Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Simulation Of Total Ionizing Dose Effects Technique for CMOS Inverter Circuit

Version 1 : Received: 21 June 2023 / Approved: 25 June 2023 / Online: 25 June 2023 (03:17:23 CEST)

A peer-reviewed article of this Preprint also exists.

Gao, T.; Yin, C.; Chen, Y.; Chen, R.; Yan, C.; Liu, H. Simulation of Total Ionizing Dose Effects Technique for CMOS Inverter Circuit. Micromachines 2023, 14, 1438. Gao, T.; Yin, C.; Chen, Y.; Chen, R.; Yan, C.; Liu, H. Simulation of Total Ionizing Dose Effects Technique for CMOS Inverter Circuit. Micromachines 2023, 14, 1438.

Abstract

The total ionizing dose (TID) effect significantly impacts the electrical parameters of fully depleted silicon on insulator (FDSOI) devices and even invalidates the on-off function of devices. At present, most of the irradiation research on the circuit level is focused on the single event effect, and the research on the total ionizing dose effect is very little. Therefore, this study mainly analyzes the influence of TID effects on a CMOS inverter circuit based on 22 nm FDSOI transistors. First, we constructed and calibrated an N-type FDSOI metal-oxide semiconductor (NMOS) structure and P-type FDSOI metal-oxide semiconductor (PMOS) structure. The transfer characteristics and trapped charge distribution of these devices were studied under different irradiation doses. Next, we studied the TID effect on an inverter circuit composed of these two MOS transistors. The simulation results show that when the radiation dose is 400 krad (Si), the logic threshold drift of the inverter is approximately 0.052 V. These results help further investigate the impact on integrated circuits in the irradiation environment.

Keywords

Total ionizing dose effect; FDSOI devices; Inverter

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.