wieczorek, A.; Ratajczak, M. Z. Membrane-Derived Microvesicles: Important and Underappreciated Mediators of Cell-to-Cell Communication. Leukemia, 2006, 20 (9), 1487–1495. [CrossRef]
- Chen, Y. T.; Yuan, H. X.; Ou, Z. J.; Ou, J. S. Microparticles (Exosomes) and Atherosclerosis. Curr Atheroscler Rep, 2020, 22 (6), 23. [CrossRef]
- Loyer, X.; Vion, A. C.; Tedgui, A.; Boulanger, C. M. Microvesicles as Cell-Cell Messengers in Cardiovascular Diseases. Circ Res, 2014, 114 (2), 345–353. [CrossRef]
- Février, B.; Raposo, G. Exosomes: Endosomal-Derived Vesicles Shipping Extracellular Messages. Curr Opin Cell Biol, 2004, 16 (4), 415–421. [CrossRef]
- Kalluri, R.; LeBleu, V. S. The Biology, Function, and Biomedical Applications of Exosomes. Science, 2020, 367 (6478), eaau6977. [CrossRef]
- Hosseinkhani, B.; Kuypers, S.; van den Akker, N. M. S.; Molin, D. G. M.; Michiels, L. Extracellular Vesicles Work as a Functional Inflammatory Mediator Between Vascular Endothelial Cells and Immune Cells. Front Immunol, 2018, 9, 1789. [CrossRef]
- Wendt, S.; Goetzenich, A.; Goettsch, C.; Stoppe, C.; Bleilevens, C.; Kraemer, S.; Benstoem, C. Evaluation of the Cardioprotective Potential of Extracellular Vesicles - a Systematic Review and Meta-Analysis. Sci Rep, 2018, 8 (1), 15702. [CrossRef]
- George, M.; Ganesh, M. R.; Sridhar, A.; Jena, A.; Rajaram, M.; Shanmugam, E.; Dhandapani, V. E. Evaluation of Endothelial and Platelet Derived Microparticles in Patients with Acute Coronary Syndrome. J Clin Diagn Res, 2015, 9 (12), OC09-OC13. [CrossRef]
- Tousoulis, D.; Kampoli, A.-M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C. The Role of Nitric Oxide on Endothelial Function. Curr Vasc Pharmacol, 2012, 10 (1), 4–18. [CrossRef]
- Huang, P. L.; Huang, Z.; Mashimo, H.; Bloch, K. D.; Moskowitz, M. A.; Bevan, J. A.; Fishman, M. C. Hypertension in Mice Lacking the Gene for Endothelial Nitric Oxide Synthase. Nature, 1995, 377 (6546), 239–242. [CrossRef]
- Gimbrone, M. A.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res, 2016, 118 (4), 620–636. [CrossRef]
- Stary, H. C. Natural History and Histological Classification of Atherosclerotic Lesions: An Update. Arterioscler Thromb Vasc Biol, 2000, 20 (5), 1177–1178. [CrossRef]
- Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid Redox Signal, 2014, 20 (7), 1126–1167. [CrossRef]
- Incalza, M. A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative Stress and Reactive Oxygen Species in Endothelial Dysfunction Associated with Cardiovascular and Metabolic Diseases. Vascul Pharmacol, 2018, 100, 1–19. [CrossRef]
- Ci, H. B.; Ou, Z. J.; Chang, F. J.; Liu, D. H.; He, G. W.; Xu, Z.; Yuan, H. Y.; Wang, Z. P.; Zhang, X.; Ou, J. S. Endothelial Microparticles Increase in Mitral Valve Disease and Impair Mitral Valve Endothelial Function. Am J Physiol Endocrinol Metab, 2013, 304 (7), E695–E702. [CrossRef]
- Densmore, J. C.; Signorino, P. R.; Ou, J.; Hatoum, O. A.; Rowe, J. J.; Shi, Y.; Kaul, S.; Jones, D. W.; Sabina, R. E.; Pritchard, K. A.; et al. Endothelium-Derived Microparticles Induce Endothelial Dysfunction and Acute Lung Injury. Shock, 2006, 26 (5), 464–471. [CrossRef]
- Brodsky, S. V.; Zhang, F.; Nasjletti, A.; Goligorsky, M. S. Endothelium-Derived Microparticles Impair Endothelial Function in Vitro. Am J Physiol Heart Circ Physiol, 2004, 286 (5), H1910–H1915. [CrossRef]
- Mause, S. F.; Weber, C. Microparticles: Protagonists of a Novel Communication Network for Intercellular Information Exchange. Circ Res, 2010, 107 (9), 1047–1057. [CrossRef]
- Lukasik, M.; Rozalski, M.; Luzak, B.; Michalak, M.; Ambrosius, W.; Watala, C.; Kozubski, W. Enhanced Platelet-Derived Microparticle Formation Is Associated with Carotid Atherosclerosis in Convalescent Stroke Patients. Platelets, 2013, 24 (1), 63–70. [CrossRef]
- Lin, Z. B.; Ci, H. B.; Li, Y.; Cheng, T. P.; Liu, D. H.; Wang, Y. S.; Xu, J.; Yuan, H. X.; Li, H. M.; Chen, J.; et al. Endothelial Microparticles Are Increased in Congenital Heart Diseases and Contribute to Endothelial Dysfunction. J Transl Med, 2017, 15 (1), 4. [CrossRef]
- Xie, Z.; Wang, X.; Liu, X.; Du, H.; Sun, C.; Shao, X.; Tian, J.; Gu, X.; Wang, H.; Tian, J.; et al. Adipose-Derived Exosomes Exert Proatherogenic Effects by Regulating Macrophage Foam Cell Formation and Polarization. J Am Heart Assoc, 2018, 7 (5), e007442. [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D. S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science, 2004, 303 (5663), 1532–1535. [CrossRef]
- Rada, B. Neutrophil Extracellular Traps. Methods Mol Biol, 2019, 1982, 517–528. [CrossRef]
- Schönrich, G.; Raftery, M. J. Neutrophil Extracellular Traps Go Viral. Front Immunol, 2016, 7, 366. [CrossRef]
- Arneth, B.; Arneth, R. Neutrophil Extracellular Traps (NETs) and Vasculitis. Int J Med Sci, 2021, 18 (7), 1532–1540. [CrossRef]
- Nappi, F.; Bellomo, F.; Avtaar Singh, S. S. Worsening Thrombotic Complication of Atherosclerotic Plaques Due to Neutrophils Extracellular Traps: A Systematic Review. Biomedicines, 2023, 11 (1), 113. [CrossRef]
- Gupta, A. K.; Joshi, M. B.; Philippova, M.; Erne, P.; Hasler, P.; Hahn, S.; Resink, T. J. Activated Endothelial Cells Induce Neutrophil Extracellular Traps and Are Susceptible to NETosis-Mediated Cell Death. FEBS Lett, 2010, 584 (14), 3193–3197. [CrossRef]
- Saffarzadeh, M.; Juenemann, C.; Queisser, M. A.; Lochnit, G.; Barreto, G.; Galuska, S. P.; Lohmeyer, J.; Preissner, K. T. Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones. PLoS One, 2012, 7 (2), e32366. [CrossRef]
- Nicholls, S. J.; Hazen, S. L. Myeloperoxidase, Modified Lipoproteins, and Atherogenesis. J Lipid Res, 2009, 50 Suppl (Suppl), S346–S351. [CrossRef]
- Alfaidi, M.; Wilson, H.; Daigneault, M.; Burnett, A.; Ridger, V.; Chamberlain, J.; Francis, S. Neutrophil Elastase Promotes Interleukin-1β Secretion from Human Coronary Endothelium. J Biol Chem, 2015, 290 (40), 24067–24078. [CrossRef]
- Metzler, K. D.; Fuchs, T. A.; Nauseef, W. M.; Reumaux, D.; Roesler, J.; Schulze, I.; Wahn, V.; Papayannopoulos, V.; Zychlinsky, A. Myeloperoxidase Is Required for Neutrophil Extracellular Trap Formation: Implications for Innate Immunity. Blood, 2011, 117 (3), 953–959. [CrossRef]
- Metzler, K. D.; Goosmann, C.; Lubojemska, A.; Zychlinsky, A.; Papayannopoulos, V. A Myeloperoxidase-Containing Complex Regulates Neutrophil Elastase Release and Actin Dynamics during NETosis. Cell Rep, 2014, 8 (3), 883–896. [CrossRef]
- Awasthi, D.; Nagarkoti, S.; Kumar, A.; Dubey, M.; Singh, A. K.; Pathak, P.; Chandra, T.; Barthwal, M. K.; Dikshit, M. Oxidized LDL Induced Extracellular Trap Formation in Human Neutrophils via TLR-PKC-IRAK-MAPK and NADPH-Oxidase Activation. Free Radic Biol Med, 2016, 93, 190–203. [CrossRef]
- Warnatsch, A.; Ioannou, M.; Wang, Q.; Papayannopoulos, V. Inflammation. Neutrophil Extracellular Traps License Macrophages for Cytokine Production in Atherosclerosis. Science, 2015, 349 (6245), 316–320. [CrossRef]
- Smith, C. K.; Vivekanandan-Giri, A.; Tang, C.; Knight, J. S.; Mathew, A.; Padilla, R. L.; Gillespie, B. W.; Carmona-Rivera, C.; Liu, X.; Subramanian, V.; et al. Neutrophil Extracellular Trap-Derived Enzymes Oxidize High-Density Lipoprotein: An Additional Proatherogenic Mechanism in Systemic Lupus Erythematosus. Arthritis Rheumatol, 2014, 66 (9), 2532–2544. [CrossRef]
- Sharma, S.; Hofbauer, T. M.; Ondracek, A. S.; Chausheva, S.; Alimohammadi, A.; Artner, T.; Panzenboeck, A.; Rinderer, J.; Shafran, I.; Mangold, A.; et al. Neutrophil Extracellular Traps Promote Fibrous Vascular Occlusions in Chronic Thrombosis. Blood, 2021, 137 (8), 1104–1116. [CrossRef]
- Mangold, A.; Alias, S.; Scherz, T.; Hofbauer, T.; Jakowitsch, J.; Panzenböck, A.; Simon, D.; Laimer, D.; Bangert, C.; Kammerlander, A.; et al. Coronary Neutrophil Extracellular Trap Burden and Deoxyribonuclease Activity in ST-Elevation Acute Coronary Syndrome Are Predictors of ST-Segment Resolution and Infarct Size. Circ Res, 2015, 116 (7), 1182–1192. [CrossRef]
- Gillum, R. F. Epidemiology of Aortic Aneurysm in the United States. J Clin Epidemiol, 1995, 48 (11), 1289–1298. [CrossRef]
- Al-Balah, A.; Goodall, R.; Salciccioli, J. D.; Marshall, D. C.; Shalhoub, J. Mortality from Abdominal Aortic Aneurysm: Trends in European Union 15+ Countries from 1990 to 2017. Br J Surg, 2020, 107 (11), 1459–1467. [CrossRef]
- Treska, V.; Kocova, J.; Boudova, L.; Neprasova, P.; Topolcan, O.; Pecen, L.; Tonar, Z. Inflammation in the Wall of Abdominal Aortic Aneurysm and Its Role in the Symptomatology of Aneurysm. Cytokines Cell Mol Ther, 2002, 7 (3), 91–97. [CrossRef]
- Beckman, E. N. Plasma Cell Infiltrates in Atherosclerotic Abdominal Aortic Aneurysms. Am J Clin Pathol, 1986, 85 (1), 21–24. [CrossRef]
- Newmans, K. M.; Malon, A. M.; Shin, R. D.; Scholes, J. v.; Ramey, W. G.; Tilson, M. D. Matrix Metalloproteinases in Abdominal Aortic Aneurysm: Characterization, Purification, and Their Possible Sources. Connect Tissue Res, 1994, 30 (4), 265–276. [CrossRef]
- Reilly, J. M.; Brophy, C. M.; Tilson, M. D. Characterization of an Elastase from Aneurysmal Aorta Which Degrades Intact Aortic Elastin. Ann Vasc Surg, 1992, 6 (6), 499–502. [CrossRef]
- Brown, P. M.; Zelt, D. T.; Sobolev, B.; Hallett, J. W.; Sternbach, Y. The Risk of Rupture in Untreated Aneurysms: The Impact of Size, Gender, and Expansion Rate. J Vasc Surg, 2003, 37 (2), 280–284. [CrossRef]
- Chaikof, E. L.; Dalman, R. L.; Eskandari, M. K.; Jackson, B. M.; Lee, W. A.; Mansour, M. A.; Mastracci, T. M.; Mell, M.; Murad, M. H.; Nguyen, L. L.; et al. The Society for Vascular Surgery Practice Guidelines on the Care of Patients with an Abdominal Aortic Aneurysm. J Vasc Surg, 2018, 67 (1), 2-77.e2. [CrossRef]
- Brady, A. R.; Thompson, S. G.; Fowkes, F. G. R.; Greenhalgh, R. M.; Powell, J. T. Abdominal Aortic Aneurysm Expansion: Risk Factors and Time Intervals for Surveillance. Circulation, 2004, 110 (1), 16–21. [CrossRef]
- Kronmal, R. A.; McClelland, R. L.; Detrano, R.; Shea, S.; Lima, J. A.; Cushman, M.; Bild, D. E.; Burke, G. L. Risk Factors for the Progression of Coronary Artery Calcification in Asymptomatic Subjects. Circulation, 2007, 115 (21), 2722–2730. [CrossRef]
- Liabeuf, S.; Olivier, B.; Vemeer, C.; Theuwissen, E.; Magdeleyns, E.; Aubert, C. E.; Brazier, M.; Mentaverri, R.; Hartemann, A.; Massy, Z. A. Vascular Calcification in Patients with Type 2 Diabetes: The Involvement of Matrix Gla Protein. Cardiovasc Diabetol, 2014, 13 (1), 1–8. [CrossRef]
- Leow, K.; Szulc, P.; Schousboe, J. T.; Kiel, D. P.; Teixeira-Pinto, A.; Shaikh, H.; Sawang, M.; Sim, M.; Bondonno, N.; Hodgson, J. M.; et al. Prognostic Value of Abdominal Aortic Calcification: A Systematic Review and Meta-Analysis of Observational Studies. J Am Heart Assoc, 2021, 10 (2), 1–19. [CrossRef]
- Rossi, A.; Targher, G.; Zoppini, G.; Cicoira, M.; Bonapace, S.; Negri, C.; Stoico, V.; Faggiano, P.; Vassanelli, C.; Bonora, E. Aortic and Mitral Annular Calcifications Are Predictive of All-Cause and Cardiovascular Mortality in Patients with Type 2 Diabetes. Diabetes Care, 2012, 35 (8), 1781–1786. [CrossRef]
- Niu, W.; Shao, J.; Yu, B.; Liu, G.; Wang, R.; Dong, H.; Che, H.; Li, L. Association Between Metformin and Abdominal Aortic Aneurysm: A Meta-Analysis. Front Cardiovasc Med, 2022, 9, 908747. [CrossRef]
- Limiting AAA With Metformin (LIMIT) Trial - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04500756?cond=abdominal+aortic+aneurysm+metformin&draw=2&rank=3 (accessed Mar 5, 2023).
- Metformin for Abdominal Aortic Aneurysm Growth Inhibition - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04224051?cond=abdominal+aortic+aneurysm+metformin&draw=2&rank=2 (accessed Mar 5, 2023).
- Metformin Therapy in Non-diabetic AAA Patients - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03507413?cond=abdominal+aortic+aneurysm+metformin&draw=2&rank=1 (accessed Mar 5, 2023).
- Klopf, J.; Fuchs, L.; Schernthaner, R.; Domenig, C. M.; Gollackner, B.; Brostjan, C.; Neumayer, C.; Eilenberg, W. The Prognostic Impact of Vascular Calcification on Abdominal Aortic Aneurysm Progression. J Vasc Surg, 2022, 75 (6), 1926–1934. [CrossRef]
- Kent, K. C.; Zwolak, R. M.; Egorova, N. N.; Riles, T. S.; Manganaro, A.; Moskowitz, A. J.; Gelijns, A. C.; Greco, G. Analysis of Risk Factors for Abdominal Aortic Aneurysm in a Cohort of More than 3 Million Individuals. J Vasc Surg, 2010, 52 (3), 539–548. [CrossRef]
- Ito, S.; Akutsu, K.; Tamori, Y.; Sakamoto, S.; Yoshimuta, T.; Hashimoto, H.; Takeshita, S. Differences in Atherosclerotic Profiles Between Patients With Thoracic and Abdominal Aortic Aneurysms. Am J Cardiol, 2008, 101 (5), 696–699. [CrossRef]
- Sun, W.; Zheng, J.; Gao, Y. Targeting Platelet Activation in Abdominal Aortic Aneurysm: Current Knowledge and Perspectives. Biomolecules, 2022, 12 (2), 206. [CrossRef]
- Libby, P.; Ridker, P. M.; Maseri, A. Inflammation and Atherosclerosis. Circulation, 2002, 105 (9), 1135–1143. [CrossRef]
- Raffort, J.; Lareyre, F.; Clément, M.; Hassen-Khodja, R.; Chinetti, G.; Mallat, Z. Monocytes and Macrophages in Abdominal Aortic Aneurysm. Nat Rev Cardiol, 2017, 14 (8), 457–471. [CrossRef]
- Houard, X.; Touat, Z.; Ollivier, V.; Louedec, L.; Philippe, M.; Sebbag, U.; Meilhac, O.; Rossignol, P.; Michel, J. B. Mediators of Neutrophil Recruitment in Human Abdominal Aortic Aneurysms. Cardiovasc Res, 2009, 82 (3), 532–541. [CrossRef]
- Thompson, R. W.; Curci, J. A.; Ennis, T. L.; Mao, D.; Pagano, M. B.; Pham, C. T. N. Pathophysiology of Abdominal Aortic Aneurysms: Insights from the Elastase-Induced Model in Mice with Different Genetic Backgrounds. Ann N Y Acad Sci, 2006, 1085, 59–73. [CrossRef]
- Rao, J.; Brown, B. N.; Weinbaum, J. S.; Ofstun, E. L.; Makaroun, M. S.; Humphrey, J. D.; Vorp, D. A. Distinct Macrophage Phenotype and Collagen Organization within the Intraluminal Thrombus of Abdominal Aortic Aneurysm. J Vasc Surg, 2015, 62 (3), 585–593. [CrossRef]
- Dutertre, C. A.; Clement, M.; Morvan, M.; Schäkel, K.; Castier, Y.; Alsac, J. M.; Michel, J. B.; Nicoletti, A. Deciphering the Stromal and Hematopoietic Cell Network of the Adventitia from Non-Aneurysmal and Aneurysmal Human Aorta. PLoS One, 2014, 9 (2), e89983. [CrossRef]
- Tieu, B. C.; Ju, X.; Lee, C.; Sun, H.; Lejeune, W.; Recinos, A.; Brasier, A. R.; Tilton, R. G. Aortic Adventitial Fibroblasts Participate in Angiotensin-Induced Vascular Wall Inflammation and Remodeling. J Vasc Res, 2011, 48 (3), 261–272. [CrossRef]
- Tieu, B. C.; Lee, C.; Sun, H.; LeJeune, W.; Recinos, A.; Ju, X.; Spratt, H.; Guo, D. C.; Milewicz, D.; Tilton, R. G.; et al. An Adventitial IL-6/MCP1 Amplification Loop Accelerates Macrophage-Mediated Vascular Inflammation Leading to Aortic Dissection in Mice. J Clin Invest, 2009, 119 (12), 3637–3651. [CrossRef]
- Combadière, C.; Potteaux, S.; Rodero, M.; Simon, T.; Pezard, A.; Esposito, B.; Merval, R.; Proudfoot, A.; Tedgui, A.; Mallat, Z. Combined Inhibition of CCL2, CX3CR1, and CCR5 Abrogates Ly6C(Hi) and Ly6C(Lo) Monocytosis and Almost Abolishes Atherosclerosis in Hypercholesterolemic Mice. Circulation, 2008, 117 (13), 1649–1657. [CrossRef]
- Daugherty, A.; Manning, M. W.; Cassis, L. A. Angiotensin II Promotes Atherosclerotic Lesions and Aneurysms in Apolipoprotein E-Deficient Mice. J Clin Invest, 2000, 105 (11), 1605–1612. [CrossRef]
- Deshmane, S. L.; Kremlev, S.; Amini, S.; Sawaya, B. E. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. Journal of Interferon & Cytokine Research, 2009, 29 (6), 313–326. [CrossRef]
- Zhang, H.; Yang, K.; Chen, F.; Liu, Q.; Ni, J.; Cao, W.; Hua, Y.; He, F.; Liu, Z.; Li, L.; et al. Role of the CCL2-CCR2 Axis in Cardiovascular Disease: Pathogenesis and Clinical Implications. Front Immunol, 2022, 13, 975367. [CrossRef]
- Roshan, M. H. K.; Tambo, A.; Pace, N. P. The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis. Int J Inflam, 2016, 2016, 1532832. [CrossRef]
- Yang, M.; Chen, Q.; Mei, L.; Wen, G.; An, W.; Zhou, X.; Niu, K.; Liu, C.; Ren, M.; Sun, K.; et al. Neutrophil Elastase Promotes Neointimal Hyperplasia by Targeting Toll-like Receptor 4 (TLR4)-NF-ΚB Signalling. Br J Pharmacol, 2021, 178 (20), 4048–4068. [CrossRef]
- Kolaczkowska, E.; Kubes, P. Neutrophil Recruitment and Function in Health and Inflammation. Nat Rev Immunol, 2013, 13 (3), 159–175. [CrossRef]
- Dalli, J.; Montero-Melendez, T.; Norling, L. v.; Yin, X.; Hinds, C.; Haskard, D.; Mayr, M.; Perretti, M. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties. Mol Cell Proteomics, 2013, 12 (8), 2205–2219. [CrossRef]
- Mortaz, E.; Alipoor, S. D.; Adcock, I. M.; Mumby, S.; Koenderman, L. Update on Neutrophil Function in Severe Inflammation. Front Immunol, 2018, 9, 2171. [CrossRef]
- Klopf, J.; Brostjan, C.; Eilenberg, W.; Neumayer, C. Neutrophil Extracellular Traps and Their Implications in Cardiovascular and Inflammatory Disease. Int J Mol Sci, 2021, 22 (2), 1–17. [CrossRef]
- Arbănași, E. M.; Mureșan, A. V.; Coșarcă, C. M.; Arbănași, E. M.; Niculescu, R.; Voidăzan, S. T.; Ivănescu, A. D.; Hălmaciu, I.; Filep, R. C.; Mărginean, L.; et al. Computed Tomography Angiography Markers and Intraluminal Thrombus Morphology as Predictors of Abdominal Aortic Aneurysm Rupture. Int J Environ Res Public Health, 2022, 19 (23), 15961. [CrossRef]
- Behr-Rasmussen, C.; Grøndal, N.; Bramsen, M. B.; Thomsen, M. D.; Lindholt, J. S. Mural Thrombus and the Progression of Abdominal Aortic Aneurysms: A Large Population-Based Prospective Cohort Study. Eur J Vasc Endovasc Surg, 2014, 48 (3), 301–307. [CrossRef]
- Kazi, M.; Thyberg, J.; Religa, P.; Roy, J.; Eriksson, P.; Hedin, U.; Swedenborg, J. Influence of Intraluminal Thrombus on Structural and Cellular Composition of Abdominal Aortic Aneurysm Wall. J Vasc Surg, 2003, 38 (6), 1283–1292. [CrossRef]
- Schrottmaier, W. C.; Mussbacher, M.; Salzmann, M.; Assinger, A. Platelet-Leukocyte Interplay during Vascular Disease. Atherosclerosis, 2020, 307, 109–120. [CrossRef]
- Rubenstein, D. A.; Yin, W. Platelet-Activation Mechanisms and Vascular Remodeling. Compr Physiol, 2018, 8 (3), 1117–1156. [CrossRef]
- Houard, X.; Ollivier, V.; Louedec, L.; Michel, J.; Back, M. Differential Inflammatory Activity across Human Abdominal Aortic Aneurysms Reveals Neutrophil-Derived Leukotriene B4 as a Major Chemotactic Factor Released from the Intraluminal Thrombus. FASEB J, 2009, 23 (5), 1376–1383. [CrossRef]
- Karaolanis, G.; Moris, D.; Palla, V. V.; Karanikola, E.; Bakoyiannis, C.; Georgopoulos, S. Neutrophil Gelatinase Associated Lipocalin (NGAL) as a Biomarker. Does It Apply in Abdominal Aortic Aneurysms? A Review of Literature. Indian J Surg, 2015, 77 (Suppl 3), 1313–1317. [CrossRef]
- Petersen, E.; Wågberg, F.; Ängquist, K. A. Serum Concentrations of Elastin-Derived Peptides in Patients with Specific Manifestations of Atherosclerotic Disease. European Journal of Vascular and Endovascular Surgery, 2002, 24 (5), 440–444. [CrossRef]
- Maguire, E. M.; Pearce, S. W. A.; Xiao, R.; Oo, A. Y.; Xiao, Q. Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel), 2019, 12 (3), 118. [CrossRef]
- Hendy, K.; Gunnarson, R.; Golledge, J. Growth Rates of Small Abdominal Aortic Aneurysms Assessed by Computerised Tomography--a Systematic Literature Review. Atherosclerosis, 2014, 235 (1), 182–188. [CrossRef]
- Selders, G. S.; Fetz, A. E.; Radic, M. Z.; Bowlin, G. L. An Overview of the Role of Neutrophils in Innate Immunity, Inflammation and Host-Biomaterial Integration. Regen Biomater, 2017, 4 (1), 55–68. [CrossRef]
- Yan, H.; Zhou, H. F.; Akk, A.; Hu, Y.; Springer, L. E.; Ennis, T. L.; Pham, C. T. N. Neutrophil Proteases Promote Experimental Abdominal Aortic Aneurysm via Extracellular Trap Release and Plasmacytoid Dendritic Cell Activation. Arterioscler Thromb Vasc Biol, 2016, 36 (8), 1660–1669. [CrossRef]
- Delbosc, S.; Alsac, J. M.; Journe, C.; Louedec, L.; Castier, Y.; Bonnaure-Mallet, M.; Ruimy, R.; Rossignol, P.; Bouchard, P.; Michel, J. B.; et al. Porphyromonas Gingivalis Participates in Pathogenesis of Human Abdominal Aortic Aneurysm by Neutrophil Activation. Proof of Concept in Rats. PLoS One, 2011, 6 (4), e18679. [CrossRef]
- Jabłońska, A.; Zagrapan, B.; Paradowska, E.; Neumayer, C.; Eilenberg, W.; Brostjan, C.; Klinger, M.; Nanobachvili, J.; Huk, I. Abdominal Aortic Aneurysm and Virus Infection: A Potential Causative Role for Cytomegalovirus Infection? J Med Virol, 2021, 93 (8), 5017–5024. [CrossRef]
- Mysak, J.; Podzimek, S.; Sommerova, P.; Lyuya-Mi, Y.; Bartova, J.; Janatova, T.; Prochazkova, J.; Duskova, J. Porphyromonas Gingivalis: Major Periodontopathic Pathogen Overview. J Immunol Res, 2014, 2014, 476068. [CrossRef]
- Salhi, L.; Rijkschroeff, P.; Van Hede, D.; Laine, M. L.; Teughels, W.; Sakalihasan, N.; Lambert, F. Blood Biomarkers and Serologic Immunological Profiles Related to Periodontitis in Abdominal Aortic Aneurysm Patients. Front Cell Infect Microbiol, 2022, 11, 766462. [CrossRef]
- Salhi, L.; Sakalihasan, N.; Okroglic, A. G.; Labropoulos, N.; Seidel, L.; Albert, A.; Teughels, W.; Defraigne, J. O.; Lambert, F. Further Evidence on the Relationship between Abdominal Aortic Aneurysm and Periodontitis: A Cross-Sectional Study. J Periodontol, 2020, 91 (11), 1453–1464. [CrossRef]
- Salhi, L.; Rompen, E.; Sakalihasan, N.; Laleman, I.; Teughels, W.; Michel, J. B.; Lambert, F. Can Periodontitis Influence the Progression of Abdominal Aortic Aneurysm? A Systematic Review. Angiology, 2019, 70 (6), 479–491. [CrossRef]
- Gredmark-Russ, S.; Dzabic, M.; Rahbar, A.; Wanhainen, A.; Björck, M.; Larsson, E.; Michel, J. B.; Söderberg-Nauclér, C. Active Cytomegalovirus Infection in Aortic Smooth Muscle Cells from Patients with Abdominal Aortic Aneurysm. J Mol Med (Berl), 2009, 87 (4), 347–356. [CrossRef]
- Pinard, A.; Jones, G. T.; Milewicz, D. M. Genetics of Thoracic and Abdominal Aortic Diseases: Aneurysms, Dissections, and Ruptures. Circ Res, 2019, 124 (4), 588. [CrossRef]
- La Rocca, G.; Del Frate, G.; Delvino, P.; Di Cianni, F.; Moretti, M.; Italiano, N.; Treppo, E.; Monti, S.; Talarico, R.; Ferro, F.; et al. Systemic Vasculitis: One Year in Review 2022. Clin Exp Rheumatol, 2022, 40 (4), 673–687. [CrossRef]
- Phillip, R.; Luqmani, R. Mortality in Systemic Vasculitis: A Systematic Review. Clin Exp Rheumatol, 2008, 26 (5 Suppl 51), S94–S104.
- Wallace, Z. S.; Fu, X.; Harkness, T.; Stone, J. H.; Zhang, Y.; Choi, H. All-Cause and Cause-Specific Mortality in ANCA-Associated Vasculitis: Overall and According to ANCA Type. Rheumatology (Oxford), 2020, 59 (9), 2308–2315. [CrossRef]
- Hill, C. L.; Black, R. J.; Nossent, J. C.; Ruediger, C.; Nguyen, L.; Ninan, J. V.; Lester, S. Risk of Mortality in Patients with Giant Cell Arteritis: A Systematic Review and Meta-Analysis. Semin Arthritis Rheum, 2017, 46 (4), 513–519. [CrossRef]
- Mueller, M.; Gschwandtner, M. E.; Gamper, J.; Giurgea, G. A.; Kiener, H. P.; Perkmann, T.; Koppensteiner, R.; Schlager, O. Chronic Inflammation Predicts Long-Term Mortality in Patients with Raynaud’s Phenomenon. J Intern Med, 2018, 283 (3), 293–302. [CrossRef]
- Farrah, T. E.; Melville, V.; Czopek, A.; Fok, H.; Bruce, L.; Mills, N. L.; Bailey, M. A.; Webb, D. J.; Dear, J. W.; Dhaun, N. Arterial Stiffness, Endothelial Dysfunction and Impaired Fibrinolysis Are Pathogenic Mechanisms Contributing to Cardiovascular Risk in ANCA-Associated Vasculitis. Kidney Int, 2022, 102 (5), 1115–1126. [CrossRef]
- Chironi, G.; Pagnoux, C.; Simon, A.; Pasquinelli-Balice, M.; Del-Pino, M.; Gariepy, J.; Guillevin, L. Increased Prevalence of Subclinical Atherosclerosis in Patients with Small-Vessel Vasculitis. Heart, 2007, 93 (1), 96–99. [CrossRef]
- Clifford, A. H.; Cohen Tervaert, J. W. Cardiovascular Events and the Role of Accelerated Atherosclerosis in Systemic Vasculitis. Atherosclerosis, 2021, 325, 8–15. [CrossRef]
- Hilhorst, M.; Winckers, K.; Wilde, B.; Van Oerle, R.; Ten Cate, H.; Tervaert, J. W. C. Patients with Antineutrophil Cytoplasmic Antibodies Associated Vasculitis in Remission Are Hypercoagulable. J Rheumatol, 2013, 40 (12), 2042–2046. [CrossRef]
- De Leeuw, K.; Sanders, J. S.; Stegeman, C.; Smit, A.; Kallenberg, C. G.; Bijl, M. Accelerated Atherosclerosis in Patients with Wegener’s Granulomatosis. Ann Rheum Dis, 2005, 64 (5), 753–759. [CrossRef]
- Shirai, T.; Hilhorst, M.; Harrison, D. G.; Goronzy, J. J.; Weyand, C. M. Macrophages in Vascular Inflammation--From Atherosclerosis to Vasculitis. Autoimmunity, 2015, 48 (3), 139–151. [CrossRef]
- Wallace, Z. S.; Fu, X.; Liao, K.; Kallenberg, C. G. M.; Langford, C. A.; Merkel, P. A.; Monach, P.; Seo, P.; Specks, U.; Spiera, R.; et al. Disease Activity, Antineutrophil Cytoplasmic Antibody Type, and Lipid Levels in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol, 2019, 71 (11), 1879–1887. [CrossRef]
- Proven, A.; Gabriel, S. E.; Orces, C.; Michael O’Fallon, W.; Hunder, G. G. Glucocorticoid Therapy in Giant Cell Arteritis: Duration and Adverse Outcomes. Arthritis Rheum, 2003, 49 (5), 703–708. [CrossRef]
- Bramlage, C. P.; Kröplin, J.; Wallbach, M.; Minguet, J.; Smith, K. H.; Lüders, S.; Schrader, J.; Patschan, S.; Gross, O.; Deutsch, C.; et al. Management of Cardiovascular Risk Factors in Patients with ANCA-Associated Vasculitis. J Eval Clin Pract, 2017, 23 (4), 747–754. [CrossRef]
- Neumann, F. J.; Sechtem, U.; Banning, A. P.; Bonaros, N.; Bueno, H.; Bugiardini, R.; Chieffo, A.; Crea, F.; Czerny, M.; Delgado, V.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes. Eur Heart J, 2020, 41 (3), 407–477. [CrossRef]
- Aboyans, V.; Bauersachs, R.; Mazzolai, L.; Brodmann, M.; Palomares, J. F. R.; Debus, S.; Collet, J. P.; Drexel, H.; Espinola-Klein, C.; Lewis, B. S.; et al. Antithrombotic Therapies in Aortic and Peripheral Arterial Diseases in 2021: A Consensus Document from the ESC Working Group on Aorta and Peripheral Vascular Diseases, the ESC Working Group on Thrombosis, and the ESC Working Group on Cardiovascular Pharmacotherapy. Eur Heart J, 2021, 42 (39), 4013–4024. [CrossRef]
- Gerhard-Herman, M. D.; Gornik, H. L.; Barrett, C.; Barshes, N. R.; Corriere, M. A.; Drachman, D. E.; Fleisher, L. A.; Fowkes, F. G. R.; Hamburg, N. M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 2017, 135 (12), e686–e725. [CrossRef]
- Abramson, B. L.; Al-Omran, M.; Anand, S. S.; Albalawi, Z.; Coutinho, T.; de Mestral, C.; Dubois, L.; Gill, H. L.; Greco, E.; Guzman, R.; et al. Canadian Cardiovascular Society 2022 Guidelines for Peripheral Arterial Disease. Can J Cardiol, 2022, 38 (5), 560–587. [CrossRef]
- Frank, U.; Nikol, S.; Belch, J.; Boc, V.; Brodmann, M.; Carpentier, P. H.; Chraim, A.; Canning, C.; Dimakakos, E.; Gottsäter, A.; et al. ESVM Guideline on Peripheral Arterial Disease. Vasa, 2019, 48 (Suppl 102), 1–80. [CrossRef]
- El Assar, M.; Álvarez-Bustos, A.; Sosa, P.; Angulo, J.; Rodríguez-Mañas, L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int J Mol Sci, 2022, 23 (15), 8713. [CrossRef]
- Myette-Côté, É.; Durrer, C.; Neudorf, H.; Bammert, T. D.; Botezelli, J. D.; Johnson, J. D.; Desouza, C. A.; Little, J. P. The Effect of a Short-Term Low-Carbohydrate, High-Fat Diet with or without Postmeal Walks on Glycemic Control and Inflammation in Type 2 Diabetes: A Randomized Trial. Am J Physiol Regul Integr Comp Physiol, 2018, 315 (6), R1210–R1219. [CrossRef]
- Stancu, C.; Sima, A. Statins: Mechanism of Action and Effects. J Cell Mol Med, 2001, 5 (4), 378–387. [CrossRef]
- Almeida, S. O.; Budoff, M. Effect of Statins on Atherosclerotic Plaque. Trends Cardiovasc Med, 2019, 29 (8), 451–455. [CrossRef]
- Greenwood, J.; Mason, J. C. Statins and the Vascular Endothelial Inflammatory Response. Trends Immunol, 2007, 28 (2), 88–98. [CrossRef]
- Piechota-Polanczyk, A.; Demyanets, S.; Nykonenko, O.; Huk, I.; Mittlboeck, M.; Domenig, C. M.; Neumayer, C.; Wojta, J.; Nanobachvili, J.; Klinger, M. Decreased Tissue Levels of Cyclophilin A, a Cyclosporine a Target and Phospho-ERK1/2 in Simvastatin Patients with Abdominal Aortic Aneurysm. Eur J Vasc Endovasc Surg, 2013, 45 (6), 682–688. [CrossRef]
- Piechota-Polanczyk, A.; Goraca, A.; Demyanets, S.; Mittlboeck, M.; Domenig, C.; Neumayer, C.; Wojta, J.; Nanobachvili, J.; Huk, I.; Klinger, M. Simvastatin Decreases Free Radicals Formation in the Human Abdominal Aortic Aneurysm Wall via NF-ΚB. Eur J Vasc Endovasc Surg, 2012, 44 (2), 133–137. [CrossRef]
- Piechota-Polanczyk, A.; Demyanets, S.; Mittlboeck, M.; Hofmann, M.; Domenig, C. M.; Neumayer, C.; Wojta, J.; Klinger, M.; Nanobachvili, J.; Huk, I. The Influence of Simvastatin on NGAL, Matrix Metalloproteinases and Their Tissue Inhibitors in Human Intraluminal Thrombus and Abdominal Aortic Aneurysm Tissue. Eur J Vasc Endovasc Surg, 2015, 49 (5), 549–555. [CrossRef]
- Steiner, S.; Speidl, W. S.; Pleiner, J.; Seidinger, D.; Zorn, G.; Kaun, C.; Wojta, J.; Huber, K.; Minar, E.; Wolzt, M.; et al. Simvastatin Blunts Endotoxin-Induced Tissue Factor in Vivo. Circulation, 2005, 111 (14), 1841–1846. [CrossRef]
- Ridker, P. M.; Cannon, C. P.; Morrow, D.; Rifai, N.; Rose, L. M.; McCabe, C. H.; Pfeffer, M. A.; Braunwald, E. C-Reactive Protein Levels and Outcomes after Statin Therapy. https://doi-org.ez.srv.meduniwien.ac.at/10.1056/NEJMoa042378, 2005, 8 (1), 8–9. [CrossRef]
- Tawakol, A.; Fayad, Z. A.; Mogg, R.; Alon, A.; Klimas, M. T.; Dansky, H.; Subramanian, S. S.; Abdelbaky, A.; Rudd, J. H. F.; Farkouh, M. E.; et al. Intensification of Statin Therapy Results in a Rapid Reduction in Atherosclerotic Inflammation: Results of a Multicenter Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography Feasibility Study. J Am Coll Cardiol, 2013, 62 (10), 909–917. [CrossRef]
- Ridker, P. M.; Bhatt, D. L.; Pradhan, A. D.; Glynn, R. J.; MacFadyen, J. G.; Nissen, S. E. Inflammation and Cholesterol as Predictors of Cardiovascular Events among Patients Receiving Statin Therapy: A Collaborative Analysis of Three Randomised Trials. Lancet, 2023, 401 (10384), 1293–1301. [CrossRef]
- Wang, J.; Chen, Z.; Qiu, Y.; Wu, L.; Wang, H.; Wu, L.; Zhao, L.; Xie, D. Statins Have an Anti-Inflammation in CKD Patients: A Meta-Analysis of Randomized Trials. Biomed Res Int, 2022, 2022, 4842699. [CrossRef]
- Zhang, Q. X.; Zhang, H. F.; Lu, X. T.; Zhao, J.; Xu, Q. Statins Improve Asthma Symptoms by Suppressing Inflammation: A Meta-Analysis Based on RCTs. Eur Rev Med Pharmacol Sci, 2022, 26 (22), 8401–8410. [CrossRef]
- Valerius NH. In Vitro Effect of Colchicine on Neutrophil Granulocyte Locomotion. Assessment of the Effect of Colchicine on Chemotaxis, Chemokinesis and Spontaneous Motility, Using a Modified Reversible Boyden Chamber. Acta Pathol Microbiol Scand B, 1978, B (86), 149–154. [CrossRef]
- Li, Z.; Davis, G. S.; Mohr, C.; Nain, M.; Gemsa, D. Inhibition of LPS-Induced Tumor Necrosis Factor-Alpha Production by Colchicine and Other Microtubule Disrupting Drugs. Immunobiology, 1996, 195 (4–5), 624–639. [CrossRef]
- Wright, D. G.; Malawista, S. E. Mobilization and Extracellular Release of Granular Enzymes from Human Leukocytes during Phagocytosis: Inhibition by Colchicine and Cortisol but Not by Salicylate. Arthritis Rheum, 1973, 16 (6), 749–758. [CrossRef]
- Martínez, G. J.; Celermajer, D. S.; Patel, S. The NLRP3 Inflammasome and the Emerging Role of Colchicine to Inhibit Atherosclerosis-Associated Inflammation. Atherosclerosis, 2018, 269, 262–271. [CrossRef]
- González, L.; Bulnes, J. F.; Orellana, M. P.; Venturelli, P. M.; Rodriguez, G. M. The Role of Colchicine in Atherosclerosis: From Bench to Bedside. Pharmaceutics, 2022, 14 (7), 1395. [CrossRef]
- Nidorf, S. M.; Thompson, P. L. Why Colchicine Should Be Considered for Secondary Prevention of Atherosclerosis: An Overview. Clin Ther, 2019, 41 (1), 41–48. [CrossRef]
- Tardif, J.-C.; Kouz, S.; Waters, D. D.; Bertrand, O. F.; Diaz, R.; Maggioni, A. P.; Pinto, F. J.; Ibrahim, R.; Gamra, H.; Kiwan, G. S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N Engl J Med, 2019, 381 (26), 2497–2505. [CrossRef]
- Wang, L.; Peng, Y.; Song, L.; Xia, D.; Li, C.; Li, Z.; Li, Q.; Yu, A.; Lu, C.; Wang, Y. Colchicine-Containing Nanoparticles Attenuates Acute Myocardial Infarction Injury by Inhibiting Inflammation. Cardiovasc Drugs Ther, 2022, 36 (6), 1075–1089. [CrossRef]
- Chen, Y.; Zhang, H.; Chen, Y.; Li, M.; Luo, W.; Liu, Y.; Fu, Y.; Xia, H.; Xu, C.; Jiang, Y.; et al. Colchicine May Become a New Cornerstone Therapy for Coronary Artery Disease: A Meta-Analysis of Randomized Controlled Trials. Clin Rheumatol, 2022, 41 (6), 1873–1887. [CrossRef]
- Bays, H. E.; Ballantyne, C. M.; Braeckman, R. A.; Stirtan, W. G.; Soni, P. N. Icosapent Ethyl, a Pure Ethyl Ester of Eicosapentaenoic Acid: Effects on Circulating Markers of Inflammation from the MARINE and ANCHOR Studies. American Journal of Cardiovascular Drugs, 2013, 13 (1), 37–46. [CrossRef]
- Bhatt, D. L.; Steg, P. G.; Miller, M.; Brinton, E. A.; Jacobson, T. A.; Ketchum, S. B.; Doyle, R. T.; Juliano, R. A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med, 2019, 380 (1), 11–22. [CrossRef]
- Budoff, M. J.; Bhatt, D. L.; Kinninger, A.; Lakshmanan, S.; Muhlestein, J. B.; Le, V. T.; May, H. T.; Shaikh, K.; Shekar, C.; Roy, S. K.; et al. Effect of Icosapent Ethyl on Progression of Coronary Atherosclerosis in Patients with Elevated Triglycerides on Statin Therapy: Final Results of the EVAPORATE Trial. Eur Heart J, 2020, 41 (40), 3925–3932. [CrossRef]
- Mason, R. P.; Libby, P.; Bhatt, D. L. Emerging Mechanisms of Cardiovascular Protection for the Omega-3 Fatty Acid Eicosapentaenoic Acid. Arterioscler Thromb Vasc Biol, 2020, 40 (5), 1135–1147. [CrossRef]
- Ballantyne, C. M.; Braeckman, R. A.; Bays, H. E.; Kastelein, J. J.; Otvos, J. D.; Stirtan, W. G.; Doyle, R. T.; Soni, P. N.; Juliano, R. A. Effects of Icosapent Ethyl on Lipoprotein Particle Concentration and Size in Statin-Treated Patients with Persistent High Triglycerides (the ANCHOR Study). J Clin Lipidol, 2015, 9 (3), 377–383. [CrossRef]
- Onat, U. I.; Yildirim, A. D.; Tufanli, Ö.; Çimen, I.; Kocatürk, B.; Veli, Z.; Hamid, S. M.; Shimada, K.; Chen, S.; Sin, J.; et al. Intercepting the Lipid-Induced Integrated Stress Response Reduces Atherosclerosis. J Am Coll Cardiol, 2019, 73 (10), 1149–1169. [CrossRef]
- Grebe, A.; Hoss, F.; Latz, E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ Res, 2018, 122 (12), 1722–1740. [CrossRef]
- Arnold, D. D.; Yalamanoglu, A.; Boyman, O. Systematic Review of Safety and Efficacy of IL-1-Targeted Biologics in Treating Immune-Mediated Disorders. Front Immunol, 2022, 13, 888392. [CrossRef]
- Ridker, P. M.; Thuren, T.; Zalewski, A.; Libby, P. Interleukin-1β Inhibition and the Prevention of Recurrent Cardiovascular Events: Rationale and Design of the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J, 2011, 162 (4), 597–605. [CrossRef]
- Ridker, P. M. From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream To Identify Novel Targets for Atheroprotection. Circ Res, 2016, 118 (1), 145–156. [CrossRef]
- Ku, E. J.; Kim, B. R.; Lee, J. I.; Lee, Y. K.; Oh, T. J.; Jang, H. C.; Choi, S. H. The Anti-Atherosclerosis Effect of Anakinra, a Recombinant Human Interleukin-1 Receptor Antagonist, in Apolipoprotein E Knockout Mice. Int J Mol Sci, 2022, 23 (9), 4906. [CrossRef]
- Ridker, P. M.; Howard, C. P.; Walter, V.; Everett, B.; Libby, P.; Hensen, J.; Thuren, T. Effects of Interleukin-1β Inhibition with Canakinumab on Hemoglobin A1c, Lipids, C-Reactive Protein, Interleukin-6, and Fibrinogen: A Phase IIb Randomized, Placebo-Controlled Trial. Circulation, 2012, 126 (23), 2739–2748. [CrossRef]
- Straub, R. H.; Cutolo, M. Glucocorticoids and Chronic Inflammation. Rheumatology (Oxford), 2016, 55 (suppl 2), ii6–ii14. [CrossRef]
- Cain, D. W.; Cidlowski, J. A. Immune Regulation by Glucocorticoids. Nat Rev Immunol, 2017, 17 (4), 233–247. [CrossRef]
- Patel, R.; Williams-Dautovich, J.; Cummins, C. L. Minireview: New Molecular Mediators of Glucocorticoid Receptor Activity in Metabolic Tissues. Molecular Endocrinology, 2014, 28 (7), 999–1011. [CrossRef]
- Cicala, M. V.; Mantero, F. Hypertension in Cushing’s Syndrome: From Pathogenesis to Treatment. Neuroendocrinology, 2010, 92 Suppl 1 (SUPPL. 1), 44–49. [CrossRef]
- Akalestou, E.; Genser, L.; Rutter, G. A. Glucocorticoid Metabolism in Obesity and Following Weight Loss. Front Endocrinol (Lausanne), 2020, 11, 59. [CrossRef]
- Arnaldi, G.; Scandali, V. M.; Trementino, L.; Cardinaletti, M.; Appolloni, G.; Boscaro, M. Pathophysiology of Dyslipidemia in Cushing’s Syndrome. Neuroendocrinology, 2010, 92 Suppl 1 (SUPPL. 1), 86–90. [CrossRef]
- Coelho, M. C. A.; Santos, C. V.; Neto, L. V.; Gadelha, M. R. Adverse Effects of Glucocorticoids: Coagulopathy. Eur J Endocrinol, 2015, 173 (4), M11–M21. [CrossRef]
- Faggiano, A.; Pivonello, R.; Spiezia, S.; De Martino, M. C.; Filippella, M.; Di Somma, C.; Lombardi, G.; Colao, A. Cardiovascular Risk Factors and Common Carotid Artery Caliber and Stiffness in Patients with Cushing’s Disease during Active Disease and 1 Year after Disease Remission. J Clin Endocrinol Metab, 2003, 88 (6), 2527–2533. [CrossRef]
- Macleod, C.; Hadoke, P. W. F.; Nixon, M. Glucocorticoids: Fuelling the Fire of Atherosclerosis or Therapeutic Extinguishers? Int J Mol Sci, 2021, 22 (14), 7622. [CrossRef]
- Petramala, L.; Lorenzo, D.; Iannucci, G.; Concistré, A.; Zinnamosca, L.; Marinelli, C.; De Vincentis, G.; Ciardi, A.; De Toma, G.; Letizia, C. Subclinical Atherosclerosis in Patients with Cushing Syndrome: Evaluation with Carotid Intima-Media Thickness and Ankle-Brachial Index. Endocrinology and Metabolism, 2015, 30 (4), 488–493. [CrossRef]
- Souverein, P. C.; Berard, A.; Van Staa, T. P.; Cooper, C.; Egberts, A. C. G.; Leufkens, H. G. M.; Walker, B. R. Use of Oral Glucocorticoids and Risk of Cardiovascular and Cerebrovascular Disease in a Population Based Case-Control Study. Heart, 2004, 90 (8), 859–865. [CrossRef]
- Wei, L.; MacDonald, T. M.; Walker, B. R. Taking Glucocorticoids by Prescription Is Associated with Subsequent Cardiovascular Disease. Ann Intern Med, 2004, 141 (10), 764–770. [CrossRef]
- Pujades-Rodriguez, M.; Morgan, A. W.; Cubbon, R. M.; Wu, J. Dose-Dependent Oral Glucocorticoid Cardiovascular Risks in People with Immune-Mediated Inflammatory Diseases: A Population-Based Cohort Study. PLoS Med, 2020, 17 (12), e1003432. [CrossRef]
- Katsiki, N.; Ferrannini, E. Anti-Inflammatory Properties of Antidiabetic Drugs: A “Promised Land” in the COVID-19 Era? J Diabetes Complications, 2020, 34 (12), 107723. [CrossRef]
- Vaduganathan, M.; Docherty, K. F.; Claggett, B. L.; Jhund, P. S.; de Boer, R. A.; Hernandez, A. F.; Inzucchi, S. E.; Kosiborod, M. N.; Lam, C. S. P.; Martinez, F.; et al. SGLT-2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomised Controlled Trials. Lancet, 2022, 400 (10354), 757–767. [CrossRef]
- McMurray, J. J. V.; Solomon, S. D.; Inzucchi, S. E.; Køber, L.; Kosiborod, M. N.; Martinez, F. A.; Ponikowski, P.; Sabatine, M. S.; Anand, I. S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 2019, 381 (21), 1995–2008. [CrossRef]
- Solomon, S. D.; McMurray, J. J. V.; Claggett, B.; de Boer, R. A.; DeMets, D.; Hernandez, A. F.; Inzucchi, S. E.; Kosiborod, M. N.; Lam, C. S. P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. New England Journal of Medicine, 2022, 387 (12), 1089–1098. [CrossRef]
- Packer, M.; Anker, S. D.; Butler, J.; Filippatos, G.; Pocock, S. J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. New England Journal of Medicine, 2020, 383 (15), 1413–1424. [CrossRef]
- Anker, S. D.; Butler, J.; Filippatos, G.; Ferreira, J. P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. New England Journal of Medicine, 2021, 385 (16), 1451–1461. [CrossRef]
- Heidenreich, P. A.; Bozkurt, B.; Aguilar, D.; Allen, L. A.; Byun, J. J.; Colvin, M. M.; Deswal, A.; Drazner, M. H.; Dunlay, S. M.; Evers, L. R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 2022, 145 (18), E895–E1032. [CrossRef]
- Hou, Y. C.; Zheng, C. M.; Yen, T. H.; Lu, K. C. Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection. Int J Mol Sci, 2020, 21 (21), 1–25. [CrossRef]
- Liu, Z.; Ma, X.; Ilyas, I.; Zheng, X.; Luo, S.; Little, P. J.; Kamato, D.; Sahebkar, A.; Wu, W.; Weng, J.; et al. Impact of Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors on Atherosclerosis: From Pharmacology to Pre-Clinical and Clinical Therapeutics. Theranostics, 2021, 11 (9), 4502–4515. [CrossRef]
- Day, E. A.; Ford, R. J.; Lu, J. H.; Lu, R.; Lundenberg, L.; Desjardins, E. M.; Green, A. E.; Lally, J. S. V.; Schertzer, J. D.; Steinberg, G. R. The SGLT2 Inhibitor Canagliflozin Suppresses Lipid Synthesis and Interleukin-1 Beta in ApoE Deficient Mice. Biochem J, 2020, 477 (12), 2347–2361. [CrossRef]
- Nasiri-Ansari, N.; Dimitriadis, G. K.; Agrogiannis, G.; Perrea, D.; Kostakis, I. D.; Kaltsas, G.; Papavassiliou, A. G.; Randeva, H. S.; Kassi, E. Canagliflozin Attenuates the Progression of Atherosclerosis and Inflammation Process in APOE Knockout Mice. Cardiovasc Diabetol, 2018, 17 (1), 106. [CrossRef]
- Mancini, S. J.; Boyd, D.; Katwan, O. J.; Strembitska, A.; Almabrouk, T. A.; Kennedy, S.; Palmer, T. M.; Salt, I. P. Canagliflozin Inhibits Interleukin-1β-Stimulated Cytokine and Chemokine Secretion in Vascular Endothelial Cells by AMP-Activated Protein Kinase-Dependent and -Independent Mechanisms. Sci Rep, 2018, 8 (1), 5276. [CrossRef]
- Kim, S. R.; Lee, S. G.; Kim, S. H.; Kim, J. H.; Choi, E.; Cho, W.; Rim, J. H.; Hwang, I.; Lee, C. J.; Lee, M.; et al. SGLT2 Inhibition Modulates NLRP3 Inflammasome Activity via Ketones and Insulin in Diabetes with Cardiovascular Disease. Nat Commun, 2020, 11 (1), 2127. [CrossRef]
- Chen, H.; Teng, D.; Xu, B.; Wang, C.; Wang, H.; Jia, W.; Gong, L.; Dong, H.; Zhong, L.; Yang, J. The SGLT2 Inhibitor Canagliflozin Reduces Atherosclerosis by Enhancing Macrophage Autophagy. J Cardiovasc Transl Res, 2023, 1–11. [CrossRef]
- Chaudhuri, A.; Ghanim, H.; Vora, M.; Sia, C. L.; Korzeniewski, K.; Dhindsa, S.; Makdissi, A.; Dandona, P. Exenatide Exerts a Potent Antiinflammatory Effect. J Clin Endocrinol Metab, 2012, 97 (1), 198–207. [CrossRef]
- Jonik, S.; Marchel, M.; Grabowski, M.; Opolski, G.; Mazurek, T. Gastrointestinal Incretins—Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) beyond Pleiotropic Physiological Effects Are Involved in Pathophysiology of Atherosclerosis and Coronary Artery Disease—State of the Art. Biology (Basel), 2022, 11 (2), 288. [CrossRef]
- Rakipovski, G.; Rolin, B.; Nøhr, J.; Klewe, I.; Frederiksen, K. S.; Augustin, R.; Hecksher-Sørensen, J.; Ingvorsen, C.; Polex-Wolf, J.; Knudsen, L. B. The GLP-1 Analogs Liraglutide and Semaglutide Reduce Atherosclerosis in ApoE−/− and LDLr−/− Mice by a Mechanism That Includes Inflammatory Pathways. JACC Basic Transl Sci, 2018, 3 (6), 844–857. [CrossRef]
- Bendotti, G.; Montefusco, L.; Lunati, M. E.; Usuelli, V.; Pastore, I.; Lazzaroni, E.; Assi, E.; Seelam, A. J.; El Essawy, B.; Jang, Y.; et al. The Anti-Inflammatory and Immunological Properties of GLP-1 Receptor Agonists. Pharmacol Res, 2022, 182, 106320. [CrossRef]
- Bray, J. J. H.; Foster-Davies, H.; Salem, A.; Hoole, A. L.; Obaid, D. R.; Halcox, J. P. J.; Stephens, J. W. Glucagon-like Peptide-1 Receptor Agonists Improve Biomarkers of Inflammation and Oxidative Stress: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Diabetes Obes Metab, 2021, 23 (8), 1806–1822. [CrossRef]
- Bethel, M. A.; Patel, R. A.; Merrill, P.; Lokhnygina, Y.; Buse, J. B.; Mentz, R. J.; Pagidipati, N. J.; Chan, J. C.; Gustavson, S. M.; Iqbal, N.; et al. Cardiovascular Outcomes with Glucagon-like Peptide-1 Receptor Agonists in Patients with Type 2 Diabetes: A Meta-Analysis. Lancet Diabetes Endocrinol, 2018, 6 (2), 105–113. [CrossRef]
- Marshall, S. M. 60 Years of Metformin Use: A Glance at the Past and a Look to the Future. Diabetologia, 2017, 60 (9), 1561–1565. [CrossRef]
- Campbell, J. M.; Bellman, S. M.; Stephenson, M. D.; Lisy., K. Metformin Reduces All-Cause Mortality and Diseases of Ageing Independent of Its Effect on Diabetes Control: A Systematic Review and Meta-Analysis. Ageing Res Rev, 2017, 40, 31–44. [CrossRef]
- Feng, X.; Chen, W.; Ni, X.; Little, P. J.; Xu, S.; Tang, L.; Weng, J. Metformin, Macrophage Dysfunction and Atherosclerosis. Front Immunol, 2021, 12, 682853. [CrossRef]
- Poznyak, A. V.; Litvinova, L.; Poggio, P.; Moschetta, D.; Sukhorukov, V. N.; Orekhov, A. N. From Diabetes to Atherosclerosis: Potential of Metformin for Management of Cardiovascular Disease. Int J Mol Sci, 2022, 23 (17), 9738. [CrossRef]
- Zhao, Y.; Zhao, Y.; Tian, Y.; Zhou, Y. Metformin Suppresses Foam Cell Formation, Inflammation and Ferroptosis via the AMPK/ERK Signaling Pathway in Ox-LDL-induced THP-1 Monocytes. Exp Ther Med, 2022, 24 (4), 636. [CrossRef]
- De Winther, M. P. J.; Van Dijk, K. W.; Havekes, L. M.; Hofker, M. H. Macrophage Scavenger Receptor Class A: A Multifunctional Receptor in Atherosclerosis. Arterioscler Thromb Vasc Biol, 2000, 20 (2), 290–297. [CrossRef]
- Park, Y. M. CD36, a Scavenger Receptor Implicated in Atherosclerosis. Exp Mol Med, 2014, 46 (6), e99. [CrossRef]
- Yang, Q.; Yuan, H.; Chen, M.; Qu, J.; Wang, H.; Yu, B.; Chen, J.; Sun, S.; Tang, X.; Ren, W. Metformin Ameliorates the Progression of Atherosclerosis via Suppressing Macrophage Infiltration and Inflammatory Responses in Rabbits. Life Sci, 2018, 198, 56–64. [CrossRef]
- Kanigur Sultuybek, G.; Soydas, T.; Yenmis, G. NF-ΚB as the Mediator of Metformin’s Effect on Ageing and Ageing-Related Diseases. Clin Exp Pharmacol Physiol, 2019, 46 (5), 413–422. [CrossRef]
- Asgharzadeh, F.; Barneh, F.; Fakhraie, M.; Adel barkhordar, S. leili; Shabani, M.; Soleimani, A.; Rahmani, F.; Ariakia, F.; Mehraban, S.; Avan, A.; et al. Metformin Inhibits Polyphosphate-Induced Hyper-Permeability and Inflammation. Int Immunopharmacol, 2021, 99, 107937. [CrossRef]
- Roussel, R.; Travert, F.; Pasquet, B.; Wilson, P. W. F.; Smith, S. C.; Goto, S.; Ravaud, P.; Marre, M.; Porath, A.; Bhatt, D. L.; et al. Metformin Use and Mortality among Patients with Diabetes and Atherothrombosis. Arch Intern Med, 2010, 170 (21), 1892–1899. [CrossRef]
- Meaney, E.; Vela, A.; Samaniego, V.; Meaney, A.; Asbún, J.; Zempoalteca, J. C.; Elisa, Z. N.; Emma, M. N.; Guzman, M.; Hicks, J.; et al. Metformin, Arterial Function, Intima-Media Thickness and Nitroxidation in Metabolic Syndrome: The Mefisto Study. Clin Exp Pharmacol Physiol, 2008, 35 (8), 895–903. [CrossRef]
- Jadhav, S.; Ferrell, W.; Greer, I. A.; Petrie, J. R.; Cobbe, S. M.; Sattar, N. Effects of Metformin on Microvascular Function and Exercise Tolerance in Women with Angina and Normal Coronary Arteries: A Randomized, Double-Blind, Placebo-Controlled Study. J Am Coll Cardiol, 2006, 48 (5), 956–963. [CrossRef]
- Preiss, D.; Lloyd, S. M.; Ford, I.; McMurray, J. J.; Holman, R. R.; Welsh, P.; Fisher, M.; Packard, C. J.; Sattar, N. Metformin for Non-Diabetic Patients with Coronary Heart Disease (the CAMERA Study): A Randomised Controlled Trial. Lancet Diabetes Endocrinol, 2014, 2 (2), 116–124. [CrossRef]
- Luo, F.; Das, A.; Chen, J.; Wu, P.; Li, X.; Fang, Z. Metformin in Patients with and without Diabetes: A Paradigm Shift in Cardiovascular Disease Management. Cardiovasc Diabetol, 2019, 18 (1), 54. [CrossRef]
- Griffin, S. J.; Angelyn Bethel, M.; Holman, R. R.; Khunti, K.; Wareham, N.; Brierley, G.; Davies, M.; Dymond, A.; Eichenberger, R.; Evans, P.; et al. Metformin in Non-Diabetic Hyperglycaemia: The GLINT Feasibility RCT. Health Technol Assess, 2018, 22 (18), 1–64. [CrossRef]
- ISRCTN - ISRCTN34875079: The Glucose Lowering In Non-diabetic hyperglycaemia Trial (GLINT) - Glucose lowering in those at risk of diabetes https://www.isrctn.com/ISRCTN34875079 (accessed Jun 14, 2023).
- National Institute of Diabetes and Digestive and Kidney Diseases. Dipeptidyl Peptidase-4 Inhibitors https://pubmed.ncbi.nlm.nih.gov/31643671/ (accessed Jun 14, 2023).
- Cosentino, F.; Grant, P. J.; Aboyans, V.; Bailey, C. J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D. E.; Hansen, T. B.; et al. 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASDThe Task Force for Diabetes, Pre-Diabetes, and Cardiovascular Diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J, 2020, 41 (2), 255–323. [CrossRef]
- Liu, H.; Guo, L.; Xing, J.; Li, P.; Sang, H.; Hu, X.; Du, Y.; Zhao, L.; Song, R.; Gu, H. The Protective Role of DPP4 Inhibitors in Atherosclerosis. Eur J Pharmacol, 2020, 875, 173037. [CrossRef]
- Lee, D. S.; Lee, E. S.; Alam, M. M.; Jang, J. H.; Lee, H. S.; Oh, H.; Kim, Y. C.; Manzoor, Z.; Koh, Y. S.; Kang, D. G.; et al. Soluble DPP-4 up-Regulates Toll-like Receptors and Augments Inflammatory Reactions, Which Are Ameliorated by Vildagliptin or Mannose-6-Phosphate. Metabolism, 2016, 65 (2), 89–101. [CrossRef]
- Romacho, T.; Vallejo, S.; Villalobos, L. A.; Wronkowitz, N.; Indrakusuma, I.; Sell, H.; Eckel, J.; Sanchez-Ferrer, C. F.; Peiro, C. Soluble Dipeptidyl Peptidase-4 Induces Microvascular Endothelial Dysfunction through Proteinase-Activated Receptor-2 and Thromboxane A2 Release. J Hypertens, 2016, 34 (5), 869–876. [CrossRef]
- Tang, S. T.; Su, H.; Zhang, Q.; Tang, H. Q.; Wang, C. J.; Zhou, Q.; Wei, W.; Zhu, H. Q.; Wang, Y. Sitagliptin Inhibits Endothelin-1 Expression in the Aortic Endothelium of Rats with Streptozotocin-Induced Diabetes by Suppressing the Nuclear Factor-ΚB/IκBα System through the Activation of AMP-Activated Protein Kinase. Int J Mol Med, 2016, 37 (6), 1558–1566. [CrossRef]
- Matsubara, J.; Sugiyama, S.; Sugamura, K.; Nakamura, T.; Fujiwara, Y.; Akiyama, E.; Kurokawa, H.; Nozaki, T.; Ohba, K.; Konishi, M.; et al. A Dipeptidyl Peptidase-4 Inhibitor, Des-Fluoro-Sitagliptin, Improves Endothelial Function and Reduces Atherosclerotic Lesion Formation in Apolipoprotein E-Deficient Mice. J Am Coll Cardiol, 2012, 59 (3), 265–276. [CrossRef]
- Liu, H.; Xiang, H.; Zhao, S.; Sang, H.; Lv, F.; Chen, R.; Shu, Z.; Chen, A. F.; Chen, S.; Lu, H. Vildagliptin Improves High Glucose-Induced Endothelial Mitochondrial Dysfunction via Inhibiting Mitochondrial Fission. J Cell Mol Med, 2019, 23 (2), 798–810. [CrossRef]
- Fadini, G. P.; Boscaro, E.; Albiero, M.; Menegazzo, L.; Frison, V.; De Kreutzenberg, S.; Agostini, C.; Tiengo, A.; Avogaro, A. The Oral Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Increases Circulating Endothelial Progenitor Cells in Patients with Type 2 Diabetes: Possible Role of Stromal-Derived Factor-1alpha. Diabetes Care, 2010, 33 (7), 1607–1609. [CrossRef]
- Fadini, G. P.; Avogaro, A. Dipeptidyl Peptidase-4 Inhibition and Vascular Repair by Mobilization of Endogenous Stem Cells in Diabetes and Beyond. Atherosclerosis, 2013, 229 (1), 23–29. [CrossRef]
- Dai, Y.; Dai, D.; Wang, X.; Ding, Z.; Mehta, J. L. DPP-4 Inhibitors Repress NLRP3 Inflammasome and Interleukin-1beta via GLP-1 Receptor in Macrophages through Protein Kinase C Pathway. Cardiovasc Drugs Ther, 2014, 28 (5), 425–432. [CrossRef]
- Cha, S. A.; Park, Y. M.; Yun, J. S.; Lim, T. S.; Song, K. H.; Yoo, K. D.; Ahn, Y. B.; Ko, S. H. A Comparison of Effects of DPP-4 Inhibitor and SGLT2 Inhibitor on Lipid Profile in Patients with Type 2 Diabetes. Lipids Health Dis, 2017, 16 (1), 1–8. [CrossRef]
- Boschmann, M.; Engeli, S.; Dobberstein, K.; Budziarek, P.; Strauss, A.; Boehnke, J.; Sweep, F. C. G. J.; Luft, F. C.; He, Y. L.; Foley, J. E.; et al. Dipeptidyl-Peptidase-IV Inhibition Augments Postprandial Lipid Mobilization and Oxidation in Type 2 Diabetic Patients. J Clin Endocrinol Metab, 2009, 94 (3), 846–852. [CrossRef]
- Rosenstock, J.; Perkovic, V.; Johansen, O. E.; Cooper, M. E.; Kahn, S. E.; Marx, N.; Alexander, J. H.; Pencina, M.; Toto, R. D.; Wanner, C.; et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA, 2019, 321 (1), 69–79. [CrossRef]
- Green, J. B.; Bethel, M. A.; Armstrong, P. W.; Buse, J. B.; Engel, S. S.; Garg, J.; Josse, R.; Kaufman, K. D.; Koglin, J.; Korn, S.; et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med, 2015, 373 (3), 232–242. [CrossRef]
- Scirica, B. M.; Bhatt, D. L.; Braunwald, E.; Steg, P. G.; Davidson, J.; Hirshberg, B.; Ohman, P.; Frederich, R.; Wiviott, S. D.; Hoffman, E. B.; et al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. N Engl J Med, 2013, 369 (14), 1317–1326. [CrossRef]
- White, W. B.; Cannon, C. P.; Heller, S. R.; Nissen, S. E.; Bergenstal, R. M.; Bakris, G. L.; Perez, A. T.; Fleck, P. R.; Mehta, C. R.; Kupfer, S.; et al. Alogliptin after Acute Coronary Syndrome in Patients with Type 2 Diabetes. N Engl J Med, 2013, 369 (14), 1327–1335. [CrossRef]
- Solomon, S. D.; de Boer, R. A.; DeMets, D.; Hernandez, A. F.; Inzucchi, S. E.; Kosiborod, M. N.; Lam, C. S. P.; Martinez, F.; Shah, S. J.; Lindholm, D.; et al. Dapagliflozin in Heart Failure with Preserved and Mildly Reduced Ejection Fraction: Rationale and Design of the DELIVER Trial. Eur J Heart Fail, 2021, 23 (7), 1217–1225. [CrossRef]
- Packer, M.; Butler, J.; Zannad, F.; Filippatos, G.; Ferreira, J. P.; Pocock, S. J.; Carson, P.; Anand, I.; Doehner, W.; Haass, M.; et al. Effect of Empagliflozin on Worsening Heart Failure Events in Patients With Heart Failure and Preserved Ejection Fraction: EMPEROR-Preserved Trial. Circulation, 2021, 144 (16), 1284–1294. [CrossRef]
- Panzer, B.; Wadowski, P. P.; Huber, K.; Panzer, S.; Gremmel, T. Protease-Activated Receptor-Mediated Platelet Aggregation in Patients with Type 2 Diabetes on Potent P2Y12 Inhibitors. Diabet Med, 2022, 39 (8), e14868. [CrossRef]
- Wadowski, P. P.; Weikert, C.; Pultar, J.; Lee, S.; Eichelberger, B.; Koppensteiner, R.; Lang, I. M.; Panzer, S.; Gremmel, T. Ticagrelor Inhibits Toll-Like and Protease-Activated Receptor Mediated Platelet Activation in Acute Coronary Syndromes. Cardiovasc Drugs Ther, 2020, 34 (1), 53–63. [CrossRef]
- Wadowski, P. P.; Eichelberger, B.; Kopp, C. W.; Pultar, J.; Seidinger, D.; Koppensteiner, R.; Lang, I. M.; Panzer, S.; Gremmel, T. Disaggregation Following Agonist-Induced Platelet Activation in Patients on Dual Antiplatelet Therapy. J Cardiovasc Transl Res, 2017, 10 (4), 359–367. [CrossRef]
- Pultar, J.; Wadowski, P. P.; Panzer, S.; Gremmel, T. Oral Antiplatelet Agents in Cardiovascular Disease. Vasa, 2019, 48 (4), 291–302. [CrossRef]
- Schrottmaier, W. C.; Mussbacher, M.; Salzmann, M.; Assinger, A. Platelet-Leukocyte Interplay during Vascular Disease. Atherosclerosis, 2020, 307, 109–120. [CrossRef]
- Li, W.; Liu, Q.; Tang, Y. Platelet to Lymphocyte Ratio in the Prediction of Adverse Outcomes after Acute Coronary Syndrome: A Meta-Analysis. Sci Rep, 2017, 7, 40426. [CrossRef]
- Azab, B.; Shah, N.; Akerman, M.; McGinn, J. T. Value of Platelet/Lymphocyte Ratio as a Predictor of All-Cause Mortality after Non-ST-Elevation Myocardial Infarction. J Thromb Thrombolysis, 2012, 34 (3), 326–334. [CrossRef]
- Ugur, M.; Gul, M.; Bozbay, M.; Cicek, G.; Uyarel, H.; Koroglu, B.; Uluganyan, M.; Aslan, S.; Tusun, E.; Surgit, O.; et al. The Relationship between Platelet to Lymphocyte Ratio and the Clinical Outcomes in ST Elevation Myocardial Infarction Underwent Primary Coronary Intervention. Blood Coagul Fibrinolysis, 2014, 25 (8), 806–811. [CrossRef]
- Lee, S.; Hoberstorfer, T.; Wadowski, P. P.; Kopp, C. W.; Panzer, S.; Gremmel, T. Platelet-to-Lymphocyte and Neutrophil-to-Lymphocyte Ratios Predict Target Vessel Restenosis after Infrainguinal Angioplasty with Stent Implantation. J Clin Med, 2020, 9 (6), 1–12. [CrossRef]
- Gremmel, T.; Steiner, S.; Seidinger, D.; Koppensteiner, R.; Panzer, S.; Kopp, C. W. Adenosine Diphosphate-Inducible Platelet Reactivity Shows a Pronounced Age Dependency in the Initial Phase of Antiplatelet Therapy with Clopidogrel. J Thromb Haemost, 2010, 8 (1), 37–42. [CrossRef]
- Gremmel, T.; Michelson, A. D.; Wadowski, P. P.; Pultar, J.; Weikert, C.; Tscharre, M.; Lee, S.; Panzer, S.; Frelinger, A. L. Sex-Specific Platelet Activation through Protease-Activated Receptor-1 in Patients Undergoing Cardiac Catheterization. Atherosclerosis, 2021, 339, 12–19. [CrossRef]
- Wadowski, P. P.; Lee, S.; Kopp, C. W.; Koppensteiner, R.; Panzer, S.; Gremmel, T. Low Levels of High-Density Lipoprotein Cholesterol Are Linked to Impaired Clopidogrel-Mediated Platelet Inhibition. Angiology, 2018, 69 (9), 786–794. [CrossRef]
- Jäger, B.; Piackova, E.; Haller, P. M.; Andric, T.; Kahl, B.; Christ, G.; Geppert, A.; Wojta, J.; Huber, K. Increased Platelet Reactivity in Dyslipidemic Patients with Coronary Artery Disease on Dual Anti-Platelet Therapy. Arch Med Sci, 2019, 15 (1), 65–71. [CrossRef]
- Gremmel, T.; Kopp, C. W.; Seidinger, D.; Koppensteiner, R.; Panzer, S.; Sunder-Plassmann, R.; Mannhalter, C.; Steiner, S. Differential Impact of Cytochrome 2C9 Allelic Variants on Clopidogrel-Mediated Platelet Inhibition Determined by Five Different Platelet Function Tests. Int J Cardiol, 2013, 166 (1), 126–131. [CrossRef]
- Gremmel, T.; Kopp, C. W.; Moertl, D.; Seidinger, D.; Koppensteiner, R.; Panzer, S.; Mannhalter, C.; Steiner, S. Influence of Cytochrome 2C19 Allelic Variants on On-Treatment Platelet Reactivity Evaluated by Five Different Platelet Function Tests. Thromb Res, 2012, 129 (5), 616–622. [CrossRef]
- Giustino, G.; Kirtane, A. J.; Baber, U.; Généreux, P.; Witzenbichler, B.; Neumann, F. J.; Weisz, G.; Maehara, A.; Rinaldi, M. J.; Metzger, C.; et al. Impact of Anemia on Platelet Reactivity and Ischemic and Bleeding Risk: From the Assessment of Dual Antiplatelet Therapy With Drug-Eluting Stents Study. Am J Cardiol, 2016, 117 (12), 1877–1883. [CrossRef]
- Wadowski, P. P.; Kopp, C. W.; Koppensteiner, R.; Lang, I. M.; Pultar, J.; Lee, S.; Weikert, C.; Panzer, S.; Gremmel, T. Decreased Platelet Inhibition by P2Y12 Receptor Blockers in Anaemia. Eur J Clin Invest, 2018, 48 (1). [CrossRef]
- Weiss, G.; Ganz, T.; Goodnough, L. T. Anemia of Inflammation. Blood, 2019, 133 (1), 40–50. [CrossRef]
- Giustino, G.; Kirtane, A. J.; Baber, U.; Généreux, P.; Witzenbichler, B.; Neumann, F. J.; Weisz, G.; Maehara, A.; Rinaldi, M. J.; Metzger, C.; et al. Impact of Anemia on Platelet Reactivity and Ischemic and Bleeding Risk: From the Assessment of Dual Antiplatelet Therapy With Drug-Eluting Stents Study. Am J Cardiol, 2016, 117 (12), 1877–1883. [CrossRef]
- Otaki, Y.; Watanabe, T.; Takahashi, H.; Sugai, T.; Yokoyama, M.; Tamura, H.; Kato, S.; Nishiyama, S.; Arimoto, T.; Shishido, T.; et al. Impact of Iron Deficiency on Peripheral Artery Disease After Endovascular Therapy. Circ Rep, 2019, 1 (4), 187–195. [CrossRef]
- McEvoy, J. W.; Ibrahim, K.; Kickler, T. S.; Clarke, W. A.; Hasan, R. K.; Czarny, M. J.; Keramati, A. R.; Goli, R. R.; Gratton, T. P.; Brinker, J. A.; et al. Effect of Intravenous Fentanyl on Ticagrelor Absorption and Platelet Inhibition Among Patients Undergoing Percutaneous Coronary Intervention: The PACIFY Randomized Clinical Trial (Platelet Aggregation With Ticagrelor Inhibition and Fentanyl). Circulation, 2018, 137 (3), 307–309. [CrossRef]
- Kubica, J.; Adamski, P.; Ostrowska, M.; Sikora, J.; Kubica, J. M.; Sroka, W. D.; Stankowska, K.; Buszko, K.; Navarese, E. P.; Jilma, B.; et al. Morphine Delays and Attenuates Ticagrelor Exposure and Action in Patients with Myocardial Infarction: The Randomized, Double-Blind, Placebo-Controlled IMPRESSION Trial. Eur Heart J, 2016, 37 (3), 245–252. [CrossRef]
- Hobl, E. L.; Reiter, B.; Schoergenhofer, C.; Schwameis, M.; Derhaschnig, U.; Lang, I. M.; Stimpfl, T.; Jilma, B. Morphine Interaction with Prasugrel: A Double-Blind, Cross-over Trial in Healthy Volunteers. Clin Res Cardiol, 2016, 105 (4), 349–355. [CrossRef]
- Hobl, E. L.; Reiter, B.; Schoergenhofer, C.; Schwameis, M.; Derhaschnig, U.; Kubica, J.; Stimpfl, T.; Jilma, B. Morphine Decreases Ticagrelor Concentrations but Not Its Antiplatelet Effects: A Randomized Trial in Healthy Volunteers. Eur J Clin Invest, 2016, 46 (1), 7–14. [CrossRef]
- Hobl, E. L.; Stimpfl, T.; Ebner, J.; Schoergenhofer, C.; Derhaschnig, U.; Sunder-Plassmann, R.; Jilma-Stohlawetz, P.; Mannhalter, C.; Posch, M.; Jilma, B. Morphine Decreases Clopidogrel Concentrations and Effects: A Randomized, Double-Blind, Placebo-Controlled Trial. J Am Coll Cardiol, 2014, 63 (7), 630–635. [CrossRef]
- Bartko, J.; Schoergenhofer, C.; Schwameis, M.; Wadowski, P.; Kubica, J.; Jilma, B.; Hobl, E. L. Morphine Interaction with Aspirin: A Double-Blind, Crossover Trial in Healthy Volunteers. J Pharmacol Exp Ther, 2018, 365 (2), 430–436. [CrossRef]
- Masselli, E.; Pozzi, G.; Vaccarezza, M.; Mirandola, P.; Galli, D.; Vitale, M.; Carubbi, C.; Gobbi, G. ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int J Mol Sci, 2020, 21 (14), 1–35. [CrossRef]
- Falconer, D.; Papageorgiou, N.; Salem, K.; Lim, W. Y.; Katsargyris, A.; Avgerinos, E.; Tousoulis, D. Nitric Oxide Donors for Peripheral Artery Disease. Curr Opin Pharmacol, 2018, 39, 77–85. [CrossRef]
- Park, S. Y.; Pekas, E. J.; Headid, R. J.; Son, W. M.; Wooden, T. K.; Song, J.; Layec, G.; Yadav, S. K.; Mishra, P. K.; Pipinos, I. I. Acute Mitochondrial Antioxidant Intake Improves Endothelial Function, Antioxidant Enzyme Activity, and Exercise Tolerance in Patients with Peripheral Artery Disease. Am J Physiol Heart Circ Physiol, 2020, 319 (2), H456–H467. [CrossRef]
- Gorabi, A. M.; Kiaie, N.; Hajighasemi, S.; Banach, M.; Penson, P. E.; Jamialahmadi, T.; Sahebkar, A. Statin-Induced Nitric Oxide Signaling: Mechanisms and Therapeutic Implications. J Clin Med, 2019, 8 (12), 2051. [CrossRef]
- Piechota-Polanczyk, A.; Goraca, A.; Demyanets, S.; Mittlboeck, M.; Domenig, C.; Neumayer, C.; Wojta, J.; Nanobachvili, J.; Huk, I.; Klinger, M. Simvastatin Decreases Free Radicals Formation in the Human Abdominal Aortic Aneurysm Wall via NF-ΚB. Eur J Vasc Endovasc Surg, 2012, 44 (2), 133–137. [CrossRef]
- Durante, W. Targeting Heme Oxygenase-1 in Vascular Disease. Curr Drug Targets, 2010, 11 (12), 1504–1516. [CrossRef]
- Dulak, J.; Deshane, J.; Jozkowicz, A.; Agarwal, A. Heme Oxygenase-1 and Carbon Monoxide in Vascular Pathobiology: Focus on Angiogenesis. Circulation, 2008, 117 (2), 231–241. [CrossRef]
- Lee, T. S.; Chang, C. C.; Zhu, Y.; Shyy, J. Y. J. Simvastatin Induces Heme Oxygenase-1: A Novel Mechanism of Vessel Protection. Circulation, 2004, 110 (10), 1296–1302. [CrossRef]
- Piechota-Polanczyk, A.; Kopacz, A.; Kloska, D.; Zagrapan, B.; Neumayer, C.; Grochot-Przeczek, A.; Huk, I.; Brostjan, C.; Dulak, J.; Jozkowicz, A. Simvastatin Treatment Upregulates HO-1 in Patients with Abdominal Aortic Aneurysm but Independently of Nrf2. Oxid Med Cell Longev, 2018, 2018, 2028936. [CrossRef]
- Andreas, M.; Oeser, C.; Kainz, F. M.; Shabanian, S.; Aref, T.; Bilban, M.; Messner, B.; Heidtmann, J.; Laufer, G.; Kocher, A.; et al. Intravenous Heme Arginate Induces HO-1 (Heme Oxygenase-1) in the Human Heart. Arterioscler Thromb Vasc Biol, 2018, 38 (11), 2755–2762. [CrossRef]
- Doberer, D.; Haschemi, A.; Andreas, M.; Zapf, T. C.; Clive, B.; Jeitler, M.; Heinzl, H.; Wagner, O.; Wolzt, M.; Bilban, M. Haem Arginate Infusion Stimulates Haem Oxygenase-1 Expression in Healthy Subjects. Br J Pharmacol, 2010, 161 (8), 1751–1762. [CrossRef]
- Andreas, M.; Schmid, A. I.; Doberer, D.; Schewzow, K.; Weisshaar, S.; Heinze, G.; Bilban, M.; Moser, E.; Wolzt, M. Heme Arginate Improves Reperfusion Patterns after Ischemia: A Randomized, Placebo-Controlled Trial in Healthy Male Subjects. J Cardiovasc Magn Reson, 2012, 14 (1), 55. [CrossRef]
- Heusch, G. Myocardial Ischaemia-Reperfusion Injury and Cardioprotection in Perspective. Nat Rev Cardiol, 2020, 17 (12), 773–789. [CrossRef]
- Andreas, M.; Schmid, A. I.; Keilani, M.; Doberer, D.; Bartko, J.; Crevenna, R.; Moser, E.; Wolzt, M. Effect of Ischemic Preconditioning in Skeletal Muscle Measured by Functional Magnetic Resonance Imaging and Spectroscopy: A Randomized Crossover Trial. J Cardiovasc Magn Reson, 2011, 13 (1), 32. [CrossRef]
- Hentia, C.; Rizzato, A.; Camporesi, E.; Yang, Z.; Muntean, D. M.; Săndesc, D.; Bosco, G. An Overview of Protective Strategies against Ischemia/Reperfusion Injury: The Role of Hyperbaric Oxygen Preconditioning. Brain Behav, 2018, 8 (5), e00959. [CrossRef]
- Rout, A.; Tantry, U. S.; Novakovic, M.; Sukhi, A.; Gurbel, P. A. Targeted Pharmacotherapy for Ischemia Reperfusion Injury in Acute Myocardial Infarction. Expert Opin Pharmacother, 2020, 21 (15), 1851–1865. [CrossRef]
- Belcher, D. A.; Williams, A. T.; Munoz, C. J.; Muller, C. R.; Walser, C.; Palmer, A. F.; Cabrales, P. Attenuating Ischemia-Reperfusion Injury with Polymerized Albumin. J Appl Physiol (1985), 2022, 132 (2), 489–496. [CrossRef]
- Merchant, S. H.; Gurule, D. M.; Larson, R. S. Amelioration of Ischemia-Reperfusion Injury with Cyclic Peptide Blockade of ICAM-1. Am J Physiol Heart Circ Physiol, 2003, 284 (4), H1260–H1268. [CrossRef]
- Zhang, X.; Xie, Y. W.; Nasjletti, A.; Xu, X.; Wolin, M. S.; Hintze, T. H. ACE Inhibitors Promote Nitric Oxide Accumulation to Modulate Myocardial Oxygen Consumption. Circulation, 1997, 95 (1), 176–182. [CrossRef]
- Steven, S.; Oelze, M.; Hanf, A.; Kröller-Schön, S.; Kashani, F.; Roohani, S.; Welschof, P.; Kopp, M.; Gödtel-Armbrust, U.; Xia, N.; et al. The SGLT2 Inhibitor Empagliflozin Improves the Primary Diabetic Complications in ZDF Rats. Redox Biol, 2017, 13, 370–385. [CrossRef]
- Uthman, L.; Homayr, A.; Juni, R. P.; Spin, E. L.; Kerindongo, R.; Boomsma, M.; Hollmanna Benedikt Preckel, M. W.; Koolwijk, P.; Van Hinsbergh, V. W. M.; Zuurbier, C. J.; et al. Empagliflozin and Dapagliflozin Reduce ROS Generation and Restore NO Bioavailability in Tumor Necrosis Factor α-Stimulated Human Coronary Arterial Endothelial Cells. Cell Physiol Biochem, 2019, 53 (5), 865–886. [CrossRef]
- Chaudhuri, A.; Ghanim, H.; Vora, M.; Sia, C. L.; Korzeniewski, K.; Dhindsa, S.; Makdissi, A.; Dandona, P. Exenatide Exerts a Potent Antiinflammatory Effect. J Clin Endocrinol Metab, 2012, 97 (1), 198–207. [CrossRef]
- Schlager, O.; Giurgea, A.; Schuhfried, O.; Seidinger, D.; Hammer, A.; Gröger, M.; Fialka-Moser, V.; Gschwandtner, M.; Koppensteiner, R.; Steiner, S. Exercise Training Increases Endothelial Progenitor Cells and Decreases Asymmetric Dimethylarginine in Peripheral Arterial Disease: A Randomized Controlled Trial. Atherosclerosis, 2011, 217 (1), 240–248. [CrossRef]
- Wang, Y.; Xu, D. Effects of Aerobic Exercise on Lipids and Lipoproteins. Lipids Health Dis, 2017, 16 (1). [CrossRef]
- Sampath Kumar, A.; Maiya, A. G.; Shastry, B. A.; Vaishali, K.; Ravishankar, N.; Hazari, A.; Gundmi, S.; Jadhav, R. Exercise and Insulin Resistance in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Ann Phys Rehabil Med, 2019, 62 (2), 98–103. [CrossRef]
- Sharman, J. E.; La Gerche, A.; Coombes, J. S. Exercise and Cardiovascular Risk in Patients with Hypertension. Am J Hypertens, 2015, 28 (2), 147–158. [CrossRef]
- Palmefors, H.; DuttaRoy, S.; Rundqvist, B.; Börjesson, M. The Effect of Physical Activity or Exercise on Key Biomarkers in Atherosclerosis--a Systematic Review. Atherosclerosis, 2014, 235 (1), 150–161. [CrossRef]
- Carvalho de Arruda Veiga, E.; Ferreira Levy, R.; Sales Bocalini, D.; Maria Soares Junior, J.; Chada Baracat, E.; Carvalho Cavalli, R.; dos Santos, L. Exercise Training and Experimental Myocardial Ischemia and Reperfusion: A Systematic Review and Meta-Analysis. IJC Heart & Vasculature, 2023, 46, 101214. [CrossRef]
- Quindry, J. C.; Franklin, B. A. Exercise Preconditioning as a Cardioprotective Phenotype. Am J Cardiol, 2021, 148, 8–15. [CrossRef]
- Banerjee, S.; Mwangi, J. G.; Stanley, T. K.; Mitra, R.; Ebong, E. E. Regeneration and Assessment of the Endothelial Glycocalyx to Address Cardiovascular Disease. Ind Eng Chem Res, 2021, 60 (48), 17328–17347. [CrossRef]
- Qi, H.; Yang, S.; Zhang, L. Neutrophil Extracellular Traps and Endothelial Dysfunction in Atherosclerosis and Thrombosis. Front Immunol, 2017, 8, 928. [CrossRef]
- Wong, B. W.; Marsch, E.; Treps, L.; Baes, M.; Carmeliet, P. Endothelial Cell Metabolism in Health and Disease: Impact of Hypoxia. EMBO J, 2017, 36 (15), 2187–2203. [CrossRef]
- De Vries, M. R.; Quax, P. H. A. Plaque Angiogenesis and Its Relation to Inflammation and Atherosclerotic Plaque Destabilization. Curr Opin Lipidol, 2016, 27 (5), 499–506. [CrossRef]
- Xu, Y.; An, X.; Guo, X.; Habtetsion, T. G.; Wang, Y.; Xu, X.; Kandala, S.; Li, Q.; Li, H.; Zhang, C.; et al. Endothelial PFKFB3 Plays a Critical Role in Angiogenesis. Arterioscler Thromb Vasc Biol, 2014, 34 (6), 1231–1239. [CrossRef]
- Lindstedt, K. A.; Mäyränpää, M. I.; Kovanen, P. T. Mast Cells in Vulnerable Atherosclerotic Plaques – a View to a Kill. J Cell Mol Med, 2007, 11 (4), 739–758. [CrossRef]
- Döring, Y.; Soehnlein, O.; Weber, C. Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ Res, 2017, 120 (4), 736–743. [CrossRef]
- Wadowski, P. P.; Steinlechner, B.; Zimpfer, D.; Schlöglhofer, T.; Schima, H.; Hülsmann, M.; Lang, I. M.; Gremmel, T.; Koppensteiner, R.; Zehetmayer, S.; et al. Functional Capillary Impairment in Patients with Ventricular Assist Devices. Sci Rep, 2019, 9 (1), 5909. [CrossRef]
- Wadowski, P. P.; Hülsmann, M.; Schörgenhofer, C.; Lang, I. M.; Wurm, R.; Gremmel, T.; Koppensteiner, R.; Steinlechner, B.; Schwameis, M.; Jilma, B. Sublingual Functional Capillary Rarefaction in Chronic Heart Failure. Eur J Clin Invest, 2018, 48 (2). [CrossRef]
- Wadowski, P. P.; Schörgenhofer, C.; Rieder, T.; Ertl, S.; Pultar, J.; Serles, W.; Sycha, T.; Mayer, F.; Koppensteiner, R.; Gremmel, T.; et al. Microvascular Rarefaction in Patients with Cerebrovascular Events. Microvasc Res, 2022, 140, 104300. [CrossRef]
- Pultar, J.; Ertl, S.; Weikert, C.; Gremmel, T.; Kopp, C.; Mitteregger, M.; Cenan, E.; Jilma, B.; Koppensteiner, R.; Wadowski, P. Systemic Capillary Rarefaction in Patients with Peripheral Arterial Disease. Wien Klin Wochenschr, 2022, 134, 211–227. [CrossRef]
- Yu, H.; Kalogeris, T.; Korthuis, R. J. Reactive Species-Induced Microvascular Dysfunction in Ischemia/Reperfusion. Free Radic Biol Med, 2019, 135, 182–197. [CrossRef]
- Yu, H.; Kalogeris, T.; Korthuis, R. J. Reactive Species-Induced Microvascular Dysfunction in Ischemia/Reperfusion. Free Radic Biol Med, 2019, 135, 182–197. [CrossRef]
- Belcher, D. A.; Williams, A. T.; Munoz, C. J.; Muller, C. R.; Walser, C.; Palmer, A. F.; Cabrales, P. Attenuating Ischemia-Reperfusion Injury with Polymerized Albumin. J Appl Physiol (1985), 2022, 132 (2), 489–496. [CrossRef]
- Zanini, G.; Selleri, V.; Roncati, L.; Coppi, F.; Nasi, M.; Farinetti, A.; Manenti, A.; Pinti, M.; Mattioli, A. V. Vascular “Long COVID”: A New Vessel Disease? Angiology, 2023. [CrossRef]
- Wadowski, P. P.; Piechota-Polańczyk, A.; Andreas, M.; Kopp, C. W. Cardiovascular Disease Management in the Context of Global Crisis. Int J Environ Res Public Health, 2022, 20 (1), 689. [CrossRef]
- Panagiotides, N. G.; Zimprich, F.; Machold, K.; Schlager, O.; Müller, M.; Ertl, S.; Löffler-Stastka, H.; Koppensteiner, R.; Wadowski, P. P. A Case of Autoimmune Small Fiber Neuropathy as Possible Post COVID Sequelae. Int J Environ Res Public Health, 2023, 20 (6), 4918. [CrossRef]
- Balin, M.; Kivrak, T. Effect of Repeated Remote Ischemic Preconditioning on Peripheral Arterial Disease in Patients Suffering from Intermittent Claudication. Cardiovasc Ther, 2019, 2019, 9592378. [CrossRef]
- Poznyak, A. V.; Bharadwaj, D.; Prasad, G.; Grechko, A. V.; Sazonova, M. A.; Orekhov, A. N. Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD. Int J Mol Sci, 2021, 22 (13), 6702. [CrossRef]
- Dardano, A.; Miccoli, R.; Bianchi, C.; Daniele, G.; Del Prato, S. Invited Review. Series: Implications of the Recent CVOTs in Type 2 Diabetes: Which Patients for GLP-1RA or SGLT-2 Inhibitor? Diabetes Res Clin Pract, 2020, 162, 108112. [CrossRef]
- Hurley, D. M.; Williams, E. R.; Cross, J. M.; Riedinger, B. R.; Meyer, R. A.; Abela, G. S.; Slade, J. M. Aerobic Exercise Improves Microvascular Function in Older Adults. Med Sci Sports Exerc, 2019, 51 (4), 773–781. [CrossRef]
- Steiner, S.; Niessner, A.; Ziegler, S.; Richter, B.; Seidinger, D.; Pleiner, J.; Penka, M.; Wolzt, M.; Huber, K.; Wojta, J.; et al. Endurance Training Increases the Number of Endothelial Progenitor Cells in Patients with Cardiovascular Risk and Coronary Artery Disease. Atherosclerosis, 2005, 181 (2), 305–310. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
