Submitted:
20 June 2023
Posted:
21 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
Different Kinds of Plant Growth Promoting Bacteria
Mechanism of Plant Growth Promoting Bacteria
Plant Growth-Promoting Bacteria and Sorghum
Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, P.; Singh, A.; Prajapat, K.; Rai, A.K.; Yadav, R.K. Native arbuscular mycorrhizal fungi improve growth, biomass yield, and phosphorus nutrition of sorghum in saline and sodic soils of the semi-arid region. Environ Exp Bot. 2022, 201, 104982. [Google Scholar] [CrossRef]
- Du, Q.-L.; Fang, Y.-P.; Jiang, J.-M.; Chen, M.-Q.; Li, X.-Y.; Xie, X. Genome-wide identification and characterization of the JAZ gene family and its expression patterns under various abiotic stresses in Sorghum bicolor. J Integr Agric. 2022, 21, 3540–3555. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Khoshkharam, M.; Sun, W.; Cheng, Q. The influence of increased plant densities and nitrogen fertilizer levels on forage yield, seed yield and qualitative characteristics of forage sorghum (Sorghum bicolor L. Moench). Thai J Agric Sci. 2020, 53, 201–207. [Google Scholar]
- Shahrajabian, M.H.; Soleymani, A. Responses of physiological indices of forage sorghum under different plant populations in various nitrogen fertilizer treatments. Int J Plant Soil Sci. 2017, 15, 1–8. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Soleymani, A.; Naranjani, L. Grain yield and forage characteristics of forage sorghum under different plant densities and nitrogen levels in second cropping after barley in Isfahan, Iran. Res Crops. 2011, 12, 68–78. [Google Scholar]
- Soleymani, A.; Shahrajabian, M.H.; Naranjani, L. The effect of plant density and nitrogen fertilization on yield, yield components and grain protein of grain sorghum. J Food Agric Environ. 2011, 9, 244–246. [Google Scholar]
- Soleymani, A.; Shahrajabian, M.H.; Naranjani, L. Study the effect of plant densities and nitrogen fertilizers on yield, yield components and grain protein of grain sorghum. J Food Agric Environ. 2011, 9, 244–246. [Google Scholar]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules. 2021, 11, 819. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influence of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae. 2023, 9, 1–24. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Archaea, bacteria and termite, nitrogen fixation and sustainable plants production. Not Bot Horti Agrobot Cluj Napoca. 2021, 49, 1–32. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Nitrogen fixation and diazotrophs-A review. Rom Biotechnol Lett. 2021, 26, 2834–2845. [Google Scholar] [CrossRef]
- Etesami, H.; Glick, B.R. Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants. Environ Experim Bot. 2020, 178, 104124. [Google Scholar] [CrossRef]
- Rani, V.; Bharia, A.; Kaushik, R. Inoculation of plant growth promoting-methane utlizing bacteria in different N-fertilizer regime influences methane emission and crop growth of flooded paddy. Sci Total Environ. 2021, 775, 145826. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Archana, G. Differential influence of heavy metals on plant growth promoting attributes of beneficial microbes and their ability to promote growth of Vigna radiata (mung bean). Biocatal Agric Biotechnol. 2023, 47, 102592. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of Rhizobium, Agrobacterium, Bradyrhizobium, Herbaspirillum, Sinorhizobium in sustainable agricultural production. Not Bot Horti Agrobot Cluj Napoca. 2021, 49, 1–34. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sustainable farming vegetables. Biomolecules. 2021, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H. The effectiveness of Rhizobium bacteria on soil fertility and sustainable crop production under cover and catch crops management and green manuring. Not Bot Horti Agrobot Cluj Napoca. 2022, 50, 1–36. [Google Scholar] [CrossRef]
- Ramakrishna, W.; Yadav, R.; Li, K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Appl Soil Ecol. 2019, 138, 10–18. [Google Scholar] [CrossRef]
- Numas, M.; Bashir, S.; Khan, Y.; Mumtaz, R.; Shinwari, Z.K.; Khan, A.L.; Khan, A.; Al-Harrasi, A. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol Res. 2018, 209, 21–32. [Google Scholar] [CrossRef]
- Sarabi, B.; Arjmand-Ghajur. E. Exogenous plant growth regulators/plant growth promoting bacteria roles in mitigating water-deficit stress on chicory (Cichorium pumilum Jacq.) at a physiological level. Agric Water Manag. 2021, 245, 106439. [Google Scholar] [CrossRef]
- Karimzad, L.; Khakvar, R.; Younessi-Hamzekhanlu, M.; Norouzi, M.; Amani, M.; Sabourmoghaddam, N. Drought tolerance induction in wheat by inoculation of seeds with a novel growth-promoting bacteria. Biocatal Agric Biotechnol. 2023, 47, 102594. [Google Scholar] [CrossRef]
- Alka, S.; Shahir, S.; Ibrahim, N.; Chai, T.-T.; Bahari, Z.M.; Manan, F.A. The role of plant growth promoting bacteria on arsenic removal: A review of existing perspectives. Environ Technol Innov. 2020, 17, 100602. [Google Scholar] [CrossRef]
- Ravelo-Ortega, G.; Raya-Gonzalez, J.; Lopez-Bucio, J. Compounds from rhizosphere microbes that promote plant growth. Curr Opin Plant Biol. 2023, 73, 102336. [Google Scholar] [CrossRef] [PubMed]
- Andrade, G.V.S.; Rodrigues, F.A.; Nadal, M.C.; Dambroz, C.M.D.S.; Martins, A.D.; Rodrigues, V.A.; Ferreira, G.M.D.R.; Pasqual, M.; Buttros, V.H.; Doria, J. Plant-endophytic bacteria interactions associated with root and leaf microbiomes of Cattleya walkeriana and their effect on plant growth. Sci Hortic. 2023, 309, 111656. [Google Scholar] [CrossRef]
- Admassie, M.; Woldehawariat, Y.; Alemu, T.; Gonzalez, E.; Jimenez, J.F. The role of plant growth-promoting bacteria in alleviating drought stress on pepper plants. Agric Water Manag. 2022, 272, 107831. [Google Scholar] [CrossRef]
- Guo, J.; Chen, Y.; Lu, P.; Liu, M.; Sun, P.; Zhang, Z. Roles of endophytic bacteria in Suaeda salsa grown in coastal wetlands: Plant growth characteristics and salt tolerance mechanisms. Environ Pollut. 2021, 287, 117641. [Google Scholar] [CrossRef] [PubMed]
- Thongnok, S.; Siripornadulsil, W.; Siripornadulsil, S. AsIII-oxidizing Cd-tolerant plant growth-promoting bacteria synergistically reduce arsenic translocation, toxicity and accumulation in KDML105 rice. Environ Experim Bot. 2021, 192, 104660. [Google Scholar] [CrossRef]
- Vishnupradeep, R.; Bruno, L.B.; Taj, Z.; Karthik, C.; Challabathula, D.; Tripti; Kumar, H. ; Rajkumar, M. Plant growth promoting bacteria improve growth and phytostabilization potential of Zea mays under chromium and drought stress by altering photosynthetic and antioxidant responses. Environ Technol Innov. 2022, 25, 102154. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, Q.; Huang, L.; Xu, S.; Fu, Y.; Hou, D.; Feng, Y.; Yang, X. Cadmium phytoextraction through Brassica juncea L. under different consortia of plant growth-promoting bacteria from different ecological niches. Ecotoxicol Environ Saf. 2022, 237, 113541. [Google Scholar] [CrossRef]
- Wang, X.; Cai, D.; Ji, M.; Chen, Z.; Yao, L.; Han, H. Isolation of heavy metal-immobilizing and plant growth-promoting bacteria and their potential in reducing Cd and Pb uptake in water spinach. Sci Total Environ. 2022, 819, 153242. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.K.; Chauuhan, P.K. Optimization of eco-friendly amendments as sustainable asset for salt-tolerant plant growth-promoting bacteria mediated maize (Zea mays L.) plant growth, Na uptake reduction and saline soil restoration. Environ Res. 2022, 211, 113081. [Google Scholar] [CrossRef]
- Hakim, S.; Naqqash, T.; Nawaz, M.S.; Laraib, I.; Siddique, M.J.; Mirza, M.S.; Imran, A. Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Front Sustain Food Syst. 2021, 5, 617157. [Google Scholar] [CrossRef]
- An, X.; Cheng, Y.; Zang, H.; Li, C. Biodegradation characteristics of lignin in pulping wastewater by the thermophilic Serratia sp. AXJ-M: Performance, genetic background, metabolic pathway and toxicity assessment. Environ Pollut. 2023, 322, 121230. [Google Scholar] [CrossRef]
- El-Aal, E.M.; Shahen, M.; Sayed, S.; Kesba, H.; Ansari, M.J.; El-Ashry, R.M.; Aioub, A.A.A.; Salma, A.S.A.; Eldeeb, A.M. In vivo and in vitro management of Meloidogyne incognita (Tylenchida: Heteroderidae) using rhizosphere bacteria, Pseudomonas spp. And Serratia spp. Compared with oxamyl. Saudi J Biol Sci. 2021, 28, 4876–4883. [Google Scholar] [CrossRef]
- Souza, W.F.D.C.; Santos, K.L.D.O.; Rodrigues, P.R.; Vieira, R.P.; Castro, R.J.S.D.; Sato, H.H. Incorporation and influence of natural gums in an alginate matrix for Serratia plymuthica immobilization and isomaltulose production. Food Res Int. 2022, 162. [Google Scholar] [CrossRef]
- Sun, C.; Liu, Y.; Sun, Y.; Li, Z. Complete genome sequence of Serratia sp. YD25 (KCTC 42987) presenting strong antagonistic activities to various pathogenic fungi and bacterial. J Biotechnol. 2017, 245, 9–13. [Google Scholar] [CrossRef]
- Vieira, M.S.; Silva, J.D.D.; Ferro, C.G.; Cunha, P.C.; Vidigal, P.M.P.; Silva, C.C.D.; Paula, S.O.D.; Dias, R.S. A highly specific Serratia-infecting T7-like phage inhibits biofilm formation in two different genera of the Enterobacteriaceae family. Res Microbiol. 2021, 172, 103869. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, X.; Wu, J.; Yu, J.; Xu, M.; Chen, D.; Zhang, Z.; Li, X.; Chi, Y.; Wan, S. In vitro inhibitory effect of the bacterium Serratia marcescens on Fusarium proliferatum growth and fumonisins production. Biol Control. 2020, 143, 104188. [Google Scholar] [CrossRef]
- Hanif, M.K.; Malik, K.A.; Hameed, S.; Saddique, M.J.; Ayesha; Fatima, K. ; Naqqash, T.; Majeed, A.; Iqbal, M.J.; Imran, A. Growth stimulatory effect of AHL producing Serratia spp. From potato on homologous and non-homologous host plants. Microbiol Res. 2020, 238, 126506. [Google Scholar] [CrossRef]
- Sun, X.; Feng, H.; Luo, J.; Lin, L.; Zhang, H.; Duan, Y.; Liu, F.; Zhang, K.; Wang, B.; Li, D.; Hu, Y.; Zhu, Z. A novel N-arachidonoyl-1-alanine-catabolizing strain of Serratia marcescens for the bioremediation of Cd and Cr co-contamination. Environ Res. 2023, 222, 115376. [Google Scholar] [CrossRef]
- Abreo, E.; Valle, D.; Gonzalez, A.; Altier, N. Control of damping-off in tomato seedlings exerted by Serratia spp. Strains and identification of inhibitory bacterial volatiles in vitro. Syst Appl Microbiol. 2021, 44, 126177. [Google Scholar] [CrossRef]
- Luduena, L.M.; Anzuay, M.S.; Angelini, J.G.; McIntosh, M.; Becker, A.; Rupp, O.; Goesmann, A.; Blom, J.; Fabra, A.; Taurian, T. Strain Serratia sp. S119: A potential biofertilizer for peanut and maize and a model bacterium to study phosphate solubilization mechanisms. Appl Soil Ecol. 2018, 126, 107–112. [Google Scholar] [CrossRef]
- Youssef, S.A.; Tartoura, K.A.; Abdelraouf, G.A. Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biol Control. 2016, 100, 79–86. [Google Scholar] [CrossRef]
- Ahemad, M.; Khan, M.S. Effects of inescticides on plant-growth-promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. Strain PS19. Pestic Biochem Physiol. 2011, 100, 51–56. [Google Scholar] [CrossRef]
- Chookaew, T.; O-Thong, S.; Prasertsan, P. Fermentative production of hydrogen and soluble metabolites from crude glycerol of biodiesel plant by the newly isolated thermotolerant Klebsiella pneumoniae TR17. Int J Hydrog Energy. 2021, 37, 13314–13322. [Google Scholar] [CrossRef]
- Sinha, A.; Lulu, S.; Vino, S.; Osborne, W.J. Reactive green dye remediation by Alternanthera philoxeroides in association with plant growth promoting Klebsiella sp. VITAJ23: A pot culture study. Microbiol Res. 2019, 220, 42–52. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.; Jha, P.N. The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol. 2015, 184, 57–67. [Google Scholar] [CrossRef]
- Noman, M.; Ahmed, T.; Shahid, M.; Niazi, M.B.K.; Qasim, M.; Kouadri, F.; Abdulmajeed, A.M.; Alghanem, S.M.; Ahmad, N.; Zafar, M.; Ali, S. Biogenic copper nanoparticles produced by using Klebsiella pnuemoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. Ecotoxicol Environ Saf. 2021, 217, 112264. [Google Scholar] [CrossRef]
- Patel, J.K.; Madaan, S.; Archana, G. Antibiotic producing enophytic Streptomyces spp. Colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol Res. 2018, 215, 36–45. [Google Scholar] [CrossRef]
- Kuncharoen, N.; Yuki, M.; Kudo, T.; Okuma, M.; Booncharoen, A.; Mhuantong, W.; Tanasupawat, S. Comparative genomics and proposal of Streptomyces radicis sp. Nov., an endophytic actinomycete from roots of plants in Thailand. Microbiol Res. 2022, 254, 126889. [Google Scholar] [CrossRef]
- Costa, J.S.D.; Hoskisson, P.A.; Paterlini, P.; Romero, C.M.; Alvarez, A. Whole genome sequence of the multi-resistant plant growth-promoting bacteria Streptomyces sp. Z38 with potential application in agroindustry and bio-nanotechnology. Genomics. 2020, 112, 4686–4689. [Google Scholar] [CrossRef]
- Sambangi, P.; Gopalakrishnan, S. Streptomyces-mediated synthesis of silver nanoparticles for enhanced growth, yield, and grain nutrients in chickpea. Biocatal Agric Biotechnol. 2023, 47, 102567. [Google Scholar] [CrossRef]
- Puppala, K.R.; Bhavsar, K.; Sonalkar, V.; Khire, J.M.; Dharne, M.S. Characterization of novel acidic and thermostable phytase secreting Streptomyces sp. (NCIM 5533) for plant growth promoting characteristics. Biocatal Agric Biotechnol. 2019, 18, 101020. [Google Scholar] [CrossRef]
- Djuidje, P.F.K.; Asultan, W.; Beaulieu, C.; Wong, M.Y.; Boudjeko, T. Characterization of endophytic Streptomyces strains from roots of cocoyam (Xanthosoma sagittifolium L. Schott) in the South West Region of Cameroon, their in vitro plant growth promoting abilities and biocontrol efficacy against Pythium myriotylum. S Afr J Bot. 2022, 144, 145–155. [Google Scholar] [CrossRef]
- Kaur, T.; Manhas, R.K. Evaluation of ACC deaminase and indole acetic acid production by Streptomyces hydrogenans DH16 and its effect on plant growth promotion. Biocatal Agric Biotechnol. 2022, 42, 102321. [Google Scholar] [CrossRef]
- Bercovich, B.A.; Villafane, D.L.; Bianchi, J.S.; Taddia, C.; Gramajo, H.; Chiesa, M.A.; Rodriguez, E. Streptomyces eurocidicus promotes soybean growth and protects it from fungal infections. Biol Control. 2022, 165, 104821. [Google Scholar] [CrossRef]
- Shen, T.; Lei, Y.; Pu, X.; Zhang, S.; Du, Y. Identification and application of Streptomyces microflavus G33 in compost to suppress tomato bacterial wilt disease. Appl Soil Ecol. 2021, 157, 103724. [Google Scholar] [CrossRef]
- Zaheer, A.; Mirza, B.S.; Mclean, J.E.; Yasmin, S.; Shah, T.M.; Malik, K.A.; Mirza, M.S. Association of plant growth-promoting Serratia spp. with the root nodules of chickpea. Res Microbiol. 2016, 167, 510–520. [Google Scholar] [CrossRef]
- Tanwir, K.; Javed, M.T.; Abbas, S.; Shahid, M.; Akram, M.S.; Chaudhary, H.J.; Iqbal, M. Serratia sp. CP-13 alleviates Cd toxicity by morpho-physio-biochemical improvements, antioxidative potential and diminished Cd uptake in Zea mays L. cultivars differing in Cd tolerance. Ecotoxicol Environ Saf. 2021, 208, 111584. [Google Scholar] [CrossRef] [PubMed]
- El-Esawi, M.A.; Alaraidh, I.A.; Alsahli, A.A.; Alzahrani, S.M.; Ali, H.M.; Alayafi, A.A.; Ahmad, M. Serratia liquefaciens KM4 improves salt stress tolerance in maize by regulating redox potential, ion homeostasis, leaf gas exchange and stress-related gene expression. Int J Mol Sci. 2018, 19, 3310. [Google Scholar] [CrossRef]
- Nalini, S.; Parthasarathi, R. Optimzation of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Ann Agrar Sci. 2018, 16, 108–115. [Google Scholar] [CrossRef]
- Devi, K.A.; Pandey, P.; Sharma, G.D. Plant growth-promoting endophyte Serratia marcescens AL2-16 enhances the growth of Achyranthes aspera L., a medicinal plant. HAYATI J Biosci. 2016, 23, 173–180. [Google Scholar] [CrossRef]
- Mondal, M.; Kumar, V.; Bhatnagar, A.; Vithanage, M.; Selvasembian, R.; Ambade, B.; Meers, E.; Chaudhuri, P.; Biswas, J.K. Bioremediation of metal(loid) cocktail, struvite biosynthesis and plant growth promotion by a versatile bacterial strain Serratia sp. KUJM3: exploiting environmental co-benefits. Environ Res. 2022, 214. [Google Scholar] [CrossRef]
- Blanco-Vargas, A.; Rodriguez-Gacha, L.M.; Sanchez-Castro, N.; Garzon-Jaramillo, R.; Pedroza-Camacho, L.D.; Poutou-Pinales, R.A.; Rivera-Hoyos, C.M.; Diaz-Ariza, L.A.; Pedroza-Rodrigez, A.M. Phosphate-solubilizing Pseudomonas sp., and Serratia sp., co-culture for Allium cepa L. growth promotion. Heliyon. 2020, 6, e05218. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, I.; Hafidi, M.; Allaoui, A.; Biskri, L. Halotolerant endophytic bacterium Serratia rubidaea ED1 enhances phosphate solubilization and promotes seed germination. Agriculture. 2021, 11, 224. [Google Scholar] [CrossRef]
- Jagtap, R.R.; Mali, G.V.; Waghmare, S.R.; Nadaf, N.H.; Nimbalkar, M.S.; Sonawane, K.D. Impact of plant growth promoting rhizobacteria Serratia nematodiphila RGK and Pseudomonas plecoglossicida RGK on secondary metabolites of turmeric rhizome. Biocatal Agric Biotechnol. 2023, 47, 102622. [Google Scholar] [CrossRef]
- Wu, Z.; Peng, Y.; Guo, L.; Li, C. Root colonization of encapsulated Klebsiella oxytoca Rs-5 on cotton plants and its promoting growth performance under salinity stress. Eur J Soil Biol. 2014, 60, 81–87. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Zhang, S.; Yu, H.; Pan, H.; Zhang, H. Klebsiella jilinsis 2N3 promotes maize growth and induces resistance to northern corn leaf blight. Biol Control. 2021, 156, 104554. [Google Scholar] [CrossRef]
- Wu, F.; Ding, Y.; Nie, Y.; Wang, X-J. ; An, T-Q.; Roessner, U.; Walker, R.; Du, B.; Bai, J-G. Plant metabolomics integrated with transcriptomics and rhizospheric bacteria community indicates the mitigation effects of Klebsiella oxytoca P620 on p-hydroxybenzoic acid stress in cucumber. J Hazard Mater. 2021, 415, 125756. [Google Scholar] [CrossRef]
- Chakraborty, S.; Das, S.; Banerjee, S.; Mukherjee, S.; Ganguli, A.; Mondal, S. Heavy metals bio-removal potential of the isolated Klebsiella sp. TIU20 strain which improves growth of economic crop plant (Vigna radiata L.) under heavy metals stress by exhibiting plant growth promoting and protecting traits. Biocatal Agric Biotechnol. 2021, 38, 102204. [Google Scholar] [CrossRef]
- Sapre, S.; Gontia-Mishra, I.; Tiwari, S. Klebsiella sp. Confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res. 2018, 206, 25–32. [Google Scholar] [CrossRef]
- Li, X.; Peng, D.; Zhang, Y.; Ju, D.; Guan, C. Klebsiella sp. PD3, a phenanthrene (PHE)-degrading strain with plant growth promoting properties enhances the PHE degradation and stress tolerance in rice plants. Ecotoxicol Environ Saf. 2020, 201, 110804. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Pramanik, K.; Ghosh, P.K.; Soren, T.; Sarkar, A.; Dey, R.S.; Pandey, S.; Maiti, T.K. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Microbiol Res. 2018, 210, 12–25. [Google Scholar] [CrossRef]
- Mitra, S.; Purkait, T.; Pramanik, K.; Maiti, T.K.; Dey, R.S. Three-dimensional graphene for electrochemical detection of Cadmium in Klebsiella michiganensis to study the influence of Cadmium uptake in rice plant. Mater Sci Eng C. 2019, 103, 109802. [Google Scholar] [CrossRef] [PubMed]
- 75. Zhai, Q-H.; Pan, Z-Q.; Zhang, C.; Yu, H-L.; Zhang, M.; Gu, X-H.; Zhang, X-H.; Pan, H-Y.; Zhang, H. Colonization by Klebsiella variicola FH-1 stimulates soybean growth and alleviates the stress of Sclerotinia sclerotiorum. J Integr Agric 2023. [CrossRef]
- Gupta, P.; Kumar, V.; Usmani, Z.; Rani, R.; Chandra, A.; Gupta, V.K. A comparative evaluation towards the potential of Klebsiella sp. And Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus (L.). J Hazard Mater. 2019, 377, 391–398. [Google Scholar] [CrossRef]
- Gupta, P.; Kumar, V.; Usmani, Z. , Rani, R.; Chandra, A.; Gupta, V.K. Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress. Chemosphere. 2020, 240, 124944. [Google Scholar] [CrossRef]
- Norman, M.; Shahid, M.; Ahmed, T.; Tahir, M.; Naqqash, T.; Muhammad, S.; Song, F.; Abid, H.M.A.; Aslam, Z. Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicol Environ Saf. 2020, 192, 110303. [Google Scholar] [CrossRef] [PubMed]
- Ankati, S.; Srinivas, V.; Pratyusha, S.; Gopalakrishnan, S. Streptomyces consortia-mediated plant defense against Fusarium wilt and plant growth-promotion in chickpea. Microb Pathog. 2021, 157, 104961. [Google Scholar] [CrossRef]
- Nimnoi, P.; Ruanpanun, P. Suppression of root-know nematode and plant growth promotion of chili (Capsicum flutescens L.) using co-inoculation of Streptomyces spp. Biol Control. 2020, 145, 104244. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, C.; Wang, S.; Zhang, M.; Li, Y.; Xue, Q.; Guo, Q.; Lai, H. Widely targeted metabolomic transcriptomic, and metagenomic profiling reveal microbe-plant-metabolic reprogramming patterns mediated by Streptomyces pactum Act12 enhance the fruit quality of Capsicum annuum L. Food Res Int. 2023, 166, 112587. [Google Scholar] [CrossRef] [PubMed]
- Liotti, R.G.; Figueiredo, M.I.D.S.; Soares, M.A. Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum). Biol Control. 2019, 138, 104065. [Google Scholar] [CrossRef]
- Cao, L.; Gao, Y.; Yu, J.; Niu, S.; Zeng, J.; Yao, Q.; Wang, X.; Bu, Z.; Xu, T.; Liu, X.; Zhu, Y. Streptomyces hygroscopicus OsiSh-2-induced mitigation of Fe deficiency in rice plants. Plant Physiol Biochem. 2021, 158, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Ngalimat, M.S.; Hata, E.M.; Zulperi, D.; Ismail, S.I.; Ismail, M.R.; Zainudin, N.A.I.M.; Saidi, N.B.; Yusof, M.T. Streptomyces-mediated growth enhancement and bacterial panicle blight disease suppression in rice plants under greenhouse conditions. J Biotechnol. 2022, 359, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wang, J.; Chen, Z.; Zhang, H.; Wang, Z.; Zhu, Y.; Liu, B. A Streptomyces p. strain: Isolation, identification, and potential as a biocontrol agent against soilborne diseases of tomato plants. Biol Control. 2019, 136, 104004. [Google Scholar] [CrossRef]
- Kaari, M.; Joseph, J.; Manikkam, R.; Sreenivasan, A.; Venugopal, G. Biological control of Streptomyces sp. UT4A49 to suppress tomato bacterial wilt disease and its metabolite profiling. J King Saud Uni Sci. 2022, 34, 101688. [Google Scholar] [CrossRef]
- Marimuthu, S.; Karthic, C.; Mostafa, A.A.; Al-Enazi, N.M.; Abdel-Raouf, N.; Sholkamy, E.N. Antifungal activity of Streptomyces sp. SLR03 against tea fungal plant pathogen Pestalotiopsis theae. J King Saud Uni Sci. 2020, 32, 3258–3264. [Google Scholar] [CrossRef]
- Elango, V.; Manjukarunambika, K.; Ponmurugan, P.; Marimuthu, S. Evaluation of Streptomyces spp. for effective management of Poria hypolateritia causing red root-rot disease in tea plants. Biol Control. 2015, 89, 75–83. [Google Scholar] [CrossRef]
- Vassileva, M.; Azcon, R.; Barea, J.-M.; Vassilev, N. Effect of encapsulated cells of Enterobacter sp. on plant growth and phosphate uptake. Bioresour Technol. 1999, 67, 229–232. [Google Scholar] [CrossRef]
- Shaker, R.; Osaili, T.; Al-Omary, W.; Jaradat, Z.; Al-Zuby, M. Isolation of Enterobacter sakazakii and other Enterobacter sp. from food and food production environments. Food Control. 2007, 18, 1241–1245. [Google Scholar] [CrossRef]
- Ghosh, P.K.; De, T.K.; Maiti, T.K. Ascorbic acid production in root, nodule and Enterobacter spp. (Gammaproteobacteria) isolated from root nodule of the legume Abrus precatorius L. Biocatal Agric Biotechnol. 2015, 4, 127–134. [Google Scholar] [CrossRef]
- Luo, Y.; Liao, M.; Lu, X.; Xu, N.; Xie, X.; Gao, W. Unveiling the performance of a novel alkalizing bacterium Enterobacter sp. LYX-2 in immobilization of available Cd. J Environ Sci 2023. [Google Scholar] [CrossRef]
- Luduena, L.M.; Anzuay, M.S.; Angelini, J.G.; McIntosh, M.; Becker, A.; Rupp, O.; Goesmann, A.; Blom, J.; Fabra, A.; Taurian, T. Genome sequence of the endophytic strain Enterobacter sp. J49, a potential biofertilizer for peanut and maize. Genomics. 2019, 111, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, D.; Tang, W.; Wang, L.; Li, Q.; Lu, Z.; Liu, H.; Zhong, Y.; He, T.; Guo, S. Phytoremediation of cadmium-polluted soil assisted by D-gluconate-enhanced Enterobacter cloacea colonization in the Solanum nigrum L. rhizosphere. Sci Total Environ. 2020, 732, 139265. [Google Scholar] [CrossRef]
- Singh, R.P.; Mishra, S.; Jha, P.; Raghuvanshi, S.; Jha, P.N. Effect of inoculation of zinc-resistant bacterium Enterobacter ludwigii CDP-14 on growth, biochemical parameters and zinc uptake in wheat (Triticum aestivum L.) plant. Ecol Eng. 2018, 116, 163–173. [Google Scholar] [CrossRef]
- Sarkar, A.; Ghosh, P.K.; Pramanik, K.; Mitra, S.; Soren, T.; Pandey, S.; Mondal, M.H.; Maiti, T.K. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol. 2018, 169, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Sabir, A.; Naveed, M.; Bashir, M.A.; Hussain, A.; Mustafa, A.; Zahir, Z.A.; Kamran, M.; Ditta, A.; Nunez-Delgado, A.; Saeed, Q.; Qadeer, A. Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. J Environ Manag. 2020, 265, 110522. [Google Scholar] [CrossRef]
- Ghosh, A.; Pramanik, K.; Bhattacharya, S.; Mondal, S.; Ghosh, S.K.; Maiti, T.K. A potent cadmium bioaccumulating Enterobacter cloacea strain displays phytobeneficinal property in Cd-exposed rice seedlings. Curr Res Microb Sci. 2022, 3, 100101. [Google Scholar] [CrossRef] [PubMed]
- Wraight, S.P.; Galaini-Wraight, S.; Howes, R.L.; Castrillo, L.A.; Carruthers, R.I.; Smith, R.H.; Matsumoto, T.K.; Keith, L.M. Prevalence of naturally-occuring strains of Beauveria bassiana in populations of coffee berry borer Hypothenemus hampei on Hawai,i Island, with observations on coffee plant-H. hampei-B. bassiana interactions. J Invertebr Pathol. 2018, 156, 54–72. [Google Scholar] [CrossRef] [PubMed]
- Lohse, R.; Jakobs-Schonwandt, D.; Vidal, S.; Patel, A.V. Evaluating of new fermentation and formulation strategies for a high endophytic establishment of Beauveria bassiana in oilseed rape plants. Biol Control. 2015, 88, 26–36. [Google Scholar] [CrossRef]
- Ramos, Y.; Portal, O.; Lysoe, E.; Meyling, N.V.; Klingen, I. Diversity and abundance of Beauveria bassiana in soils, stink bugs and plant tissues of common bean from organic and conventional fields. J Invertebr Pathol. 2017, 150, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Mann, A.J.; Davis, T.S. Plant secondary metabolites and low temperature are the major limiting factors for Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocereales) growth and virulence in a bark beetle system. Biol Control. 2020, 141, 104130. [Google Scholar] [CrossRef]
- Sui, L.; Lu, Y.; Zhu, H.; Wan, T.; Li, Q.; Zhang, Z. Endophytic blastospores of Beauveria bassiana provide high resistance against plant disease caused by Botrytis cinerea. Fungal Biol. 2022, 126, 528–533. [Google Scholar] [CrossRef]
- Espinoza, F.; Vidal, S.; Rautenbach, F.; Lewu, F.; Nchu, F. Effects of Beauveria bassiana (Hypocreales) on plant growth and secondary metabolites of extracts of hydroponically cultivated chive (Allium schoenoprasum L.) (Amaryllidaceae). Heliyon. 2019, 5, e030338. [Google Scholar] [CrossRef] [PubMed]
- Mota, L.H.C.; Silva, W.D.; Sermarini, R.A.; Demetrio, C.G.B.; Bento, J.M.S.; Delalibera, I. Autoinoculation trap for management of Hypothenemus hamperi (Ferrari) with Beauveria bassiana (Bals.) in coffee crops. Biol Control. 2017, 111, 32–39. [Google Scholar] [CrossRef]
- Wraight, S.P.; Ramos, M.E.; Avery, P.B.; Jaronski, S.T.; Vandenberg, J.D. Comparative virulence of Beauveria bassiana isolates against lepidopteran pests of vegetable crops. J Invertebr Pathol. 2020, 103, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Zemek, R.; Konopicka, J.; Jozova, E.; Habustova, O.S. Virulence of Beauveria bassiana strains isolated from Cadavers of Colorado Potato Beetle, Leptinotarsa decemlineata. Insects. 2021, 12, 1077. [Google Scholar] [CrossRef] [PubMed]
- Barra-Bucarei, L.; Gonzalez, M.G.; Iglesias, A.F.; Aguayo, G.S.; Penalosa, M.G.; Vera, P.V. Beauveria bassiana multifunction as endophyte: growth promorion and biologic control of Trialeurodes vaporariorum, (Westwood) (Hemiptera: Aleyrodidae) in tomato. Insects. 2020, 11, 591. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, A.R.; Campillo, M.C.D.; Quesada-Moraga, E. Beauveria bassiana: An entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Sci Hortic. 2015, 197, 193–202. [Google Scholar] [CrossRef]
- Akello, J.; Dubois, T.; Coyne, D.; Kyamanywa, S. The effects of Beauveria bassiana dose and exposure duration on colonization and growth of tissue cultured banana (Musa sp.) plants. Biol Control. 2009, 49, 6–10. [Google Scholar] [CrossRef]
- Jang, L.; Park, Y.-G.; Lim, U.T. Beauveria bassiana ARP14 a potential entomopathogenic fungus against Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood)(Hemiptera: Aleyrodidae). J Asia Pac Entomol. 2023, 26, 102022. [Google Scholar] [CrossRef]
- Canassa, F.; Tall, S.; Moral, R.A.; Lara, I.A.R.D.; Delalibera, I.; Meyling, N.V. Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth spider mite populations and behavior of predatory mites. Biol Control. 2019, 132, 199–208. [Google Scholar] [CrossRef]
- Karaborklu, S.; Aydinli, V.; Dura, O. The potential of Beauveria bassiana and Metarhizium anisopliae in controlling the root0knot nematode Meloidogyne incognita in tomato and cucumber. J Asia Pac Entomol. 2022, 25, 101846. [Google Scholar] [CrossRef]
- Tomson, M.; Sahayaraj, K.; Sayed, S.; Elarnaouty, S.-A.; Petchidurai, G. Entomotoxic proteins of Beauveria bassiana Bals. (Vuil.) and their virulence against two cotton insect pests. J King Saud Uni Sci. 2021, 33, 101595. [Google Scholar] [CrossRef]
- Romero-Arenas, O.; Amaro-Leal, L.J.; Rivera, A.; Parraguirre-Lezama, C.; Sanchez-Morales, P.; Villa-Ruano, N. Formulations of Beauveria bassiana MABb1 and mesoporous materials for the biological control of Sphenarium purpurascens in maize crops from Puebla, Mexico. J Asia Pac Entomol. 2020, 23, 653–659. [Google Scholar] [CrossRef]
- Gonzalez-Mas, N.; Valverde-Garcia, R.; Gutierrez-Sanchez, F.; Quesada-Moraga, E. ; Effect of passage through the plant on virulence and endophytic behavioural adaptation in the entomopathogenic fungus Beauveria bassiana. Biol Control. 2021, 160, 104687. [Google Scholar] [CrossRef]
- Ramakuwela, T.; Hatting, J.; Bock, C.; Vega, F.E.; Wells, L.; Mbata, G.N.; Shapiro-Ilan, D. Establishment of Beauveria bassiana as a fungal endophyte in pecan (Carya illinoinensis) seedlings and its virulence against pecan insect pests. Biol Control. 2020, 140, 104102. [Google Scholar] [CrossRef]
- Mwaura, P.; Niere, B.; Vidal, S. Application of an entomopathogenic fungus (Beauveria bassiana) increases potato nematodes reproduction and potato tubers damage caused by Ditylenchus destructor and D. dipsaci. Biol Control. 2017, 115, 23–29. [Google Scholar] [CrossRef]
- Donga, T.K.; Vega, F.E.; Klingen, I. Establishment of the fungal entomopathogen Beauceria bassiana as an endophyte in sugarcane, Saccharum officinarum. Fungal Ecol. 2018, 35, 70–77. [Google Scholar] [CrossRef]
- Lalik, M.; Galko, J.; Nikolov, C.; Rell, S.; Kunca, A.; Zubrik, M.; Hyblerova, S.; Barta, M.; Holusa, J. Potential of Beauveria bassiana application via a carrier to control the large pine weevil. Crop Prot. 2021, 143, 105563. [Google Scholar] [CrossRef]
- Lau, I.C.K.; Feyereisen, R.; Nelson, D.R.; Bell, S.G. Analysis and preliminary characterisation of the cytochrome P450 monooxygenases from Frankia sp. Eul1c (Frankia inefficax sp.). Arch Biochem Biophys. 2019, 669, 11–21. [Google Scholar] [CrossRef]
- Chen, H.; Renault, S.; Markham, J. The effect of Frankia and Hebeloma crustiliniforme on Alnus alonbetula subsp. Crispa growing in saline soil. Plants. 2022, 11, 1860. [Google Scholar] [CrossRef]
- Simonet, P.; Grosjean, M.C.; Misra, A.K.; Nazaret, S.; Cournoyer, B.; Normand, P. Frankia genus-specific characterization by polymerase chain reaction. Appl Environ Microbiol. 1991, 57, 3278–3286. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D.B.; Boyer, G.L. Frankia produces a hydroxamate siderophore under iron limitation. J Plant Nutr. 1992, 15, 2193–2201. [Google Scholar] [CrossRef]
- Jeong, S.-C.; Myrold, D.D. Population size and diversity of Frankia in soils of Ceanothus velutinus and Douglas-fir stands. Soil Biol Biochem. 2001, 33, 931–941. [Google Scholar] [CrossRef]
- Rehan, M.; Fadly, G.E.; Farid, M.; Sharkawy, A.E.; Franzle, S.; Ullrich, R.; Kellner, H.; Hofrichter, M. Opening the s-triazine ring and biuret hydrolysis during conversion of atrazine by Frankia sp. Strain Eul1c. Int Biodeterior Biodegrad. 2017, 117, 14–21. [Google Scholar] [CrossRef]
- Miotello, G.; Ktari, A.; Gueddou, A.; Nouioui, I.; Ghodhbane-Gtari, F.; Armengaud, J.; Gtari, M. Proteogenomics data for decipherin Frankia coriariae interactions with root exudates from three host plants. Data Brief. 2017, 14, 73–76. [Google Scholar] [CrossRef]
- Huss-Danell, K.; Myrold, D.D. Intragenetic variation in nodulation of Alnus: Consequences for quantifying Frankia nodulation untis in soil. Soil Biol Biochem. 1994, 26, 525–531. [Google Scholar] [CrossRef]
- Rojas, N.S.; Perry, D.A.; Ganio, L.M. Frankia and nodulation of red alder and snowbrush grown on soils from Douglas-fir forests in the H.J. Andrews experimental forest of Oregon. Appl Soil Ecol. 2001, 17, 141–149. [Google Scholar] [CrossRef]
- Nouioui, I.; Ghodhbane-Gtari, F.; Potter, G.; Klenk, H.-P.; Goodfellow, M. Novel species of Frankia, Frankia gtarii sp. nov. and Frankia tisai sp. nov., isolated from a root nodule of Alnus glutinosa. Syst Appl Microbiol. 2023, 46, 126377. [Google Scholar] [CrossRef]
- Marappa, N.; Dharumadurai, D.; Nooruddin, T.; Abdulkader, A.M. Morphological, molecular characterization and biofilm inhibition effect of endophytic Frankia sp. from root nodules of Actinorhizal plant Casuarina sp. S Afr J Bot. 2020, 134, 72–83. [Google Scholar] [CrossRef]
- Purohit, A.; Yadav, S.K. Genome sequencing of a novel Microbacterium camelliasinensis CIAB417 identified potential mannan hydrolysing enzymes. Int J Biol Macromol. 2022, 208, 219–229. [Google Scholar] [CrossRef]
- Patel, A.; Sahu, K.P.; Mehta, S.; Javed, M.; Balamurugan, A.; Ashajyothi, M.; Sheoran, N.; Ganesan, P.; Kundu, A.; Gopalakrishnan, S.; Gogoi, R.; Kumar, A. New insights on endophytic Microbacterium-assisted blast disease suppression and growth promotion in rice: revelation by polyphasic functional characterization and transcriptomics. Microorganisms. 2023, 11, 362. [Google Scholar] [CrossRef]
- Gallois, N.; Piette, L.; Ortet, P.; Barakat, M.; Long, J.; Berthomieu, C.; Armengaud, J.; Chapon, V.; Alpha-Bazin, B. Proteomics data for characterizing Microbacterium oleivorans A9, an uranium-tolerant actinobacterium isolated near the Chernobyl nuclear power plant. Data Brief. 2018, 21, 1125–1129. [Google Scholar] [CrossRef]
- Xiong, W.; Peng, W.; Fu, Y.; Deng, Z.; Lin, S.; Liang, R. Identification of a 17β-estradiol-degrading Microbacterium hominis SJTG1 with high adaptability and characterization of the genes for estrogen degradation. J Hazard Mater. 2023, 444. [Google Scholar] [CrossRef]
- Hodgkin, J.; Kuwabara, P.E.; Corneliussen, B. A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol. 2000, 10, 1615–1618. [Google Scholar] [CrossRef]
- Rakhashiya, P.; Patel, P.P.; Thaker, V.S. High-quality complete genome sequence of Microbacterium sp. SUBG005, a plant pathogen. Genom Data. 2015, 5, 316–317. [Google Scholar] [CrossRef] [PubMed]
- Dees, M.W.; Brurberg, M.B.; Lysoe, E. Complete genome sequence of the biofilm forming Microbacterium sp. Strain BH-3-3-3, isolated from conventional field-grown lettuce (Lactuca sativa) in Norway. Genom Data. 2017, 11, 7–8. [Google Scholar] [CrossRef]
- Suarez-Estrella, F.; Jurado, M.M.; Lopez-Gonzalez, J.A.; Toribio, A.; Martinez-Gallardo, M.R.; Estrella-Gonzalez, M.J.; Lopez, M.J. Seed priming by application of Microbacterium spp. Strains for control of Botrytis cinerea and growth promotion of lettuce plants. Sci Hortic. 2023, 313, 111901. [Google Scholar] [CrossRef]
- Romero-Gutierrez, K.J.; Dourado, M.N.; Garrido, L.M.; Olchanheski, L.R.; Mano, E.T.; Dini-Andreote, F.; Valvano, M.A.; Araujo, W.L. Phenotypic traits of Burkholderia spp. associated with ecological adaptation and plant-host interaction. Microbiol Res. 2020, 236, 126451. [Google Scholar] [CrossRef]
- Poonguzhali, S.; Madhaiyan, M.; Sa, T. Quorum-sensing signals produced by plant-growth promoting Burkholderia strains under in vitro and in planta conditions. Res Microbiol. 2007, 158, 3–287. [Google Scholar] [CrossRef]
- Touceda-Gonzalez, M.; Brader, G.; Antonielli, L.; Ravindran, V.B.; Waldner, G.; friesl-Hanl, W.; Corretto, E.; Campisano, A.; Pancher, M.; Sessitsch, A. Combined amendment of immobilizers and the plant growth-promoting strain Burkholderia phytofirmans PsJN favours plant growth and reduces heavy metal uptake. Soil Biol Biochem. 2015, 91, 140–150. [Google Scholar] [CrossRef]
- Bernabeu, P.R.; Pistorio, M.; Torres-Tejerizo, G.; Santos, P.E.-D.I.; Galar, M.L.; Boiardi, J.L.; Luna, M.F. Colonization and plant growth-promotion of tomato by Burkholderia tropica. Sci Hortic. 2015, 191, 113–120. [Google Scholar] [CrossRef]
- Kong, P.; Richardson, P.; Hong, C. Burkholderia sp. SSG is a broad-spectrum antagonist against plant diseases caused by diverse pathogens. Biol Control. 2020, 151, 104380. [Google Scholar] [CrossRef]
- Maqsood, A.; Shahid, M.; Hussain, S.; Mahmood, F.; Azeem, F.; Tahir, M.; Ahmed, T.; Noman, M.; Manzoor, I. , Basit, F. Root colonizing Burkholderia sp. AQ12 enhanced rice growth and upregulated tillering-responsive genes in rice. Appl Soil Ecol. 2021, 157, 103769. [Google Scholar] [CrossRef]
- Naveed, M.; Mustafa, A.; Azhar, S.Q.-T.-A.; Kamran, M.; Zahir, Z.A.; Nunez-Delgado, A. Burkholderia phytofirmans PsJN and tree twigs derived biochar together retrieved Pb-induced growth, physiological and biochemical disturbances by minimizing its uptake and translocation in mung bean (Vigna radiata L.). J Environ Manag. 2020, 257, 109974. [Google Scholar] [CrossRef] [PubMed]
- Young, L-S. ; Hameed, A.; Peng, S.-Y.; Shan, Y-H.; Wu, S.-P. Endophytic establishment of the soil isolate Burkholderia sp. CC-A174 enhances growth and P-utilization rate in maize (Zea mays L.). Appl Soil Ecol. 2013, 66, 40–47. [Google Scholar] [CrossRef]
- Adhyaru, D.N.; Bhatt, N.S.; Modi, H.A. Enhanced production of cellulase-free, thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8, its characterization and application in sorghum straw saccharification. Biocatal Agric Biotechnol. 2014, 3, 182–190. [Google Scholar] [CrossRef]
- Widnyana, I.K.; Javandira, C. Activities Pseudomonas spp. and Bacillus sp. to stimulate germination and seedling growth of tomato plants. Agric Agric Sci Procedia. 2016, 9, 419–423. [Google Scholar] [CrossRef]
- Manasa, M.; Ravinder, P.; Gopalakrishnan, S.; Srinivas, V.; Sayyed, R.Z.; Enshasy, H.A.E.; Yahayu, M.; Zuan, A.T.K.; Kassem, H.S.; Hameeda, B. Co-inoculation of Bacillus spp. for growth promotion and iron fortification in sorghum. Sustainability. 2021, 13, 12091. [Google Scholar] [CrossRef]
- Grover, M.; Madhubala, R.; Ali, S.Z.; Yadav, S.K.; Venkateswarlu, B. Influence of Bacillus spp. strains on seedlings growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol. 2014, 54, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Prathibha, K.S.; Siddalingeshwara, K.G. Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescence as rhizobacteria on seed quality of sorghum. Int J Curr Microbiol Appl Sci. 2013, 2, 11–18. [Google Scholar]
- Cerozi, B.D.S.; Fitzsimmons, K. Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems. Sci Hortic. 2016, 211, 277–282. [Google Scholar] [CrossRef]
- Posada, L.F.; Alvarez, J.C.; Hu, C.-H.; Bashan, L.E.D.; Bashan, Y. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization. J Microbiol Methods. 2016, 128, 125–129. [Google Scholar] [CrossRef]
- Mwita, L.; Chan, W.Y.; Pretorius, T.; Lyantagaye, S.L.; Lapa, S.V.; Avdeeva, L.V.; Reva, O.N. Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates. Gene. 2016, 590, 18–28. [Google Scholar] [CrossRef]
- Fira, D.; Dimkic, I.; Beric, T.; Lozo, J.; Stankovic, S. Biological control of plant pathogens by Bacillus species. J Biotechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef]
- Rath, M.; Mitchell, T.R.; Gold, S.E. Volatiles produced by Bacillus mojavensis PRC101 act as plant growth modulators and are strongly culture-dependent. Microbiol Res. 2018, 208, 76–84. [Google Scholar] [CrossRef]
- Figueredo, M.S.; Tonelli, M.L.; Ibanez, F.; Morla, F.; Cerioni, G.; Tordable, M.D.C.; Fabra, A. Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Microbiol Res. 2017, 197, 65–73. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, S.Y.; Weon, H.-Y.; Sang, M.K.; Song, J. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste. J Biotechnol. 2017, 241, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, D.B.; Frikha-Gargouri, O.; Tounsi, S. Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biol Control. 2018, 124, 61–67. [Google Scholar] [CrossRef]
- Rocha, F.Y.O.; Oliveira, C.M.D.; Silva, P.R.A.; Melo, L.H.V.D.; Carmo, M.G.F.D.; Baldani, J.I. Taxonomical and functional charaterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1,2 and 3 of Fusarium oxysporum f. sp. Lycopersici. Appl Soil Ecol. 2017, 120, 8–19. [Google Scholar] [CrossRef]
- Dutta, B.; Datta, A.; Dey, A.; Ghosh, A.K.; Bandopadhyay, R. Establishment of seed biopriming in salt stress mitigation of rice plants by mangrove derived Bacillus sp. Biocatal Agric Biotechnol. 2023, 48, 102626. [Google Scholar] [CrossRef]
- Wu, A.-L.; Fan, F.-F.; Wang, J.-S.; Guo, J.; Dong, E.-W.; Wang, L.-G.; Shen, X.-M. Effect of continuous sorghum cropping on the rhizosphere microbial community and the role of Bacillus amyloliquefaciens in altering the microbial composition. Plant Growth Regul. 2019, 89, 299–308. [Google Scholar] [CrossRef]
- Cui, Q.; He, P.; Munir, S.; He, P.; Li, X.; Li, Y.; Wu, J.; Wu, Y.; Yang, L.; He, P.; He, Y. Efficacy of plant growth promoting bacteria Bacillus amyloliquefaciens B9601-Y2 for biocontrol of Sothern corn leaf blight. Biol Control. 2019, 139, 104080. [Google Scholar] [CrossRef]
- Li, F.; Shi, T.; Tang, X.; Tang, M.; Gong, J.; Yi, Y. Bacillus amyloliquefaciens PDR1 from root of karst adaptive plant enhances Arabidopsis thaliana resistance to alkaline stress through modulation of plasma membrane H+-ATPase activity. Plant Physiol Biochem. 2020, 155, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Azabou, M.C.; Gharbi, Y.; Medhiub, I.; Ennouri, K.; Barham, H.; Tounsi, S.; Triki, M.A. The endophytic strain Bacillus velezensis OEF1: An efficient biocontrol agent against Verticillium wilt of olive and a potential plant growth promoting bacteria. Biol Control. 2020, 142, 104168. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Singh, B.; Murali, M.; Shipla, N.; Prasad, M.; Aiyaz, M.; Amruthesh, K.N.; Niranjana, S.R. Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol Res. 2020, 234, 126422. [Google Scholar] [CrossRef]
- Mondal, M.; Biswas, J.K.; Tsang, Y.F.; Sarkar, B.; Sarkar, D.; Rai, M.; Sarkar, S.K.; Hooda, P.S. A wastewater bacterium Bacillus sp. KUJM2 acts as an agent for remediation of potentially toxic elements and promoter of plant (Lens culinaris) growth. Chemosphere. 2019, 232, 439–452. [Google Scholar] [CrossRef]
- Masood, S.; Zhao, X.Q.; Shen, R.F. Bacillus pumilus promotes the growth and nitrogen uptake tomato plants under nitrogen fertilization. Sci Hortic. 2020, 272, 109581. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Mukherjee, A.; Rastogi, R.P.; Verma, J.P. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPV11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiol Res. 2021, 242, 126616. [Google Scholar] [CrossRef]
- Marquez, R.; Blanco, E.L.; Aranguren, Y. Bacillus strain selection with plant growth-promoting mechanisms as potential elicitors of systemic resistance to gray mold in pepper plants. Saudi J Biol Sci. 2020, 27, 1913–1922. [Google Scholar] [CrossRef]
- Daengbussadee, C.; Laopaiboon, L.; Kaewmaneewat, A.; Sirisantimethakom, L.; Laopaiboon, P. Novel methods using an Arthrobacter sp. to create anaerobic conditions for biobutanol production from sweet sorghum juice by Clostridium beijerinckii. Processes. 2021, 9, 178. [Google Scholar] [CrossRef]
- Chavez-Moctezuma, M.P.; Martinez-Camara, R.; Hernandez-Salmeron, J.; Moreno-Hagelsieb, G.; Santoyo, G.; Valencia-Cantero, E. Comparative genomic and functional analysis of Arthrobacter sp. UMCV2 reveals the presence of luxR-related genes inducible by the biocompound N, N-dimethylhexadecilamine. Front Micrbiol. 2022, 13, 1040932. [Google Scholar] [CrossRef] [PubMed]
- Shoebitz, M.; Ribaudo, C.M.; Pardo, M.A.; Cantore, M.L.; Ciampi, L.; Cura, J.A. Plant growth promoting properties of a strain Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem. 2009, 41, 1768–1774. [Google Scholar] [CrossRef]
- Getenga, Z.; Dorfler, U.; Iwobi, A.; Schmid, M.; Schroll, R. Atrazine and terbuthylazine mineralization by an Arthrobacter sp. isolated from a sugarcane-cultivated soil in Kenya. Chemosphere. 2009, 77, 534–539. [Google Scholar] [CrossRef]
- Vanissa, T.T.G.; Berger, B.; Patz, S.; Becker, M.; Tureckova, V.; Novak, O.; Tarkowska, D.; Henri, F.; Ruppel, S. The response of maize to inoculation with Arthrobacter sp. and Bacillus sp. in phosphorus-deficient, salinity-affected soil. Microorganisms. 2020, 8, 1005. [Google Scholar] [CrossRef]
- Jiang, Z.; Shao, Q.; Cao, B.; Li, J.; Ren, Z.; Qu, J.; Zhang, Y. Noval bio-organic fertilizer containing Arthrobacter sp. DNS10 alleviates atrazine-induced growth inhibition on soybean by improving atrazine removal and nitrogen accumulation. Chemosphere. 2023, 313, 137575. [Google Scholar] [CrossRef]
- Panichikkal, J.; Krishnankutty, R.E. Root exudate components induced production of plant beneficial metabolites in rhizospheric Pseudomonas spp. Rhizosphere. 2021, 19, 100366. [Google Scholar] [CrossRef]
- Dimkic, I. , Janakiev, T.; Petrovic, M.; Degrassi, G.; Fira, D. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological mechanisms-A review. Physiol Mol Plant Pathol. 2022, 117, 101754. [Google Scholar] [CrossRef]
- Chiniquy, D.; Barnes, E.M.; Zhou, J.; Hartman, K.; Li, X.; Sheflin, A.; Pella, A.; Marsh, E.; Prenni, J.; Deutschbauer, A.M.; Schachtman, D.P.; Tringe, S.G. Microbial community field surveys reveals abundant Pseudomonas population in sorghum rhizosphere composed of many closely related phylotypes. Front Microbiol. 2021, 12, 598180. [Google Scholar] [CrossRef]
- Babalola, O.O.; Fasusi, O.A.; Amoo, A.E.; Ayangbenro, A.S. Genomic analysis of a Pseudomonas strain with multiple plant growth promoting properties. Rhizosphere. 2021, 18, 100342. [Google Scholar] [CrossRef]
- Tumewu, S.A.; Matsui, H.; Yamamoto, M.; Noutoshi, Y.; Toyoda, L.; Ichinose, Y. Identification of chemoteceptor proteins for amino acids involved in hist plant infection in Pseudomonas syringae pv. tabaci 6605. Microbiol Res. 2021, 253, 126869. [Google Scholar] [CrossRef]
- Zhao, M.; Tyson, C.; Chen, H.-C.; Paudel, S.; Gitaitis, R.; Kvitko, B.; Dutta, B. Pseudomonas alliivorans sp. nov., a plant-pathogenic bacterium isolated from onion foliage in Georgia, USA. Syst Appl Microbiol. 2022, 45, 126278. [Google Scholar] [CrossRef]
- Mekureyaw, M.; Pandey, C.; Hennessy, R.C.; Nicolaisen, M.H.; Liu, F.; Nybroe, O.; Roitsch, T. The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. J Plant Physiol. 2022, 270, 153629. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Matsi, T.; Kamou, N.; Avdouli, D.; Mellidou, I.; Karamanoli, K. Decoding the potential of a new Pseudomonas putida strain for inducing drought tolerance of tomato (Solanum lycopersicum) plants through seed biopriming. J Plant Physiol. 2022, 271, 153658. [Google Scholar] [CrossRef]
- Moin, S.; Ali, S.A.; Hasan, K.A.; Tariq, A.; Sultana, V.; Ara, J.; Ehteshamul-Haque, S. Managing the root rot disease of sunflower with endophytic fluorescent Pseudomonas associated with healthy plants. Crop Prot. 2020, 130, 105066. [Google Scholar] [CrossRef]
- Hsu, C.-K.; Micallef, S.A. Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria. Int J Food Microbiol. 2017, 259, 1–6. [Google Scholar] [CrossRef]
- Kumar, A.; Tripti; Voropaeva, O. ; Maleva, M.; Panikovskaya, K.; Borisova, G.; Rajkumar, M.; Bruno, L.B. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain E0026 for improved plant growth and copper phytoremediation by Helianthus annuus. Chemosphere. 2021, 266, 128983. [Google Scholar] [CrossRef]
- Costa-Gutierrez, S.B.; Raimondo, E.E.; Lami, M.J.; Vincent, P.A.; Espinosa-Urgel, M.; Cristobal, R.E.D. Inoculation of Pseudomonas mutant strains can improve growth of soybean and corn plants in soils under salt stress. Rhizosphere. 2020, 16, 100255. [Google Scholar] [CrossRef]
- Sahebani, N.; Gholamrezaee, N. The biocontrol potential of Pseudomonas fluorescens CHA0 against root knot nematode (Meloidogyne javanica) is dependent on the plant species. Biol Control. 2021, 152, 104445. [Google Scholar] [CrossRef]
- Heath, K.D.; Lau, J.A. Herbivores alter the fitness benefits of a plant-rhizosbium mutualism. Acta Oecologica. 2011, 37, 87–92. [Google Scholar] [CrossRef]
- Xiao, K.; Liu, T.; Yin, P.; Ren, X.; Liang, J.; Zhang, W.; Zhang, J.; Wang, B.; Wong, P.K. Effective photocatalytic inactivation of the plant-pathogen Rhizobium radiobacter by carbon-based material: Mechanism and agriculture application. Chem Eng J. 2021, 407, 127047. [Google Scholar] [CrossRef]
- Mbah, G.C.; Maseko, S.T.; Mathews, C.; Dakora, F.D. Differences in plant growth, nodulation and intrinsic water use efficiency of Rhizobium-inoculated and un-inoculated promiscuous and commercial soybean genotypes grown at Mpumalanga, South Africa. S Afr J Bot. 2015, 98, 189–190. [Google Scholar] [CrossRef]
- Sanz-Saez, A.; Perez-Lopez, U.; Del-Canto, A.; Ortiz-Barredo, A.; Mena-Petite, A.; Aranjuelo, I.; Munoz-Rueda, A.; Lacuesta, M. Changes in environmental CO2 concentration can modify Rhizobium-soybean specificity and condition plant fitness and productivity. Environ Experim Bot. 2019, 162, 133–143. [Google Scholar] [CrossRef]
- Sahito, Z.A.; Zehra, A.; Chen, S.; Yu, S.; Tang, L.; Ali, Z.; Hamza, S.; Irfan, M.; Abbas, T.; He, Z.; Yang, X. Rhizobium rhizogenes-mediated root proliferation in Cd/Zn hyperaccumulator Sedum alfredii and its effects on plant growth promotion, root exudates and metal uptake. J Hazard Mater. 2022, 424. [Google Scholar] [CrossRef]
- Gourion, B.; Berrabah, F.; Ratet, P.; Stacey, G. Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci. 2015, 20, 186–194. [Google Scholar] [CrossRef]
- Karoney, E.M.; Ochieno, D.M.W.; Baraza, D.L.; Muge, EK.; Nyaboga, E.N.; Naluyange, V. Rhizobium improves nutritive suitability and tolerance of Phaseolus vulgaris to Colletotrichum lindemuthianum by boosting organic nitrogen content. Appl Soil Ecol. 2020, 149, 103534. [Google Scholar] [CrossRef]
- Kim, B.-H.; Ramanan, R.; Cho, D.-H.; Oh, H.-M.; Kim, H.-S. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy. 2014, 69, 95–105. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.-Q.; Yan, X.-W.; Wei, G.-H.; Zhang, J.-H.; Fang, L.-C. Rhizobium inoculation enhances copper tolerance by affecting copper uptake and regulating the ascorbate-glutathione cycle and phytochelatin biosynthesis-related gene expression in Medicago sativa seedlings. Ecotoxicol Environ Saf. 2018, 162, 312–323. [Google Scholar] [CrossRef]
- Tulumello, J.; Chabert, N.; Rodriguez, J.; Long, J.; Nalin, R.; Achouak, W.; Heulin, T. Rhizobium alamii improves water stress tolerance in a non-legume. Sci Total Environ. 2021, 797, 148895. [Google Scholar] [CrossRef]
- Yadav, J.; Verma, J.P. Effect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields rhizobacteria on nutrients uptake and yield of chieckpea (Cicer arietinum L.). Eur J Soil Biol. 2014, 63, 70–77. [Google Scholar] [CrossRef]
- Heydari, L.; Bayat, H.; Gregory, A.S. Investigating the effect of inoculation of chickpea with rhizobium and mycorrhizal fungi (Funneliformis mosseae) on soil mechanical and physical behavior. Geoderma. 2021, 385, 114860. [Google Scholar] [CrossRef]
- Ferreira, L.D.V.M.; Carvalho, F.D.; Andrade, J.F.C.; Oliveira, D.P.; Medeiros, F.H.V.D.; Moreira, F.M.D.S. Co-inoculation of selected nodule endophytic rhizobacterial strains with Rhizobium tropici promotes plant growth and control damping off in common bean. Pedosphere. 2020, 30, 98–108. [Google Scholar] [CrossRef]
- Fiori, A.K.; Gutuzzo, G.D.O.; Sanzovo, A.W.D.S.; Andrade, D.D.S.; Oliveira, A.L.M.D.; Rodriguues, E.P. Effects of Rhizobium tropici azide-resistant mutants on growth, nitrogen nutrition and nodulation of common bean (Phaseolus vulgaris L.). Rhizosphere. 2021, 18, 100355. [Google Scholar] [CrossRef]
- Abd-All, M.H.; El-Enany, A.-W.E.; Nafady, N.A.; Khalaf, D.M.; Morsy, F.M. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res. 2014, 169, 49–58. [Google Scholar] [CrossRef]
- Shameem, R.; Sonali, M.I.; Kumar, P.S.; Rangasamy, G.; Gayathri, K.V.; Parthasarathy, V. Rhizobium mayense sp. Nov., an efficient plant growth-promoting nitrogen-fixing bacteria isolated from rhizosphere soil. Environ Res. 2023, 220, 115200. [Google Scholar] [CrossRef]
- Preyanga, R.; Anandham, R.; Krishnamoorthy, R.; Senthilkumar, M.; Gopal, N.O.; Vellaikumar, A.; Meena, S. Groundnut (Arachis hypogaea) nodule Rhizobium and passneger endophytic bacterial cultivable diversity and their impact on plant growth promotion. Rhizosphere. 2021, 17, 100309. [Google Scholar] [CrossRef]
- Saleem, S.; Khan, M.S. Phyto-interacive impact of green synthesized iron oxide nanoparticles and Rhizobium pusense on morpho-physiological and yield components of greengram. Plant Physiol Biochem. 2023, 194, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Pindi, P.K. Data on host specificity and symbiotic association between indigenous Rhizobium DB1 strain and Vigna radiata (green gram). Data Brief. 2021, 39, 107520. [Google Scholar] [CrossRef]
- Bolanos, L.; El-Hamdaoui, A.; Bonilla, I. Recovery of development and functionality of nodules and plant growth in salt-stressed Pisum sativum-Rhizobium leguminosarum symbiosis by boron and calcium. J Plant Physiol. 2003, 160, 1493–1497. [Google Scholar] [CrossRef]
- Ahemad, M.; Khan, M.S. Effect of tebuconazole-tolerant and plant growth promoting Rhizobium isolate MRP1 on pea-Rhizobium symbiosis. Sci Hortic. 2011, 129, 266–272. [Google Scholar] [CrossRef]
- Kamran, A.; Mushtaq, M.; Arif, M.; Rashid, S. Role of biostimulants (ascorbic acid and fulvic acid) to synergize Rhizonium activity in pea (Pisum sativum L. var. Meteor). Plant Physiol Biochem. 2023, 196, 668–682. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Zhang, H.; He, Y.; Jiang, C.; Yang, M.; Ye, S. Legume-bacteria-soil interaction networks linked to improved plant productivity and soil fertility in intercropping systems. Ind Crops Prod. 2023, 196, 116504. [Google Scholar] [CrossRef]
- Adele, N.V.; Ngwenya, B.T.; Heal, K.V.; Mosselmans, J.F.W. Role of plant growth promotion bacteria in driving speciation gradients across soil-rhizosphere-plant interfaces in zinc-contaminated soils. Environ Pollut. 2021, 279, 116909. [Google Scholar] [CrossRef] [PubMed]
- Zainab, R.; Shah, G.M.; Khan, W.; Mehmood, A.; Azad, R.; Shahzad, K.; Shah, Z.H.; Alghabari, F.; Sultan, T.; Chung, G. Efficiency of plant growth promoting bacteria for growth and yield enhancement of maize (Zea mays) isolated from rock phosphate reserve area Hazara Khyber Pakhtunkhwa, Pakistan. Saudi J Biol Sci. 2021, 28, 2316–2322. [Google Scholar] [CrossRef] [PubMed]
- Herrera, H.; Novotna, A.; Ortiz, J.; Soto, J.; Arriagada, C. Isolation and identification of plant growth-promoting bacteria from rhizomes of Arachnitis uniflora, a fully mycoheterotrophic plant southern Chile. Appl Soil Ecol. 2020, 149, 103512. [Google Scholar] [CrossRef]
- Puri, A.; Padda, K.P.; Chanway, C.P. In vitro and in vivo analyses of plant growth-promoting potential of bacterial naturally associated with spruce trees growing on nutrient-poor soils. Appl Soil Ecol. 2020, 149, 103538. [Google Scholar] [CrossRef]
- Adhikari, P.; Pandey, A. Bioprospecting plant growth promoting endophytic bacteria isolated from Himalayan yew (Taxus wallichiana Zucc.). Microbiol Res. 2020, 239, 126536. [Google Scholar] [CrossRef]
- Laranjeira, S.; Fernandes-Silva, A.; Reis, S.; Torcato, C.; Raimundo, F.; Ferreira, L.; Carnide, V.; Marques, G. Inoculation of plant growth promoting bacteria and arbuscular mycorrhizal fungi improve chickpea performance under water deficit conditions. Appl Soil Ecol. 2021, 164, 103927. [Google Scholar] [CrossRef]
- Compant, S.; Clement, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef]
- Wei, X.; Moreno-Hagelsieb, G.; Glick, B.R.; Doxey, A.C. Comparative analysis of adenylate isopentenyl transferase genes in plant growth-promoting bacteria and plant pathogenic bacteria. Heliyon. 2023, 9, e13955. [Google Scholar] [CrossRef] [PubMed]
- Mukhi, S.; Kumar, A.; Kumari, P.; Kumar, R. Psychrotrophic plant beneficial bacteria from the glacial ecosystem of Sikkim Himalaya: Genomics evidence for the cold adaptation and plant growth promotion. Microbiol Res. 2022, 260, 127049. [Google Scholar] [CrossRef]
- Alves, A.R.A.; Yin, Q.; Oliveira, R.S.; Silva, E.F.; Novo, L.A.B. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions. Sci Total Environ. 2022, 838(Part 4), 156435. [Google Scholar] [CrossRef] [PubMed]
- Autarmat, S.; Treesubsuntorn, C.; Thiravetyan, P. Comparison of using plant growth promoting bacteria and exogenous indole acetic acid on rice under ozone stress. Biocatal Agric Biotechnol. 2023, 48, 102633. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.D.C.; Glick, B.R.; Santoyo, G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol Res. 2020, 235, 126439. [Google Scholar] [CrossRef]
- Alijani, Z.; Amini, J.; Karimi, K.; Pertot, I. Characterization of the mechanism of action of Serratia rubidaea Mar61-01 against Botrytis cinerea in strawberries. Plants. 2023, 12, 154. [Google Scholar] [CrossRef]
- Niu, H.; Sun, Y.; Zhang, Z.; Zhao, D.; Wang, N.; Wang, L.; Guo, H. The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiol Res. 2022, 256, 126956. [Google Scholar] [CrossRef]
- Selvakumar, G.; Mohan, M.; Kundu, S.; Gupta, A.D.; Joshi, P.; Nazim, S.; Gupta, H.S. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol. 2008, 46, 171–175. [Google Scholar] [CrossRef]
- Selvakumar, G.; Kundu, S.; Gupta, A.D.; Shouche, Y.S.; Gupta, H.S. Isolation and characterization of nonrhizoial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Curr Microbiol. 2008, 56, 134–139. [Google Scholar] [CrossRef]
- Li, Q.; Huang, Z.; Deng, C.; Lin, K.-H.; Hua, S.; Chen, S.-P. Endophytic Klebsiella sp. San01 promotes growth performance and induces salinity and drought tolerance in sweet potato (Ipomoea batatas L.). J Plant Interact. 2022, 17, 608–619. [Google Scholar] [CrossRef]
- Abbasi, S.; Sadeghi, A.; Safaie, N. Streptomyces alleviate drought stress in tomato plants and modulate the expression of transcription factors ERF1 and WRKY70 genes. Sci Hortic. 2020, 265, 109206. [Google Scholar] [CrossRef]
- Salwan, R.; Sharma, V.; Sharma, A.; Singh, A. Molecular imprints of plant beneficial Streptomyces sp. AC30 and AC40 reveal differential capabilities and strategies to counter environmental stresses. Microbiol Res. 2020, 235, 126449. [Google Scholar] [CrossRef] [PubMed]
- Filatov, A.V.; Perepelov, A.V.; Shashkov, A.S.; Burygin, G.L.; Gogoleva, N.E.; Khlopko, Y.A.; Grinev, V.S. Structure and genetics of the O-antigen of Enterobacter cloacea K7 containing di-N-acetylpseudaminic acid. Carbohydr Res. 2021, 508, 108392. [Google Scholar] [CrossRef] [PubMed]
- Safara, S.; Harighi, B.; Amini, J.; Bahramnejad, B. Screening of endophytic bacteria isolated from Beta vulgaris and Beta maritima plants for suppression of postharvest sugar beet soft rot agent, Enterobacter roggenkampii. Physiol Mol Plant Pathol. 2022, 121, 101892. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Senapati, A.; Sharma, L.; Nayak, A.K.; Kumar, A.; Kumar, U.; Prabhukarthikeyan, S.R.; Mitra, D.; Sagarika, M.S. Understanding rice growth-promoting potential of Enterobacter spp. isolated from long-term organic farming soil in India through a supervised learning approach. Curr Res Microbiol Sci. 2021, 2, 100035. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, A.Y.Z.; Alsyeeh, A.-M.; Almalki, M.A.; Saleh, F.A. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi J Biol Sci. 2016, 23, 79–86. [Google Scholar] [CrossRef]
- Zhao, K.; Penttinen, P.; Zhang, X.; Ao, X.; Liu, M.; Yu, X.; Chen, Q. Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol Res. 2014, 169, 76–82. [Google Scholar] [CrossRef]
- Jiang, C.-Y.; Sheng, X.-F.; Qian, M.; Wang, Q.-Y. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere. 2008, 72, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.-J.; Medison, R.G.; Cao, S.; Wang, L.-Q.; Cheng, S.; Tan, L.-T.; Sun, Z.-X.; Zhou, Y. Isolation, identification, and biocontrol mechanisms of endophytic Burkholderia vietnamiensis C12 from Ficus tikoua Bur against Rhizoctonia solani. Biol Control. 2023, 178, 105132. [Google Scholar] [CrossRef]
- Gao, M.; Zhou, J.-J.; Wang, E.-T.; Chen, Q.; Xu, J.; Sun, J.-G. Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. J Integr Agric. 2015, 14, 1855–1863. [Google Scholar] [CrossRef]
- Simonetti, E.; Roberts, I.N.; Montecchia, M.S.; Gutierrez-Boem, F.H.; Gomez, F.M.; Ruiz, J.A. A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth. Microbiol Res. 2018, 206, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.D.; Singh, S.S.; Kumar, N.S. Analyzing plant growth promoting Bacillus sp. and related genera in Mizoram, Indo-Burma biodiversity hotspot. Biocatal Agric Biotechnol. 2018, 15, 370–376. [Google Scholar] [CrossRef]
- Chi, Y.; Huang, Y.; Wang, J.; Chen, X.; Chu, S.; Hayat, K.; Xu, Z.; Xu, H.; Zhou, P.; Zhang, D. Two plant growth promoting bacterial Bacillus strains prossess different mechanism in adsorption and resistance to cadmium. Sci Total Environ. 2020, 741, 140422. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, J.; Chakraborty, U.; Chakraborty, B. High-temperature resilience in Bacillus safensis primed wheat plants: A study of dynamic response associated with modulation of antioxidant machinery, differential expression of HSPs and osmolyte biosynthesis. Environ Experim Bot. 2021, 182, 104315. [Google Scholar] [CrossRef]
- Narayanasamy, S.; Thangappan, S.; Uthandi, S. Plant growth-promoting Bacillus sp. Cahoots moisture stress alleviation in rice genotypes by triggering antioxidant defense system. Microbiol Res. 2020, 239, 126518. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Ahmad, I.; Shahid, M.; Shah, G.M.; Farooq, A.B.U.; Akram, M.; Tabassum, S.A.; Naeem, M.A.; Khalid, U.; Ahmad, S.; Zakir, A. Regulation of antioxidant production, ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains. Ecotoxicol Environ Saf. 2019, 178, 33–42. [Google Scholar] [CrossRef]
- Myo, E.M.; Liu, B.; Ma, J.; Shi, L.; Jiang, M.; Zhang, K.; Ge, B. Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biol Control. 2019, 134, 23–31. [Google Scholar] [CrossRef]
- Qin, S.; Wu, X.; Han, H.; Pang, F.; Zhang, J.; Chen, Z. Polyamine-producing bacterium Bacillus megaterium N3 reduced Cd accumulation in wheat and increased the expression of DNA repair- and plant hormone-related proteins in wheat roots. Environ Experim Bot. 2021, 189, 104563. [Google Scholar] [CrossRef]
- Hashem, A.; Tabassum, B.; Abd-Allah, E.F. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef]
- Latochkina, O.; Aliniaeifard, S.; Garshina, D.; Garipova, S.; Pusenkova, L.; Allagulova, C.; Fedorova, K.; Baymiev, A.; Koryakov, I.; Sobhani, M. Seed priming with endophytic Bacillus subtilis strain-specifically improves growth of Phaseolus vulgaris plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmotic damages. J Plant Physiol. 2021, 263, 153462. [Google Scholar] [CrossRef]
- Paquot, M.; Heuze, V.; Destain, J.; Lepoivre, Ph.; Tossut, P.; Thonart, Ph. Surface hydrophobicity and electrical properties of Bacillus subtilis strains, potential phytopathogen antagonists in tomato crops. Colloids Surf B Biointerfaces. 1994, 2, 451–456. [Google Scholar] [CrossRef]
- Vasconez, R.D.A.; Moya, E.M.T.; Yepez, L.A.C.; Chiluisa-Utreras, V.P.; Suquillo, I.D.I.A.V. Evaluation of Bacillus megaterium strain AB4 as a potential biocontrol agent of Alternaria japonica, a mycopathogen of Brassica oleracea var. Italica. Biotechnol Rep. 2020, 26, e00454. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, G.; Claassens, S.; Mienie, C.M.C; Fourie, H. Filtrates of mixed Bacillus spp. inhibit second-stage juvenile motility of root-knot nematodes. Rhizosphere. 2022, 22, 100528. [Google Scholar] [CrossRef]
- Melnick, R.L.; Zidack, N.K.; Bailey, B.A.; Maximova, S.N.; Guiltinan, M.; Backman, P.A. Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol Control. 2008, 46, 46–56. [Google Scholar] [CrossRef]
- Stevens, M.M.; Hughes, P.A.; Mo, J. Evaluation of commercial Bacillus thuringiensis var. israelensis formulation for the control of chironomid midge larvae (Diptera: Chironomidae) in established rice crops in south-eastern Australia. J Invertebr Pathol. 2013, 112, 9–15. [Google Scholar] [CrossRef]
- Maung, C.E.H.; Choub, V.; Cho, J.-Y.; Kim, K.Y. Control of the bacterial soft rot pathogen Pectobacterium carotovorum by Bacillus velezensis CE 100 in cucumber. Microb Pathog. 2022, 173. [Google Scholar]
- Sampathkuar, A.; Aiyanathan, K.E.A.; Nakkeeran, S.; Manickam, S. Multifaceted Bacillus spp. for the management of cotton bacterial blight caused by Xanthomonas citri pv. malvacearum. Biol Control. 2023, 177, 105111. [Google Scholar] [CrossRef]
- Chi, Y.; You, Y.; Wang, J.; Chen, X.; Chu, S.; Wang, R.; Zhang, X.; Yin, S.; Zhang, D.; Zhou, P. Two plant growth-promoting bacterial Bacillus strains possess different mechanisms in affecting cadmium uptake and detoxification of Solanum nigrum L. Chemosphere. 2022, 305, 135488. [Google Scholar] [CrossRef]
- Dhali, S.; Aharya, S.; Pradhan, M.; Patra, D.K.; Pradhan, C. Syngergistic effect of Bacillus and Rhizobium on cytological and photosynthetic performance of Macrotyloma uniflorum (Lam.) Verdc. grown in Cr (VI). Plant Physiol Biochem. 2022, 190, 62–69. [Google Scholar] [CrossRef]
- Koul, V.; Kochar, M. A novel essential small RNA, sSp_p6 influences nitrogen fixation in Azospirillum brasilense. Rhizosphere. 2021, 17, 100281. [Google Scholar] [CrossRef]
- Sah, S.; Krishnani, S.; Singh, R. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Curr Res Microbial Sci. 2021, 2, 100084. [Google Scholar] [CrossRef]
- Rima, S.A.J.; Paul, G.K.; Islam, S.; Akhtar-E-Ekram, Md.; Zaman, S.; Saleh, Md.A.; Uddin, Md.S. Efficacy of Pseudomonas sp. and Bacillus sp. in textile dye degradation: A combined study on molecular identification, growth, optimization, and comparative degradation. J Hazard Mater Lett. 2022, 3, 100068. [Google Scholar] [CrossRef]
- Samaddar, S.; Chatterjee, P.; Choudhury, A.R.; Ahmed, S.; Sa, T. Interactions between Pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiol Res. 2019, 219, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fan, H.; Zhao, D.; Zhu, X.; Wang, Y.; Liu, X.; Liu, D.; Duan, Y.; Chen, L. Multifunctional efficacy of the nodule endophyte Pseudomonas fragi in stimulating tomato immune response against Meloidogyne incognita. Biol Control. 2021, 164, 104773. [Google Scholar] [CrossRef]
- Anand, V.; Kaur, J.; Srivastava, S.; Bist, V.; Dharmesh, V.; Kriti, K.; Bisht, S.; Srivastava, P.K.; Srivastava, S. Potential of methyltransferase containing Pseudomonas oleovorans for abatement of arsenic toxicity in rice. Sci Total Environ. 2023, 856, 158944. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Mishra, J.; Arora, N.K. Plant growth promoting bacteria for combating salinity stress in plants-Recent developments and prospects: A review. Microbiol Res. 2021, 252, 126861. [Google Scholar] [CrossRef]
- Murgese, P.; Santamaria, P.; Leoni, B.; Crecchio, C. Ameliorative effects of PGBP on yield, physiological parameters, and nutrient transporter genes expression in Barattiere (Cucumis melo L.). J Soil Sci Plant Nutr. 2020, 20, 784–793. [Google Scholar] [CrossRef]
- Barnawal, D.; Bharti, N.; Pandey, S.S.; Pandey, A.; Chanotiya, C.S.; Kalra, A. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant. 2017, 161, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Vaishnav, A.; Kumari, S.; Jain, S.; Varma, A.; Tuteja, N.; Choudhary, D.K. PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol. 2016, 56, 1274–1288. [Google Scholar] [CrossRef]
- Liu, S.; Hao, H.; Lu, X.; Zhao, X.; Wang, Y.; Zhang, Y.; Xie, Z.; Wang, R. Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Sci Rep. 2017, 7, 10795. [Google Scholar] [CrossRef]
- Pinedo, I.; Ledger, T.; Greve, M.; Poupin, M.J. Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front Plant Sci. 2015, 6, 466. [Google Scholar] [CrossRef]
- El-Esawi, M.A.; Alaraidh, I.A.; Alsahli, A.A.; Alamri, S.A.; Ali, H.M.; Alayafi, A.A. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Biochem. 2018, 132, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.-Q.; Li, H.-R.; Pare, P.W.; Aziz, M.; Wang, S.-M.; Shi, H.; Li, J.; Han, Q.-Q.; Guo, S.-Q.; Li, J.; Guo, Q.; Ma, Q.; Zhang, J.-L. Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficinal rhizobacteria. Plant Soil. 2016, 407, 217–230. [Google Scholar] [CrossRef]
- Shavalikohshori, O.; Zalaghi, R.; Sorkheh, K.; Enaytizamir, N. The expression of proline production/degradation genes under salinity and cadmium stresses in Triticum aestivum inoculated with Pseudomonas sp. Int J Environ Sci Technol. 2020, 17, 2233–2242. [Google Scholar] [CrossRef]
- Baek, D.; Rokibuzzaman, M.; Khan, A.; Kim, M.C.; Park, H.J.; Yun, D.-J.; Chung, Y.R. Plant-growth promoting Bacillus oryzicola YC7007 modulates stress-response gene expression and provides protection from salt stress. Front Plant Sci. 2020, 10, 1646. [Google Scholar] [CrossRef]
- Habib, S.H.; Kausar, H.; Saud, H.M. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int. 2016, 6284547. [Google Scholar] [CrossRef]
- Rabhi, N.E.H.; Silini, A.; Cherif-Silini, H.; Yahiaoui, B.; Lekired, A.; Robineau, M.; Esmaeel, Q.; Jacquard, C.; Vaillat-Gaveau, N.; Clement, C.; Ait Barka, E.; Sanchez, L. Pseudomonas knackmussi MLR6, a rhizospheric strain isolated from halophyte, enhances salt tolerance in Arabidopsis thaliana. J Appl Microbiol. 2018, 125, 1836–1851. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Di Stasio, E.; Cirillo, V.; Silletti, S.; Ventorino, V.; Pepe, O.; Raimondi, G.; Maggio, A. Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biol. 2018, 18, 205. [Google Scholar] [CrossRef]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Jan, R.; Kang, S.-M.; Kim, K.-M.; Lee, I.-J. Rhizobacteria AK1 remediates the toxic effects of salinity stress via regulation of endogenous phytohormones and gene expression in soybean. Biochem J. 2019, 476, 2393–2409. [Google Scholar] [CrossRef]
- Khan, M.A.; Ullah, I; Waqas, M. ; Hamayun, M.; Khan, A.L.; Asaf, S.; Kang, S.-M.; Kim, K.-M.; Jan, R.; Lee, I.-J. Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean. Symbiosis. 2019, 77, 9–21. [Google Scholar] [CrossRef]
- Aquino, J.P.A.; Antunes, J.E.L.; Bonifacion, A.; Rocha, S.M.B.; Amorim, M.R.; Neto, F.A.; Araujo, A.S.F. Plant growth-promoring bacteria improve growth and nitrogen metabolism in maize and sorghum. Theor Exp Plant Physiol. 2021, 33, 249–260. [Google Scholar] [CrossRef]
- El-Meihy, R.M.; Abou-Aly, H.E.; Youssef, A.M.; Tewfike, T.A.; El-Alkshar, E.A. Efficiency of heavy metals-tolerant plant growing promoting bacteria for alleviating growth promoting bacteria for alleviating heavy metals toxicity on sorghum. Environ Experim Bot. 2019, 162, 295–301. [Google Scholar] [CrossRef]
- Kordatzaki, G.; Katsenios, N.; Giannoglou, M.; Andreou, V.; Chanioti, S.; Katsaros, G.; Savvas, D.; Efthimiadou, A. Effect of foliar and soil application of plant growth promoting bacteria on kale production and quality characteristics. Sci Hortic. 2022, 301, 111094. [Google Scholar] [CrossRef]
- Wu, A.-L.; Jiao, X.-Y.; Wang, J.-S.; Dong, E.-W.; Guo, J.; Wang, L.-G.; Sun, A.-Q.; Hu, H.-W. Sorghum rhizosphere effects reduced soil bacterial diversity by recruiting specific bacterial species under low nitrogen stress. Sci Total Environ. 2021, 770, 144742. [Google Scholar] [CrossRef] [PubMed]
- Sahib, M.R.; Pervaiz, Z.H.; Williams, M.A.; Saleem, M.; DeBolt, S. Rhizobacterial species richness improves sorghum growth and soil nutrient synergism in a nutrient-poor greenhouse soil. Sci Rep. 2020, 10, 15454. [Google Scholar] [CrossRef]
- Bruno, L.B.; Karthik, C.; Ma, Y.; Kadirvelu, K.; Freitas, H.; Rajkumar, M. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere. 2020, 244, 125521. [Google Scholar] [CrossRef]
- Dhwai, F.; Datta, R; Ramakrishna, W. Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil. Biochim Biophys Acta (BBA)-Proteins Proteom. 2017, 1865, 243–251. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Vangnai, A.S.; Kamaraj, B.; Cornejo, P. Plant growth-promoting actinobacterial inoculent assisted phytoremediation increases cadmium uptake in Sorghum bicolor under drought and heat stresses. Environ Pollut. 2022, 307, 119489. [Google Scholar] [CrossRef]
- Dhwai, F.; Datta, R.; Ramakrishna, W. Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil. Chemosphere. 2016, 17, 33–41. [Google Scholar] [CrossRef]
- Abou-Aly, H.E.; Youssef, A.M.; Tewfike, T.A.; El-Alkshar, E.A.; El-Meihy, R.M. Reduction of heavy metals bioaccumulation in sorghum and its rhizosphere by heavy metals-tolerant bacterial consortium. Biocatal Agric Biotechnol. 2021, 31, 101911. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Wang, L.; He, L.-W.; Sheng, X.-F. Increased growth and root Cu accumulation of Sorghum sudanese by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization. Ecotoxicol Environ Saf. 2016, 124, 163–168. [Google Scholar] [CrossRef]
- Shinde, K.S.; Borkar, S.G. Plant growth parameter in Sorghum bicolor as influenced by mositure stress tolerant rhizobacteria during mitigation of drought. Int J Curr Microbiol Appl Sci. 2019, 8, 1659–1668. [Google Scholar] [CrossRef]
- Ali, A.; Guo, D.; Mahar, A.; Wang, P.; Ma, F.; Shen, F.; Li, R.; Zhang, Z. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils. Ecotoxicol Environ Saf. 2017, 139, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Vijayabharathi, R.; Sathya, A.; Gopalakrishnan, S. Extracellular biosynthesis of silver nanoparticles using Streptomyces griseoplanus SAI-25 and its antifungal activity against Macrophomina phaseolia, the charcoal rot pathogen of sorghum. Biocatal Agric Biotechnol. 2018, 14, 166–171. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Srinivas, V.; Vidya, M.S.; Rathore, A. Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. Springer Plus. 2013, 574. [Google Scholar] [CrossRef] [PubMed]
- Alekhya, G.; Sharma, R.; Gopalakrishnan, S. Streptomyces spp., a potential biocontrol agent of charocoal rot of sorghum caused Macrophomina phaseolina. Indian J Plant Prot. 2016, 44, 222–228. [Google Scholar]
- Gopalakrishnan, S.; Sharma, R.; Srinivas, V.; Naresh, N.; Mishra, S.P.; Ankati, S.; Pratyusha, S.; Govindaraj, M.; Gonzalez, S.V.; Nervik, S.; Simic, N. Identification and characterization of a Streptomyces albus strain and its secondary metabolite organophosphate against charcoal rot of sorghum. Plants, 2020, 9, 1727. [Google Scholar] [CrossRef]
- Chiarini, L.; Bevivino, A.; Tabacchioni, S.; Dalmastri, C. Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: Root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem. 1998, 30, 81–87. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor. Acta Physiol Plant. 2016, 38, 110. [Google Scholar] [CrossRef]
- Calvin, W.; Beuzelin, J.M.; Liburd, O.E.; Branham, M.A.; Simon, L.J. Effects of biological insecticides on the sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera; Aphidiae), in sorghum. Crop Prot. 2021, 142, 105528. [Google Scholar] [CrossRef]
- Reddy, N.P.; Khan, A.P.A.; Devi, U.K.; Sharma, H.C.; Reineke, A. Treatment of millet crop plant (Sorghum bicolor) with the entomopathogenic fungus (Beauveria bassiana) to combat infestation by the stem borer, Chilo partellus Swinhoe (Lepidoptera: Pyralidae). J Asia Pac Entomol. 2009, 12, 221–226. [Google Scholar] [CrossRef]
- Tefera, T.; Vidal, S. Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl. 2009, 54, 663–669. [Google Scholar] [CrossRef]
- Ramos, Y.; Taibo, A.D.; Jimenez, J.A.; et al. Endophytic establishment of Beauveria bassiana and Metarhizium anisopliae in maize plants and its effect against Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) larvae. Egypt J Biol Pest Control. 2020, 30, 20. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Wang, B. Entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae play roles of maize (Zea mays) growth promoter. Sci Rep. 2022, 12, 15706. [Google Scholar] [CrossRef]
- Raya-Diaz, S.; Sanchez-Rodrigues, A.R.; Segura-Fernandez, J.M.; del Campillo, Md.C.; Quesada-Moraga, R. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates. PLOS ONE. 2017, 12, e0185903. [Google Scholar] [CrossRef]
- Schlemper, T.R.; Dimitrov, M.R.; Silva Gutierrez, F.A.O.; van Veen, J.A.; Silveira, A.P.D.; Kuramae, E.E. Effect of Burkholderia tropica and Herbaspirillum frisingense strains on sorghum growth is plant genotype dependent. PeerJ. 2018, 6, e5346. [Google Scholar] [CrossRef]
- Alagawadi, A.R.; Gaur, A.C. Interaction between Azospirillum brasilense and Phosphate Solubilizing Bacteria and their influence on yield and nutrient uptake of sorghum (Sorghum bicolor L.). Zentralblatt fur Mikrobiologie. 1988, 143, 637–643. [Google Scholar] [CrossRef]
- Pacovsky, R.S.; Fuller, G.; Paul, E.A. Influence of soil on the interactions between endomycorrhizae and Azospirillum in sorghum. Soil Biol Biochem. 1985, 17, 525–531. [Google Scholar] [CrossRef]
- Kumar, P.G.; Desai, S.; Leo Daniel Amalraj, E.; Mir Hassan Ahmed, S.K.; Reddy, G. Plant growth promoting Pseudomonas sp. from diverse agro-ecosystems of India for Sorghum bicolor L. J Biofert Biopest. 2012, S7, 001. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Various Techniques for molecular and rapid detection of infectious and epidemic diseases. Lett Org Chem. 2023, 20, 1–23. [Google Scholar] [CrossRef]
- Cui, H.; Shahrajabian, M.H.; Kuang, Y.; Zhang, H.; Sun, W. Heterologous expression and function of cholesterol oxidase: A review. Protein Pept Lett. 2023, 30. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. The golden spice for life: Turmeric with the pharmacological benefits for curcuminoids components, including curcumin, bisdemethoxycurcumin, and demethoxycurcumin. Curr Org Synth. 2023. [Google Scholar] [CrossRef]
- Saad, M.M.A.; Abo-Koura, H.A. Improvement of sorghum (Sorghum bicolor l. Moench) growth and yield under drought stress by inoculation with Bacillus cereus and foliar application of potassium silicate. Environ Biodivers Soil Secur. 2018, 2, 205–221. [Google Scholar] [CrossRef]
- Wu, J.; Kamal, N.; Hao, H.; Qian, C.; Liu, Z.; Shao, Y.; Zhong, X.; Xu, B. Endophytic Bacillus megaterium BM18-2 mutated for cadmium accumulation and improving plant growth in hybrid Pennisetum. Biotechnol Rep. 2019, 24, e00374. [Google Scholar] [CrossRef]
| Plant Growth Promoting Bacteria | Plant | Bacteria Species | Key Points | Reference |
|---|---|---|---|---|
| Serratia | Chickpea (Cicer arietinum L.) | Serratia sp. 5D | *Serratia sp. 5D can act as effective microbial inoculants, especially in nutrient-deficient soils. | [58] |
| Corn (Zea mays L.) | Serratia sp. CP-13 | *Serratia sp. CP-13 restricted Cd uptake and concomitant lipid peroxidation in maize cultivars. *Serratia sp. CP-13 is a potential candidate for plant growth augmentation and Cd remediation plants. |
[59] | |
| Serratia liquefaciens KM4 | *Its inoculation significantly reduced oxidative stress markers. *Its inoculation promoted the maize growth and biomass production along with better leaf gas exchange, osmoregulation, antioxidant defense systems, and nutrient uptake under salt stress. |
[60] | ||
| Eggplant (Solanum melongena L.) | Serratia rubidaea SNAU02 | *It is effective against Fusarium oxysporum f. sp. melongenae. |
[61] | |
| Latjeera (Achyranthes aspera L.) | Serratia sp. AL2-16 | *Its inoculation significantly increased shoot length, fresh shoot weight, fresh root weight, and area of leaves. | [62] | |
| Lentil (Lens culinaris) | Serratia sp. KUJM3 | *Serratia sp. KUJM3 offers multiple benefits of metal(loid)s bioremediation, As(V) reduction, and plant growth promotion. | [63] | |
| Onion (Allium cepa L.) | Serratia sp. | *Serratia sp., and Pseudomonas sp., promoted germination of A. cepa seeds. | [64] | |
| Quinoa (Chenopodium quinoa Willd.) | Serratia rubidaea ED1 | *It stimulated quinoa seeds germination and seedlings growth under salt stress conditions. | [65] | |
| Turmeric (Curcuma longa) | Serratia nematodiphila RGK | *PGPR treated rhizomes showed higher amounts of secondary metabolites, primarily curcumin and additional compounds such as 4-Hydroxy-2-methylacetophenone, 2,4-curcumin and additional compounds such as 4-Hydroxy-2-methylacetophenone, 2,4-Di-tertbutyl phenol, aR-Turmerone, and (Z)-gamma-Atlantone. | [66] | |
| Klebsiella | Cotton (Gossypium herbaceum L.) | Klebsiella oxytoca Rs-5 | *Encapsulated Rs-5 is effective in relieving salt stress for cotton growth. | [67] |
| Corn (Zea mays L.) | Klebsiella jilinsis 2N3 | *It can significantly promote the growth of maize seedlings. *It may induce resistance of maize to the northern corn leaf blight. |
[68] | |
| Cucumber (Cucumis sativus L.) | Klebsiella oxytoca P620 | *Its application reduces p-hydroxybenzoic acid (PHBA) concentration in soil, activates antioxidant and soil enzymes, and also influences metabolites in leaves by affecting plant transcriptome, mitigating PHBA stress in cucumber. | [69] | |
| Mung bean (Vigna radiata L.) | Klebsiella sp. Strain TIU20 (KTIU20) | *KTIU20 maybe employed as an effective plant growth candidate in agricultural soil, contaminated with heavy metals and fungal pathogen near industrial area. | [70] | |
| Oat (Avena sativa L.) | Klebsiella sp. IG3 | *Its inoculation to oat seedlings under salt stress positively modulated the expression profile of rbcL and WRKY1 genes. | [71] | |
| Rice (Oryza sativa) | Klebsiella sp. PD3 | *PD3 improved the phenanthrene degradation in rice plants. *PD3 showed plant growth promoting properties such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. |
[72] | |
| Klebsiella michiganensis MCC3089 | *It has efficiency to alleviate cadmium-induced toxicity in rice, and enhanced growth and reduced oxidative stress in presence of the bacterium. | [73] | ||
| Klebsiella michiganensis MCC3089 | *A Cadmium (Cd) resistant PGPR strain reduced Cd uptake in rice plant by Cd bioaccumulation. | [74] | ||
| Soybean (Glycine max L.) | Klebsiella variicola FH-1 | *It exhibited the biological control potential by inducing resistance in soybean against Sclerotinia sclerotiorum infection. | [75] | |
| Sunflower (Helianthus annuus L.) | Klebsiella sp. Straint CPSB4 (MH266218) | *CPSB4 enhanced plant biomass, plant growth, nutrient uptake, anti-oxidative enzymes, and chromium bioremediation. | [76] | |
| Tomato (Solanum lycopersicum L.) | Klebsiella sp. CPSB4 | *It enhanced the levels of superoxide dismutase, catalase, peroxidase, total phenolic, and ascorbic acid in tomato plant under different levels of chromium stress conditions. | [77] | |
| Wheat (Triticum aestivum L.) | Klebsiella pneumonia strain SN35 | *It is potent in the green synthesis of copper nanoparticles (CuNPs), and CuNPS could immobilize the Chromium (Cr) in the soil. | [78] | |
| Streptomyces | Chickpea (Cicer arietinum L.) | Streptomyces griseus; Streptomyces africanus; Streptomyces coelicolor | *They have a great potential for biological control of Fusarium wilt disease and PGP in chickpea. | [79] |
| Chili (Capsicum frutescens L.) | Streptomyces spp. KPS-E004 and KPS-A032 | *Their mixture could suppress root know infestation and promote plant growth. *Co-inoculation of these two strains increased yield of chili. |
[80] | |
| Pepper (Capsicum annuum L.) | Streptomyces pactum Act12 | *Its soil application enhances pepper fruit quality in the field. | [81] | |
| Streptomyces griseocarneus R132 | *It controls the development of anthracnose symptoms in pepper fruits and plants. | [82] | ||
| Rice (Oryza sativa L.) | Streptomyces hygroscopicus OsiSh-2 | *It could protect plants against Fe-deficient stress by a sophisticated interaction with the host, including modulation Fe chelation, solubilization, reduction and translocation, and leading to enhanced fitness of plant. | [83] | |
| Streptomyces corchorussi TKR8 and JAS2; Streptomyces misionensis TBS5 | *They can be considered as biocontrol agents against bacterial panicle blight (PBP) Burkholderia glumae and bioformulations for rice crops. | [84] | ||
| Tomato (Solanum lycopersicum L.) | Streptomyces sp. Strain FJAT-31547 | *It has high biocontrol efficiency against tomato Fusarium wilt and bacterial wilt and a growth promoting effect on tomato plants. | [85] | |
| Streptomyces strain UT4A49 | *It showed the promising production of indole acetic acid (IAA), ammonia, siderophore, amylase, protease and cellulase. *It is a promising biocontrol agent for tomato bacterial disease control (Ralstonia solanacearum). |
[86] | ||
| Tea (Camellia sinensis L.) | Streptomyces sp. SLR03 | *It is a prospective option for forthcoming biological control programme of Pestalotiopsis theae. | [87] | |
| Streptomyces griseus; Streptomyces lydicus | *They can be considered as biocontrol agents and a promising alternative for effective management of red root rot disease in tea plants. | [88] |
| Plant | Bacteria Species | Key Points | Reference |
|---|---|---|---|
| Chickpea (Cicer arietinum L.) | Rhizobium leguminosarum BHURC04 | *It has shown better PGPR activities. | [201,202] |
| Common bean (Phaseolus vulgaris) | Rhizobium tropici | *It may contribute to a synergistic manner to the promotion of growth and the control of damping off in the common bean. | [203] |
| Rhizobium tropici CIAT889 | *It is a promising candidate for developing new and more efficient inoculants for common bean. | [204] | |
| Faba bean (Vicia faba L.) | Rhizobium leguminosarum bv. viciae | *The inoculation increased the number and mass nodules, nitrogenase activity, leghaemoglobin content of nodule, mycorrhizal colonization, dry mass of root and shoot was reported. | [205] |
| Finger millet (Elusine coracana) | Rhizobium mayense | *The inoculation increased the total plant growth, enhanced soil fertility, efficient farming, and an alternative chemical fertilizer. | [206] |
| Groundnut (Arachis hypogaea) | Rhizobium phaseoli S18; Rhizobium phaseoli S19 | *They enhanced plant growth promotion with higher shoot length, root length, dry weight, and nodule number. | [207] |
| Mung bean (Vigna radiata L.) | Rhizobium pusense | *Its inoculation can increase seed germination rate, length and dry biomass of plant organs. | [208] |
| Rhizobium sp. BD1 | *Inoculation with it can be used for unraveling and amelioration of crop production in barren, polluted and agricultural soils. | [209] | |
| Pea (Pisum sativum L.) | Rhizobium leguminosarum bv. viciae 3841 | *It can increase the growth and final yield of pea under saline conditions. | [210] |
| Rhizobium MRP1 | *Its inoculation increased growth parameters and it can be used as a bio-inoculant under fungicide-stress. | [211,212] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
