Submitted:
29 June 2023
Posted:
29 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. PV Solar Research Objectives
3. Thermal Performance of Solar Farm
4. Atmospheric Boundary Layer and Solar Energy Meteorology
4.1. Heat Island
4.2. Cloud Influences
5. Agrivoltaic System
5.1. Shading Factor
5.2. Surface Energy Budget
6. Modeling and Control Strategies under Non-Uniformity Irradiation Conditions
7. Research Gaps
8. Conclusion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Vignesh, R.; Feldman, D.; Desai, J.; Margolis, R.U.S. U.S. Solar photovoltaic system and energy storage cost benchmarks: Q1 2021. Technical report, NREL, 2021.
- Glick, A.; Ali, N.; Bossuyt, J.; Calaf, M.; Cal, R.B. Utility-scale solar PV performance enhancements through system-level modifications. Scientific Reports 2020, 10, 10505. [Google Scholar] [CrossRef] [PubMed]
- Krauter, S. Increased electrical yield via water flow over the front of photovoltaic panels. Solar Energy Materials and Solar Cells 2004, 82, 131–137. [Google Scholar] [CrossRef]
- Abdolzadeh, M.; Ameri, M. Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells. Renewable energy 2009, 34, 91–96. [Google Scholar] [CrossRef]
- Odeh, S.; Behnia, M. Improving photovoltaic module efficiency using water cooling. Heat Transfer Engineering 2009, 30, 499–505. [Google Scholar] [CrossRef]
- Sargunanathan, S.; Elango, A.; Mohideen, S.T. Performance enhancement of solar photovoltaic cells using effective cooling methods: A review. Renewable and Sustainable Energy Reviews 2016, 64, 382–393. [Google Scholar] [CrossRef]
- Glick, A.; Ali, N.; Bossuyt, J.; Recktenwald, G.; Calaf, M.; Cal, R.B. Infinite photovoltaic solar arrays: Considering flux of momentum and heat transfer. Renewable Energ 2020, 156, 791–803. [Google Scholar] [CrossRef]
- Glick, A.; Smith, S.E.; Ali, N.; Bossuyt, J.; Recktenwald, G.; Calaf, M.; Cal, R.B. Influence of flow direction and turbulence intensity on heat transfer of utility-scale photovoltaic solar farms. Solar Energy 2020, 207, 173–182. [Google Scholar] [CrossRef]
- Köntges, M.; Kurtz, S.; Packard, C.E.; Jahn, U.; Berger, K.A.; Kato, K.; Friesen, T.; Liu, H.; Van Iseghem, M.; Wohlgemuth, J.; et al. Review of failures of photovoltaic modules. IEA International Energy Agency 2014. [Google Scholar]
- Akella, A.; Saini, R.; Sharma, M.P. Social, economical and environmental impacts of renewable energy systems. Renewable energy 2009, 34, 390–396. [Google Scholar] [CrossRef]
- Ghosh, S.; Yadav, R. Future of photovoltaic technologies: A comprehensive review. Sustainable Energy Technologies and Assessments 2021, 47, 101410. [Google Scholar] [CrossRef]
- Siddiqui, M.U.; Arif, A.F.; Kelley, L.; Dubowsky, S. Three-dimensional thermal modeling of a photovoltaic module under varying conditions. Solar Energy 2012, 86, 2620–2631. [Google Scholar] [CrossRef]
- Al-chaderchi, M.; Sopain, K.; Alghoul, M.; Salameh, T. Experimental study of the effect of fully shading on the Solar PV module performance. In Proceedings of the E3S web of conferences. EDP Sciences; 2017. Vol. 23. p. 01001. [Google Scholar]
- Husin, H.; Zaki, M. A critical review of the integration of renewable energy sources with various technologies. Protection and Control of Modern Power Systems 2021, 6, 1–18. [Google Scholar]
- Hassan, A.; Al-Abdeli, Y.M.; Masek, M.; Bass, O. Optimal sizing and energy scheduling of grid-supplemented solar PV systems with battery storage: Sensitivity of reliability and financial constraints. Energy 2022, 238, 121780. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Li, S.; Wang, Y.; Xiao, W. Reliability assessment of photovoltaic power systems: Review of current status and future perspectives. Applied Energy 2013, 104, 822–833. [Google Scholar] [CrossRef]
- Honrubia-Escribano, A.; Ramirez, F.J.; Gómez-Lázaro, E.; Garcia-Villaverde, P.M.; Ruiz-Ortega, M.J.; Parra-Requena, G. Influence of solar technology in the economic performance of PV power plants in Europe. A comprehensive analysis. Renewable and Sustainable Energy Reviews 2018, 82, 488–501. [Google Scholar] [CrossRef]
- Miller, R.D.; Zimmerman, D.K. Wind loads on flat plate photovoltaic array fields. Phase III, final report. Technical report, Boeing Engineering and Construction Co., Seattle, WA (USA), 1981.
- Meroney, R.N.; Neff, D.E. Wind effects on roof-mounted solar photovoltaic arrays: CFD and wind-tunnel evaluation. In Proceedings of the The Fifth International Symposium on Computational Wind Engineering (CWE 2010), 2010.
- Abiola-Ogedengbe, A.; Hangan, H.; Siddiqui, K. Experimental investigation of wind effects on a standalone photovoltaic (PV) module. Renewable Energy 2015, 78, 657–665. [Google Scholar] [CrossRef]
- Castellani, F.; Eltayesh, A.; Natili, F.; Tocci, T.; Becchetti, M.; Capponi, L.; Astolfi, D.; Rossi, G. Wind Flow Characterisation over a PV Module through URANS Simulations and Wind Tunnel Optical Flow Methods. Energies 2021, 14, 6546. [Google Scholar] [CrossRef]
- Radu, A.; Axinte, E.; Theohari, C. Steady wind pressures on solar collectors on flat-roofed buildings. Journal of Wind Engineering and Industrial Aerodynamics 1986, 23, 249–258. [Google Scholar] [CrossRef]
- Hussain, I.Y.; Ali, N. Natural convection heat transfer from a plane wall to thermally stratified environment. Journal of Engineering 2012, 18. [Google Scholar] [CrossRef]
- Hasan, K.; Yousuf, S.B.; Tushar, M.S.H.K.; Das, B.K.; Das, P.; Islam, M.S. Effects of different environmental and operational factors on the PV performance: A comprehensive review. Energy Science & Engineering 2022, 10, 656–675. [Google Scholar]
- Hsu, C.Y.; Huang, P.H.; Yang, K.S. Dynamic analysis of power system with photovoltaic generation. In Proceedings of the MATEC Web of Conferences. EDP Sciences; 2016. Vol. 61. p. 01005. [Google Scholar]
- Wang, F.; Zhu, Y.; Yan, J. Performance of solar PV micro-grid systems: A comparison study. Energy Procedia 2018, 145, 570–575. [Google Scholar] [CrossRef]
- Varma, R.K.; Siavashi, E.M. Enhancement of solar farm connectivity with smart PV inverter PV-STATCOM. IEEE Transactions on Sustainable Energy 2018, 10, 1161–1171. [Google Scholar] [CrossRef]
- Horowitz, K.A.; Peterson, Z.; Coddington, M.H.; Ding, F.; Sigrin, B.; Saleem, D.; Baldwin, S.E.; Lydic, B.; Stanfield, S.C.; Enbar, N.; et al. An overview of distributed energy resource (DER) interconnection: Current practices and emerging solutions. National Renewable Energy Lab.(NREL), Golden, CO (United States) 2019.
- Appelbaum, J.J.R.E. Bifacial photovoltaic panels field. Renewable Energy 2016, 85, 338–343. [Google Scholar] [CrossRef]
- Riaz, M.H.; Imran, H.; Butt, N.Z. Optimization of PV array density for fixed tilt bifacial solar panels for efficient agrivoltaic systems. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC). IEEE; 2020; pp. 1349–1352. [Google Scholar]
- Jouttijärvi, S.; Lobaccaro, G.; Kamppinen, A.; Miettunen, K. Benefits of bifacial solar cells combined with low voltage power grids at high latitudes. Renewable and Sustainable Energy Reviews 2022, 161, 112354. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S.A. Machine learning and deep learning for photovoltaic applications. In Artificial Intelligence for Smart Photovoltaic Technologies; AIP Publishing LLC Melville, New York, 2022; pp. 1–20.
- Ye, H.; Yang, B.; Han, Y.; Chen, N. State-of-the-art solar energy forecasting approaches: Critical potentials and challenges. Frontiers in Energy Research 2022, 10, 268. [Google Scholar]
- Gevorgian, V.; Koralewicz, P.; Shah, S.; Mendiola, E.; Wallen, R. ; H., V.P. Photovoltaic Plant and Battery Energy Storage System Integration at NREL’s Flatirons Campus. Technical report, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2022.
- Okedu, K.E. Advanced intelligent control strategies for solar and wind farms, 2022.
- Lorenz, E.; Hurka, J.; Heinemann, D.; Beyer, H.G. Irradiance forecasting for the power prediction of grid-connected photovoltaic systems. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2009, 2, 2–10. [Google Scholar] [CrossRef]
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-de Pison, F.J.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Solar Energy 2016, 136, 78–111. [Google Scholar] [CrossRef]
- Ladas, D.I.; Stathopoulos, T.; Rounis, E.D. Wind effects on the performance of solar collectors on rectangular flat roofs: A wind tunnel study. Journal of Wind Engineering and Industrial Aerodynamics 2017, 161, 27–41. [Google Scholar] [CrossRef]
- Liu, X.; Yu, D.; Zhang, X.; Huang, L.; Zhang, J.; Zhao, H. Experimental analysis of the wind effect on a solar farm by using a wind tunnel. Renewable Energy 2018, 125, 233–239. [Google Scholar]
- Adeh, E.H.; Good, S.P.; Calaf, M.; Higgins, C.W. Solar PV Power Potential is Greatest Over Croplands. Scientific Reports 2019, 9, 11442. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, Z.; Liu, X.; Zhang, X. Aerodynamic performance of solar panels under turbulent wind conditions. Journal of Wind Engineering and Industrial Aerodynamics 2020, 198, 104125. [Google Scholar]
- Woodhouse, M.; Jones-Albertus, R.; Feldman, D.; Fu, R.; Horowitz, K.; Chung, D.; Jordan, D.; Kurtz, S. On the path to sunshot. The role of advancements in solar photovoltaic efficiency, reliability, and costs. Technical report, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2016.
- Rossa, C. Energy losses in photovoltaic generators due to the wind patterns 2023.
- Stanislawski, B.; Margairaz, F.; Cal, R.; Calaf, M. Potential of module arrangements to enhance convective cooling in solar photovoltaic arrays. Renewable Energy 2020, 157, 851–858. [Google Scholar] [CrossRef]
- Stanislawski, B.J.; Harman, T.; Silverman, T.J.; Cal, R.B.; Calaf, M. Row spacing as a controller of solar module temperature and power output in solar farms. Journal of Renewable and Sustainable Energy 2022, 14, 063702. [Google Scholar] [CrossRef]
- Smith, S.E.; Glick, A.; Ali, N. and Bossuyt, J. ; McNeal, J.; Recktenwald, G.; Calaf, M.; Cal, , R.B. Configuration effects on flow dynamics and convective behavior in large-scale solar arrays. In Proceedings of the 2020 47th IEEE photovoltaic specialists conference (PVSC). IEEE, 2020; pp. 2195–2196. [Google Scholar]
- Smith, S.E.; Viggiano, B.; Ali, N.; Silverman, T.J.; Obligado, M.; Calaf, M.; Cal, R.B. Increased panel height enhances cooling for photovoltaic solar farms. Applied Energy 2022, 325, 119819. [Google Scholar] [CrossRef]
- Smith, S.E.; Stanislawski, B.J.; Eng, B.K.; Ali, N.; Silverman, T.J.; Calaf, M.; Cal, R.B. Viewing convection as a solar farm phenomenon broadens modern power predictions for solar photovoltaics. Journal of Renewable and Sustainable Energy 2022, 14, 063502. [Google Scholar] [CrossRef]
- Scott, R.; Kadum, H.; Salmaso, G.; Calaf, M.; Cal, R.B. A Lacunarity-Based Index for Spatial Heterogeneity. Earth and Space Science 2022, 9, e2021EA002180. [Google Scholar] [CrossRef]
- Kaplani, E.; Kaplanis, S. Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination. Solar Energy 2014, 107, 443–460. [Google Scholar] [CrossRef]
- Otth, D.H.; Ross, R.G. Assessing photovoltaic module degradation and lifetome from long term environmental tests. In Proceedings of the Institute of Environmental Sciences 29th Annual Meeting; 1983. [Google Scholar]
- Dupré, O.; Vaillon, R.; Green, M. Physics of the temperature coefficients of solar cells. Sol. Energ. Mat. Sol. C. 2015, 140, 92–100. [Google Scholar] [CrossRef]
- Vaillon, R.; Dupré, O.; Cal, R.B.; Calaf, M. Pathways for mitigating thermal losses in solar photovoltaics. Scientific Reports 2018, 8, 13163. [Google Scholar] [CrossRef]
- Rossa, C.; Martínez-Moreno, F.; Lorenzo, E. Experimental observations in mismatch losses in monofacial and bifacial PV generators. Progress in Photovoltaics: Research and Applications 2021, 29, 1223–1235. [Google Scholar] [CrossRef]
- Bastidas, J.R.E.; Roy, S. On the use of active flow control for improving solar panel performance. Applied Energy 2016, 184, 929–938. [Google Scholar]
- Scognamiglio, A.; Di Carlo, A.; Graditi, G. Flow control in wind and solar energy systems: A review. Renewable and Sustainable Energy Reviews 2017, 78, 723–739. [Google Scholar]
- Ramanathan, K.; Akhil, M.K.; DiOrio, N.A. Optimizing solar photovoltaic plant performance through active flow control. Solar Energy 2017, 157, 52–60. [Google Scholar]
- Abdul-Rahman, A.O.A.; Sinnott, A.R.P.; Sharkh, S.M. Power smoothing using active flow control for a grid-connected solar photovoltaic system. Applied Energy 2017, 193, 326–337. [Google Scholar]
- Zhou, J.; Cheng, L.; Chen, Z.; Shi, Y. Flow control of the air distribution system in solar greenhouses based on an intelligent control algorithm. Energy and Buildings 2018, 176, 293–303. [Google Scholar]
- Hossain, S.S.; Roy, S.; Sherif, S.A. Active flow control of boundary layer on a solar panel. Applied Energy 2018, 214, 67–77. [Google Scholar]
- Abu El-Nasr, F.M.E.; Abdelaziz, M.A. Active flow control for increasing efficiency of solar panel in solar farms. In Proceedings of the Proceedings of the International Conference on Renewable Energy Research and Applications, 2018; pp. 391–396.
- Anderson, T.N.; Mokry, J.L. The use of active flow control for wind and solar energy applications. Journal of Renewable and Sustainable Energy 2019, 11, 053302. [Google Scholar]
- Prasanth, N.; Mandal, B.K.; Das, M.K. Numerical investigation of active flow control on solar panel using vortex generator. Renewable Energy 2020, 157, 784–794. [Google Scholar]
- Yu, Y.; Zhang, X.; Huang, L.; Zhao, H. Numerical study of active flow control on the performance of solar farms. Journal of Physics: Conference Series 2020, 1548, 012044. [Google Scholar]
- Šarka, D.D.; Mohamed, A.; Siddiqui, A.B.A.; Cervantes, M.J. Enhanced solar energy collection through air flow control: A review. Renewable and Sustainable Energy Reviews 2021, 141, 110865. [Google Scholar]
- Mahfouz, S.A. Modeling and control of microclimate in solar greenhouses using fuzzy logic and active flow control. Renewable Energy 2021, 184, 614–625. [Google Scholar]
- Jangra, S.K.; Mandal, B.K.; Das, M.K. An experimental investigation on the performance enhancement of a solar farm through active flow control using plasma actuator. Renewable Energy 2020, 152, 630–641. [Google Scholar]
- Afriyie, R.O.; Zhao, L.; Luo, X. Numerical investigation of flow control strategies for improving energy output in wind-solar hybrid farms. Energy Conversion and Management 2021, 226, 114454. [Google Scholar]
- El-Sayed, A.; El-Batawy, A.A.; El-Kotb, M.M.; El-Emam, M. Airflow control in solar farms using dielectric barrier discharge plasma actuator. Energy Conversion and Management 2021, 230, 113879. [Google Scholar]
- Hossain, S.S.; Roy, S.; Sherif, S.A. Optimization of active flow control of a solar panel using genetic algorithm. Renewable Energy 2021, 166, 793–801. [Google Scholar]
- Huang, L.; Yu, Y.; Zhang, X.; Zhao, H. Active flow control on the performance of solar farms under various weather conditions. Journal of Renewable and Sustainable Energy 2021, 13, 013101. [Google Scholar]
- Lorenz, E. The butterfly effect. World Scientific Series on Nonlinear Science Series A 2000, 39, 91–94. [Google Scholar]
- Ali, N.; Hamilton, N.; Calaf, M.; Cal, R.B. Turbulence kinetic energy budget and conditional sampling of momentum, scalar, and intermittency fluxes in thermally stratified wind farms. Journal of Turbulence 2019, 20, 32–63. [Google Scholar] [CrossRef]
- Fthenakis, V.; Yu, Y. Analysis of the potential for a heat island effect in large solar farms. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE; 2013; pp. 3362–3366. [Google Scholar]
- Barron-Gafford, G.A.; Minor, R.L.; Allen, N.A.; Cronin, A.D.; Brooks, A.E.; Pavao-Zuckerman, M.A. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures. Scientific Reports 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Broadbent, A.M.; Krayenhoff, E.S.; Georgescu, M.; Sailor, D.J. The observed effects of utility-scale photovoltaics on near-surface air temperature and energy balance. Journal of Applied Meteorology and Climatology 2019, 58, 989–1006. [Google Scholar] [CrossRef]
- Adeh, E.H.; Good, S.P.; Calaf, M.; Higgins, C.W. Solar PV power potential is greatest over croplands. Scientific Reports 2019, 9, 11442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, M. Assessing the effects of photovoltaic powerplants on surface temperature using remote sensing techniques. Remote Sensing 2020, 12, 1825. [Google Scholar] [CrossRef]
- Raupach, M.R.; Shaw, R.H. Averaging procedures for flow within vegetation canopies. Boundary-layer meteorology 1982, 22, 79–90. [Google Scholar] [CrossRef]
- Ali, N.; Bossuyt, J.; Viggiano, B.; Ganapathisubramani, B.; Meyers, J.; Cal, R.B. Boundary layer development over a staggered multifractal roughness array. In Proceedings of the 11th International Symposium on Turbulence and Shear Flow Phenomena, 2019, Vol. 30. 2019. [Google Scholar]
- Morrison, T.; Pardyjak, E.R.; Mauder, M.; Calaf, M. The heat-flux imbalance: the role of advection and dispersive fluxes on heat transport over thermally heterogeneous terrain. Boundary-Layer Meteorology 2022, 183, 227–247. [Google Scholar] [CrossRef]
- Viggiano, B.; Bossuyt, J.; Ali, N.; Meyers, J.; Cal, R.B. Secondary motions above a staggered multi-scale rough wall. Journal of Fluid Mechanics 2022, 941, R1. [Google Scholar] [CrossRef]
- Margairaz, F.; Pardyjak, E.R.; Calaf, M. Surface thermal heterogeneities and the atmospheric boundary layer: the relevance of dispersive fluxes. Boundary-Layer Meteorology 2020, 175, 369–395. [Google Scholar] [CrossRef]
- Bou-Zeid, E.; Anderson, W.; Katul, G.G.; Mahrt, L. The persistent challenge of surface heterogeneity in boundary-layer meteorology: a review. Boundary-Layer Meteorology 2020, 177, 227–245. [Google Scholar] [CrossRef]
- Desai, A.R.; Paleri, S.; Mineau, J.; Kadum, H.; Wanner, L.; Mauder, M.; Butterworth, B.J.; Durden, D.J.; Metzger, S. Scaling Land-Atmosphere Interactions: Special or Fundamental? Journal of Geophysical Research: Biogeosciences 2022, 127, e2022JG007097. [Google Scholar] [CrossRef]
- Stanislawski, B.; Margairaz, F.; Cal, R.B.; Calaf, M. Potential of module arrangements to enhance convective cooling in solar photovoltaic arrays. Renewable Energy 2020, 157, 851–858. [Google Scholar] [CrossRef]
- Markvart, T.; Castaner, L. Practical handbook of photovoltaics: fundamentals and applications; Elsevier, 2003.
- Deo, R.C.; Ahmed, A.A.M.; Casillas-Pérez, D.; Pourmousavi, S.A.; Segal, G.; Yu, Y.; Salcedo-Sanz, S. Cloud cover bias correction in numerical weather models for solar energy monitoring and forecasting systems with kernel ridge regression. Renewable Energy 2023, 203, 113–130. [Google Scholar] [CrossRef]
- Matuszko, D. Influence of the extent and genera of cloud cover on solar radiation intensity. International Journal of Climatology 2012, 32, 2403–2414. [Google Scholar] [CrossRef]
- Woyte, A.; Nijs, J.; Belmans, R. Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results. Solar energy 2003, 74, 217–233. [Google Scholar] [CrossRef]
- Woyte, A.; Belmans, R.; Nijs, J. Fluctuations in instantaneous clearness index: Analysis and statistics. Solar Energy 2007, 81, 195–206. [Google Scholar] [CrossRef]
- Cai, C. and Aliprantis, D.C. Cumulus cloud shadow model for analysis of power systems with photovoltaics. IEEE Transactions on Power Systems 2013, 28, 4496–4506. [Google Scholar] [CrossRef]
- Suri, M.; Cebecauer, T.; Skoczek, A.; Marais, R. and Mushwana, C. ; Reinecke, J.; Meyer, R. Cloud cover impact on photovoltaic power production in South Africa. In Proceedings of the Southern African Solar Energy Conference SASEC 2014, 2014, Vol 1, p 8. [Google Scholar]
- Abdellatif, Y.; Alsalaymeh, A.; Muslih, I.; Alshduifat, A. Cloud Effect on Power Generation of Grid Connected Small PV Systems. International Journal of Electrical and Computer Engineering 2015, 9, 1054–1059. [Google Scholar]
- Bonkaney, A.; Madougou, S.; Adamou, R. Impacts of cloud cover and dust on the performance of photovoltaic module in Niamey. Journal of Renewable Energy 2017, 2017. [Google Scholar] [CrossRef]
- Nnamchi, S.N.; Nnamchi, O.A.; Sanya, O.D.; Mundu, M.M.; Gabriel, V. Dynamic analysis of performance of photovoltaic generators under moving cloud conditions. Journal of Solar Energy Research 2020, 5, 453–468. [Google Scholar]
- Bloomfield, H.C.; Wainwright, C.M.; Mitchell, N. Characterizing the variability and meteorological drivers of wind power and solar power generation over Africa. Meteorological Applications 2022, 29, e2093. [Google Scholar] [CrossRef]
- Craig, M.T.; Wohland, J.; Stoop, L.P.; Kies, A.; Pickering, B.; Bloomfield, H.C.; Browell, J.; De Felice, M.; Dent, C.J.; Deroubaix, A.; et al. Overcoming the disconnect between energy system and climate modeling. Joule 2022. [Google Scholar] [CrossRef]
- Gopi, A.; Sharma, P.; Sudhakar, K.; Ngui, W.K.; Kirpichnikova, I.; Cuce, E. Weather impact on solar farm performance: A comparative analysis of machine learning Techniques. Sustainability 2023, 15, 439. [Google Scholar] [CrossRef]
- Baran, A.; Lerch, S.; El Ayari, M.; Baran, S. Machine learning for total cloud cover prediction. Neural Computing and Applications 2021, 33, 2605–2620. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Gruber, S.; Keinath, T.; Kopf, M.; Hermann, C.; Schönberger, F.; Högy, P.; Zikeli, S.; Ehmann, A.; Weselek, A.; et al. Agrivoltaics: opportunities for agriculture and the energy transition. Fraunhofer Institute for Solar Energy Systems ISE: Breisgau, Germany, 2020. [Google Scholar]
- Gorjian, S.; Bousi, E.; Özdemir, Ö.E.; Trommsdorff, M.; Kumar, N.M.; Anand, A.; Kant, K.; Chopra, S.S. Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. Renewable and Sustainable Energy Reviews 2022, 158, 112126. [Google Scholar] [CrossRef]
- Zainali, S.; Lu, S.M.; Stridh, B.; Avelin, A.; Amaducci, S.; Colauzzi, M.; Campana, P.E. Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts. Applied Energy 2023, 339, 120981. [Google Scholar] [CrossRef]
- Williams, H.J.; Hashad, K.; Wang, H.; Zhang, K.M. The potential for agrivoltaics to enhance solar farm cooling. Applied Energy 2023, 332, 120478. [Google Scholar] [CrossRef]
- Giri, N.C.; M., R.C.; Shaw, R.N.; Poonia, S.; Bajaj, M.; Belkhier, Y. Agriphotovoltaic system to improve land productivity and revenue of farmer. In Proceedings of the 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT), 2022; pp. 1–5.
- Robert, J.D.; Brian, K.W.; Richard, L.H. Dynamic relationships between field temperatures and romaine lettuce yield and head quality. Scientia Horticulturae 2009, 120, 452–459. [Google Scholar]
- Weiguo, F.; Pingping, L.; Yanyou, W.; Jianjian, T. Effects of different light intensities on anti-oxidative enzyme activity, quality and biomass in lettuce. Horticultural Science 2012, 39, 129–134. [Google Scholar]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: an overview. Environmental and Experimental Botany 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Ruehr, N.K.; Grote, R.; Mayr, S.; Arneth, A. Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress. Tree physiology 2019, 39, 1285–1299. [Google Scholar] [CrossRef]
- Hartzell, S.; Bartlett, M.S.; Porporato, A. The role of plant water storage and hydraulic strategies in relation to soil moisture availability. Plant and Soil 2017, 419, 503–521. [Google Scholar] [CrossRef]
- Daly, E.; Porporato, A.; Rodriguez-Iturbe, I. Coupled dynamics of photosynthesis, transpiration, and soil water balance. Part I: Upscaling from hourly to daily level. Journal of Hydrometeorology 2004, 5, 546–558. [Google Scholar] [CrossRef]
- Hartzell, S. Ecohydrology of Photosynthesis. In Dryland Ecohydrology; Springer, 2019; pp. 101–120.
- Chopard, J.; Bisson, A.; Lopez, G.; Persello, S.; Richert, C.; Fumey, D. Development of a decision support system to evaluate crop performance under dynamic solar panels. In Proceedings of the AIP Conference Proceedings. AIP Publishing LLC; 2021. Vol. 2361. p. 050001. [Google Scholar]
- Riaz, M.H.; Imran, H.; Younas, R.; Alam, M.A.; Butt, N.Z. Module technology for agrivoltaics: vertical bifacial versus tilted monofacial farms. IEEE Journal of Photovoltaics 2021, 11, 469–477. [Google Scholar] [CrossRef]
- Al Mamun, M.A.; Dargusch, P.; Wadley, D.; Zulkarnain, N.A.; Aziz, A.A. A review of research on agrivoltaic systems. Renewable and Sustainable Energy Reviews 2022, 161, 112351. [Google Scholar] [CrossRef]
- Laub, M.; Pataczek, L.; Feuerbacher, A.; Zikeli, S.; Högy, P. Contrasting yield responses at varying levels of shade suggest different suitability of crops for dual land-use systems: a meta-analysis. Agronomy for Sustainable Development 2022, 42, 51. [Google Scholar] [CrossRef]
- SA, P. PVsyst, 2021. [Computer software].
- Labs, F. HelioScope, 2021. [Computer software].
- Laboratory, N.R.E. SAM (System Advisor Model), 2022. [Computer software].
- Software, V. PVSOL, 2022. [Computer software].
- Bany, J.; Appelbaum, J. The effect of shading on the design of a field of solar collectors. Solar Cells 1987, 20, 201–228. [Google Scholar] [CrossRef]
- Cascone, Y.; Corrado, V.; Serra, V. Calculation procedure of the shading factor under complex boundary conditions. Solar Energy 2011, 85, 2524–2539. [Google Scholar] [CrossRef]
- Gilman, P.; Dobos, A.; DiOrio, N.A.; Freeman, J.M.; Janzou, S.; Ryberg, D. SAM Photovoltaic Model Technical Reference 2016 Update. Technical Report NREL/TP–6A20-67399, 1429291, Sandia, 2018.
- Prilliman, M.; Stein, J.S.; Riley, D.; Tamizhmani, G. Transient Weighted Moving-Average Model of Photovoltaic Module Back-Surface Temperature. IEEE J. Photovolt. 2020, 10, 1053–1060. [Google Scholar] [CrossRef]
- Campana, P.E.; Stridh, B.; Amaducci, S.; Colauzzi, M. Optimisation of vertically mounted agrivoltaic systems. Journal of Cleaner Production 2021, 325, 129091. [Google Scholar] [CrossRef]
- Sarver, T.; Al-Qaraghuli, A.; Kazmerski, L.L. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews 2013, 22, 698–733. [Google Scholar] [CrossRef]
- Nobre, A.M.; Karthik, S.; Liu, H.; Yang, D.; Martins, F.R.; Pereira, E.B.; Rüther, R.; Reindl, T.; Peters, I.M. On the impact of haze on the yield of photovoltaic systems in Singapore. Renewable Energy 2016, 89, 389–400. [Google Scholar] [CrossRef]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews 2016, 59, 1307–1316. [Google Scholar] [CrossRef]
- Micheli, L.; Smestad, G.P.; Bessa, J.G.; Muller, M.; Fernandez, E.F.; Almonacid, F. Tracking Soiling Losses: Assessment, Uncertainty, and Challenges in Mapping. IEEE Journal of Photovoltaics 2021, 12, 114–118. [Google Scholar] [CrossRef]
- Liu, S.; Yue, Q.; Zhou, K.; Sun, K. Effects of Particle concentration, deposition and accumulation on Photovoltaic device surface. Energy Procedia 2019, 158, 553–558. [Google Scholar] [CrossRef]
- Li, X.; Mauzerall, D.L.; Bergin, M.H. Global reduction of solar power generation efficiency due to aerosols and panel soiling. Nature Sustainability 2020, 3, 720–727. [Google Scholar] [CrossRef]
- El-Shobokshy, M.S.; Hussein, F.M. Degradation of photovoltaic cell performance due to dust deposition on to its surface. Renewable Energy 1993, 3, 585–590. [Google Scholar] [CrossRef]
- El-Nashar, A.M. Effect of dust deposition on the performance of a solar desalination plant operating in an arid desert area. Solar Energy 2003, 75, 421–431. [Google Scholar] [CrossRef]
- Asl-Soleimani, E.; Farhangi, S.; Zabihi, M.S. The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran. Renewable Energy 2001, 24, 459–468. [Google Scholar] [CrossRef]
- Darwish, Z.A.; Kazem, H.A.; Sopian, K.; Al-Goul, M.A.; Alawadhi, H. Effect of dust pollutant type on photovoltaic performance. Renewable and Sustainable Energy Reviews 2015, 41, 735–744. [Google Scholar] [CrossRef]
- El-Nashar, A.M. The effect of dust accumulation on the performance of evacuated tube collectors. Solar Energy 1994, 53, 105–115. [Google Scholar] [CrossRef]
- Alamoud, A.R.M. Performance evaluation of various flat plate photovoltaic modules in hot and arid environment. Journal of King Saud University-Engineering Sciences 2000, 12, 235–242. [Google Scholar] [CrossRef]
- Vivar, M.; Herrero, R.; Antón, I.; Martínez-Moreno, F.; Moretón, R.; Sala, G.; Blakers, A.W.; Smeltink, J. Effect of soiling in CPV systems. Solar Energy 2010, 84, 1327–1335. [Google Scholar] [CrossRef]
- Pavan, A.M.; Mellit, A.; De Pieri, D. The effect of soiling on energy production for large-scale photovoltaic plants. Solar Energy 2011, 85, 1128–1136. [Google Scholar] [CrossRef]
- Ibrahim, A.; et al. Effect of shadow and dust on the performance of silicon solar cell. Journal of Basic and Applied Scientific Research 2011, 1, 222–230. [Google Scholar]
- Fisher, R.A.; Koven, C.D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. Journal of Advances in Modeling Earth Systems 2020, 12, e2018MS001453. [Google Scholar] [CrossRef]
- Stannard, D.I. Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland. Water Resources Research 1993, 29, 1379–1392. [Google Scholar] [CrossRef]
- Flint, A.L.; Childs, S.W. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut. Agricultural and Forest Meteorology 1991, 56, 247–260. [Google Scholar] [CrossRef]
- Senay, G.B.; Budde, M.E.; Verdin, J.P. Enhancing the Simplified Surface Energy Balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model. Agricultural Water Management 2011, 98, 606–618. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division 1982, 108, 225–230. [Google Scholar] [CrossRef]
- Turc, L. Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Annales Agronomiques 1961, 12, 13–49. [Google Scholar]
- Allen, R.G.; Pruitt, W.O. Rational use of the FAO Blaney-Criddle formula. Journal of Irrigation and Drainage Engineering 1986, 112, 139–155. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Elamri, Y.; Cheviron, B.; Lopez, J.M.; Dejean, C.; Belaud, G. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agricultural Water Management 2018, 208, 440–453. [Google Scholar] [CrossRef]
- Omer, A.A.A.; Liu, W.; Li, M.; Zheng, J.; Zhang, F.; Zhang, X.; Mohammed, S.O.H.; Fan, L.; Liu, Z.; Chen, F.; et al. Water evaporation reduction by the agrivoltaic systems development. Solar Energy 2022, 247, 13–23. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Randle-Boggis, R.J.; Lara, E.; Onyango, J.; Temu, E.J.; Hartley, S.E. Agrivoltaics in East Africa: opportunities and challenges. In Proceedings of the AIP Conference Proceedings. AIP Publishing LLC; 2021. Vol. 2361. p. 090001. [Google Scholar]
- Bishop, J.W. Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits. Solar Cells 1988, 25, 73–89. [Google Scholar] [CrossRef]
- Garza, J.G.; Chong, B.; Zhang, L. Control of integrated Ćuk converter and photovoltaic modules for maximum power generation. In Proceedings of the 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE; 2012; pp. 175–181. [Google Scholar]
- Kjaer, S.B.; Pedersen, J.K.; Blaabjerg, F. A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Transactions on Industry Applications 2005, 41, 1292–1306. [Google Scholar] [CrossRef]
- Ali, A.N.A.; Saied, M.H.; Mostafa, M.Z.; Abdel-Moneim, T.M. A survey of maximum PPT techniques of PV systems. In Proceedings of the 2012 IEEE Energytech. IEEE; 2012; pp. 1–17. [Google Scholar]
- Di Dio, V.; La Cascia, D.; Miceli, R.; Rando, C. A mathematical model to determine the electrical energy production in photovoltaic fields under mismatch effect. In Proceedings of the 2009 International Conference on Clean Electrical Power. IEEE; 2009; pp. 46–51. [Google Scholar]
- Alonso-García, M.C.; Ruíz, J.M. Analysis and modelling the reverse characteristic of photovoltaic cells. Solar Energy Materials and Solar Cells 2006, 90, 1105–1120. [Google Scholar] [CrossRef]
- Xiao, W.; Edwin, F.F.; Spagnuolo, G.; Jatskevich, J. Efficient approaches for modeling and simulating photovoltaic power systems. IEEE Journal of Photovoltaics 2012, 3, 500–508. [Google Scholar] [CrossRef]
- Ramabadran, R. and Mathur, B. Matlab based modelling and performance study of series connected SPVA under partial shaded conditions. Journal of Sustainable Development 2009, 2, 85–94. [Google Scholar] [CrossRef]
- Petrone, G.; Spagnuolo, G.; Vitelli, M. Analytical model of mismatched photovoltaic fields by means of Lambert W-function. Solar Energy Materials and Solar Cells 2007, 91, 1652–1657. [Google Scholar] [CrossRef]
- Seyedmahmoudian, M.; Mekhilef, S.; Rahmani, R.; Yusof, R.; Renani, E.T. Analytical modeling of partially shaded photovoltaic systems. Energies 2013, 6, 128–144. [Google Scholar] [CrossRef]
- Bishop, J.W. Microplasma breakdown and hot-spots in silicon solar cells. Solar Cells 1989, 26, 335–349. [Google Scholar] [CrossRef]
- Logeswaran, T.; SenthilKumar, A. A review of maximum power point tracking algorithms for photovoltaic systems under uniform and non-uniform irradiances. Energy Procedia 2014, 54, 228–235. [Google Scholar] [CrossRef]
- Silvestre, S.; Boronat, A.; Chouder, A. Study of bypass diodes configuration on PV modules. Applied Energy 2009, 86, 1632–1640. [Google Scholar] [CrossRef]
- Vemuru, S.; Singh, P.; Niamat, M. Modeling impact of bypass diodes on photovoltaic cell performance under partial shading. In Proceedings of the 2012 IEEE international conference on electro/information technology. IEEE; 2012; pp. 1–5. [Google Scholar]
- Ko, S.W.; Ju, Y.C.; Hwang, H.M.; So, J.H.; Jung, Y.S.; Song, H.J.; Song, H.E.; Kim, S.H.; Kang, G.H. Electric and thermal characteristics of photovoltaic modules under partial shading and with a damaged bypass diode. Energy 2017, 128, 232–243. [Google Scholar] [CrossRef]
- Teo, J.C.; Tan, R.H.G.; Mok, V.H.; Ramachandaramurthy, V.K.; Tan, C. Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions. Energy 2020, 191, 116491. [Google Scholar] [CrossRef]
- Vieira, R.G.; de Araújo, F.M.U.; Dhimish, M.; Guerra, M.I.S. A comprehensive review on bypass diode application on photovoltaic modules. Energies 2020, 13, 2472. [Google Scholar] [CrossRef]
- Pannebakker, B.B.; de Waal, A.C.; van Sark, W.G.J.M. Photovoltaics in the shade: one bypass diode per solar cell revisited. Progress in Photovoltaics: Research and Applications 2017, 25, 836–849. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M.; Mather, P. PV output power enhancement using two mitigation techniques for hot spots and partially shaded solar cells. Electric Power Systems Research 2018, 158, 15–25. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V.; Mather, P.; Sibley, M. Novel hot spot mitigation technique to enhance photovoltaic solar panels output power performance. Solar Energy Materials and Solar Cells 2018, 179, 72–79. [Google Scholar] [CrossRef]
- Elshatter, T.F.; Elhagry, M.T.; Abou-Elzahab, E.M.; Elkousy, A.A.T. Fuzzy modeling of photovoltaic panel equivalent circuit. In Proceedings of the Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000 (Cat. No. 00CH37036). IEEE; 2000; pp. 1656–1659. [Google Scholar]
- Kalogirou, S.A. Applications of artificial neural-networks for energy systems. Applied Energy 2000, 67, 17–35. [Google Scholar] [CrossRef]
- López, A.; Parnás, V.E.; Cataldo, J. Wind tunnel experiments on ground-mounted photovoltaic solar panels. Revista Ingeniería de Construcción 2019, 34, 15–24. [Google Scholar] [CrossRef]
- Moss, G.M. Low-Speed Wind Tunnel Testing—Second edition. WH RaeJr, and A. Pope. John Wiley & Sons, Incorporated, New York. 1984. 534pp. The Aeronautical Journal 1985, 89, 118–118. [Google Scholar]
- Simpson, J.; Landman, D. , Low-speed wind tunnel testing via designed experiments: Challenges and ways forward. In 2008 US Air Force T&E Days; 2008; p. 1664.
- Placek, R. Errors and problems while conducting research studies in a wind tunnel-selected examples. Prace Instytutu Lotnictwa 2016. [Google Scholar]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).