Submitted:
16 June 2023
Posted:
16 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Trace mineral deficiency in ruminants
3. Available trace mineral forms for dietary inclusion
4. Trace mineral rumen solubility and effects on the ruminal environment
4.1. Ruminal solubility evaluation methods
4.2. Copper ruminal solubility
4.3. Manganese ruminal solubility
4.4. Zinc ruminal solubility
4.5. Trace mineral effects on rumen fermentation parameters
4.6. Trace mineral effects on rumen microbiota
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goff, J.P. Invited Review: Mineral Absorption Mechanisms, Mineral Interactions That Affect Acid–Base and Antioxidant Status, and Diet Considerations to Improve Mineral Status. Journal of Dairy Science 2018, 101, 2763–2813. [Google Scholar] [CrossRef] [PubMed]
- Byrne, L.; Murphy, R.A. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef] [PubMed]
- Noziere, P.; Sauvant, D.; Delaby, L. ; Inra Inra, 2018. Alimentation des ruminants; Editions Quae, 2018; p. 728 p.
- National Academies of Sciences, Engineering; Medicine Nutrient Requirements of Dairy Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, 2021; ISBN 978-0-309-67777-6.
- Trumeau, D. Les Oligo-Éléments En Élevage Bovin. Analyse Descriptive Des Profils Métaboliques En Oligo-Éléments Établis En Laboratoire d’analyse et Liens Avec Les Aspects Cliniques, ONIRIS, Nantes, France, 2014.
- European Commission; Directorate-General for Health and Food Safety European Union Register of Feed Additives Pursuant to Regulation (EC) No 1831/2003. Annex I, List of Additives (Released Date 06.12. 2022.
- Hosnedlová, B.; Travnicek, J.; Šoch, M. Current View of the Significance of Zinc for Ruminants: A Review. Agricultura tropica et subtropica 2007, 40, 57–64. [Google Scholar]
- Sloup, V.; Jankovská, I.; Nechybová, S.; Peřinková, P.; Langrova, I. Zinc in the Animal Organism: A Review. Scientia Agriculturae Bohemica 2017, 48, 13–21. [Google Scholar] [CrossRef]
- Hostetler, C.E.; Kincaid, R.L.; Mirando, M.A. The Role of Essential Trace Elements in Embryonic and Fetal Development in Livestock. The Veterinary Journal 2003, 166, 125–139. [Google Scholar] [CrossRef]
- Meschy, F. Mineral nutrition of ruminants; Quae.; Quea: Versailles, France, 2010. [Google Scholar]
- Durand, M.; Kawashima, R. Influence of Minerals in Rumen Microbial Digestion. In Digestive Physiology and Metabolism in Ruminants: Proceedings of the 5th International Symposium on Ruminant Physiology, held at Clermont — Ferrand, on 3rd–7th September, 1979; Ruckebusch, Y., Thivend, P., Eds.; Ruckebusch, Y., Thivend, P., Eds.; Springer Netherlands: Dordrecht, 1980; pp. 375–408. ISBN 978-94-011-8067-2. [Google Scholar]
- Komisarczuk Bony, S.; Durand, M. 1991.
- Meschy, F. Alimentation minérale et vitaminique des ruminants : actualisation des connaissances. INRAE Productions Animales 2007, 20, 119–128. [Google Scholar] [CrossRef]
- Spears, J.W. Trace Mineral Bioavailability in Ruminants. The Journal of Nutrition 2003, 133, 1506S–1509S. [Google Scholar] [CrossRef]
- Spears, J.W.; Brandao, V.L.N.; Heldt, J. Invited Review: Assessing Trace Mineral Status in Ruminants, and Factors That Affect Measurements of Trace Mineral Status. Applied Animal Science 2022, 38, 252–267. [Google Scholar] [CrossRef]
- Masters, D.G.; Norman, H.C.; Thomas, D.T.; Masters, D.G.; Norman, H.C.; Thomas, D.T. Minerals in Pastures—Are We Meeting the Needs of Livestock? Crop Pasture Sci. 2019, 70, 1184–1195. [Google Scholar] [CrossRef]
- Wysocka, D.; Sobiech, P.; Snarska, A.; Wysocka, D. Copper - an Essential Micronutrient for Calves and Adult Cattle. J. Elem. 2018. [Google Scholar] [CrossRef]
- Helmer, C.; Hannemann, R.; Humann-Ziehank, E.; Kleinschmidt, S.; Koelln, M.; Kamphues, J.; Ganter, M. A Case of Concurrent Molybdenosis, Secondary Copper, Cobalt and Selenium Deficiency in a Small Sheep Herd in Northern Germany. Animals 2021, 11, 1864. [Google Scholar] [CrossRef] [PubMed]
- Sivertsen, T.; Plassen, C. Hepatic Cobalt and Copper Levels in Lambs in Norway. Acta Veterinaria Scandinavica 2004, 45, 69. [Google Scholar] [CrossRef] [PubMed]
- Dargatz, D.A.; Garry, F.B.; Clark, G.B.; Ross, P.F. Serum Copper Concentrations in Beef Cows and Heifers. J Am Vet Med Assoc 1999, 215, 1828–1832. [Google Scholar] [PubMed]
- Grace, N.; Knowles, S.; West, D.; Smith, S. The Role of Liver Cu Kinetics in the Depletion of Reserves of Cu in Dairy Cows Fed a Cu-Deficient Diet. New Zealand Veterinary Journal 2012, 60, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Hidiroglou, M.; Ivan, M.; Bryan, M.K.; Ribble, C.S.; Janzen, E.D.; Proulx, J.G.; Elliot, J.I. Assessment of the Role of Manganese in Congenital Joint Laxity and Dwarfism in Calves. Ann Rech Vet 1990, 21, 281–284. [Google Scholar]
- Spears, J.W.; Schlegel, P.; Seal, M.C.; Lloyd, K.E. Bioavailability of Zinc from Zinc Sulfate and Different Organic Zinc Sources and Their Effects on Ruminal Volatile Fatty Acid Proportions. Livestock Production Science 2004, 90, 211–217. [Google Scholar] [CrossRef]
- Wang, C.; Xu, Y.Z.; Han, L.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Chen, L.; Zhang, Y.L.; Pei, C.X.; et al. Effects of Zinc Sulfate and Coated Zinc Sulfate on Lactation Performance, Nutrient Digestion and Rumen Fermentation in Holstein Dairy Cows. Livestock Science 2021, 251, 104673. [Google Scholar] [CrossRef]
- Pal, R.P.; Mani, V.; Mir, S.H.; Sharma, A.; Sarkar, S. Comparative Effect of Zinc Supplementation by Hydroxy and Inorganic Sources on Nutrient Utilisation, Mineral Balance, Growth Performance and Growth Biomarkers in Pre-Ruminant Calves. Archives of Animal Nutrition 2021, 75, 435–449. [Google Scholar] [CrossRef]
- Patel, B.; KUMAR, N.; JAIN, V. ; H. M, A.; KUMAR, S.; Raheja, N.; LATHWAL, S.S.; Datt, C.; Singh, S. vir ZINC SUPPLEMENTATION IMPROVES REPRODUCTIVE PERFORMANCE OF KARAN-FRIES CATTLE. 2017.
- Hidiroglou, M. Trace Element Deficiencies and Fertility in Ruminants: A Review. J Dairy Sci 1979, 62, 1195–1206. [Google Scholar] [CrossRef]
- Nazari, A.; Dirandeh, E.; Ansari-Pirsaraei, Z.; Deldar, H. Antioxidant Levels, Copper and Zinc Concentrations Were Associated with Postpartum Luteal Activity, Pregnancy Loss and Pregnancy Status in Holstein Dairy Cows. Theriogenology 2019, 133, 97–103. [Google Scholar] [CrossRef]
- Almeida, V.M.; Lima, T.S.; Silva-Filho, G.B.; Bom, H.A.S.C.; Fonseca, S.M.C.; Evêncio-Neto, J.; Souza, F.A.L.; Riet-Correa, F.; Mendonça, F.S. Copper Deficiency in Dairy Goats and Kids. Pesq. Vet. Bras. 2022, 42, e07162. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ashraf, M.; Hussain, A.; McDowell, L.R. A Study on Seasonal Variability of Trace Elemental Status of Forages for Grazing Ruminants. Journal of Plant Nutrition 2008, 31, 1345–1354. [Google Scholar] [CrossRef]
- Muraina, T.O.; Jimoh, S.O.; Ewetola, I.A.; Ojo, V.O.A.; Amisu, A.A.; Okukenu, O.A.; Adebisi, Y.A.; Muraina, H.A.; Olanite, J.A. Mineral Composition of Two Stylosanthes Species Oversown in Natural Pasture: Effect of Tillage Practice and Sowing Method. Trop Anim Health Prod 2020, 52, 2753–2759. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, G.M.; Salomon, E.; Jonsson, S. Barn Balance Calculations of Ca, Cu, K, Mg, Mn, N, P, S and Zn in a Conventional and Organic Dairy Farm in Sweden. Agriculture, Ecosystems & Environment 2007, 119, 160–170. [Google Scholar] [CrossRef]
- Govasmark, E.; Steen, A.; Bakken, A.K.; Strøm, T.; Hansen, S. Factors Affecting the Concentration of Zn, Fe and Mn in Herbage from Organic Farms and in Relation to Dietary Requirements of Ruminants. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 2005, 55, 131–142. [Google Scholar] [CrossRef]
- Stewart, W.C.; Scasta, J.D.; Taylor, J.B.; Murphy, T.W.; Julian, A.A.M. Invited Review: Mineral Nutrition Considerations for Extensive Sheep Production Systems. Applied Animal Science 2021, 37, 256–272. [Google Scholar] [CrossRef]
- Arzate-Vázquez, G.L.; Castrejón-Pineda, F.A.; Rosiles-Martínez, R.; Carrillo-Pita, S.; Angeles-Campos, S.; Vargas-Bello-Pérez, E. Effect of Genus and Growth Stage on the Chemical and Mineral Composition of Tropical Grasses Used to Feed Dairy Cows. Ciencia e investigación agraria 2016, 43, 476–485. [Google Scholar] [CrossRef]
- Orjales, I.; Herrero-Latorre, C.; Miranda, M.; Rey-Crespo, F.; Rodríguez-Bermúdez, R.; López-Alonso, M. Evaluation of Trace Element Status of Organic Dairy Cattle. Animal 2018, 12, 1296–1305. [Google Scholar] [CrossRef]
- Knowles, S.O.; Grace, N.D. A Recent Assessment of the Elemental Composition of New Zealand Pastures in Relation to Meeting the Dietary Requirements of Grazing Livestock1. Journal of Animal Science 2014, 92, 303–310. [Google Scholar] [CrossRef]
- Schweinzer, V.; Iwersen, M.; Drillich, M.; Wittek, T.; Tichy, A.; Mueller, A.; Krametter-Froetscher, R. Macromineral and Trace Element Supply in Sheep and Goats in Austria. Veterinární medicína 2017, 62, 62–73. [Google Scholar] [CrossRef]
- Blanco-Penedo, I.; Shore, R.F.; Miranda, M.; Benedito, J.L.; López-Alonso, M. Factors Affecting Trace Element Status in Calves in NW Spain. Livestock Science 2009, 123, 198–208. [Google Scholar] [CrossRef]
- Spears, J.W. Boron, Chromium, Manganese, and Nickel in Agricultural Animal Production. Biol Trace Elem Res 2019, 188, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Guyot, H.; Saegerman, C.; Lebreton, P.; Sandersen, C.; Rollin, F. Epidemiology of Trace Elements Deficiencies in Belgian Beef and Dairy Cattle Herds. Journal of Trace Elements in Medicine and Biology 2009, 23, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Kao, P.T.; Darch, T.; McGrath, S.P.; Kendall, N.R.; Buss, H.L.; Warren, H.; Lee, M.R.F. Chapter Four - Factors Influencing Elemental Micronutrient Supply from Pasture Systems for Grazing Ruminants. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press, 2020; Vol. 164, pp. 161–229.
- Spears, J.W.; Kegley, E.B.; Mullis, L.A. Bioavailability of Copper from Tribasic Copper Chloride and Copper Sulfate in Growing Cattle. Animal Feed Science and Technology 2004, 116, 1–13. [Google Scholar] [CrossRef]
- Grešáková, Ľ.; Tokarčíková, K.; Čobanová, K. Bioavailability of Dietary Zinc Sources and Their Effect on Mineral and Antioxidant Status in Lambs. Agriculture 2021, 11, 1093. [Google Scholar] [CrossRef]
- PubChem Cupric Sulfate Available online:. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/24462 (accessed on 30 April 2023).
- PubChem Manganese(II) Oxide Available online:. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/14940 (accessed on 26 February 2023).
- PubChem Manganese Sulfate Monohydrate Available online:. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/177577 (accessed on 26 February 2023).
- PubChem Zinc Oxide Available online:. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/14806 (accessed on 26 February 2023).
- PubChem Zinc Sulfate Available online:. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/24424 (accessed on 26 February 2023).
- Ammerman, C.B.; Goodrich, R.D. Advances in Mineral Nutrition in Ruminants. J Anim Sci 1983, 57 Suppl 2, 519–533. [Google Scholar]
- Byrne, L.; Hynes, M.J.; Connolly, C.D.; Murphy, R.A. Influence of the Chelation Process on the Stability of Organic Trace Mineral Supplements Used in Animal Nutrition. Animals 2021, 11, 1730. [Google Scholar] [CrossRef]
- Reddy, B.; Nayak, S.; Khare, A.; Pal, R.; Sharma, R.; Chaurasiya, A.; Namdeo, S.; Thakur, S. Role of Hydroxy Trace Minerals on Health and Production of Livestock: A Review. Journal of Livestock Science 2021, 12, 279. [Google Scholar] [CrossRef]
- PubChem Dicopper Chloride Trihydroxide Available online:. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/11969527 (accessed on 30 April 2023).
- PubChem Manganese(2+) Chloride Hydroxide (1/1/1) Available online:. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/71442330 (accessed on 30 April 2023).
- PubChem Zinc Chloride Hydroxide Available online:. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/11513739 (accessed on 30 April 2023).
- Abdelnour, S.A.; Alagawany, M.; Hashem, N.M.; Farag, M.R.; Alghamdi, E.S.; Hassan, F.U.; Bilal, R.M.; Elnesr, S.S.; Dawood, M.A.O.; Nagadi, S.A.; et al. Nanominerals: Fabrication Methods, Benefits and Hazards, and Their Applications in Ruminants with Special Reference to Selenium and Zinc Nanoparticles. Animals 2021, 11, 1916. [Google Scholar] [CrossRef]
- Rey-Crespo, F.; López-Alonso, M.; Miranda, M. The Use of Seaweed from the Galician Coast as a Mineral Supplement in Organic Dairy Cattle. Animal 2014, 8, 580–586. [Google Scholar] [CrossRef]
- Cabrita, A.R.J.; Maia, M.R.G.; Oliveira, H.M.; Sousa-Pinto, I.; Almeida, A.A.; Pinto, E.; Fonseca, A.J.M. Tracing Seaweeds as Mineral Sources for Farm-Animals. J Appl Phycol 2016, 28, 3135–3150. [Google Scholar] [CrossRef]
- Ward, J.D.; Spears, J.W. Comparison of Copper Lysine and Copper Sulfate as Copper Sources for Ruminants Using In Vitro Methods1, 2. Journal of Dairy Science 1993, 76, 2994–2998. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, A.H.; Paine, S.W.; Kendall, N.R. Evaluation of the Solubility of a Range of Copper Sources and the Effects of Iron & Sulphur on Copper Solubility under Rumen Simulated Conditions. J Trace Elem Med Biol 2021, 68, 126815. [Google Scholar] [CrossRef]
- Weimer, P.J. Manipulating Ruminal Fermentation: A Microbial Ecological Perspective. Journal of Animal Science 1998, 76, 3114–3122. [Google Scholar] [CrossRef]
- Genther, O.N.; Hansen, S.L. The Effect of Trace Mineral Source and Concentration on Ruminal Digestion and Mineral Solubility. Journal of Dairy Science 2015, 98, 566–573. [Google Scholar] [CrossRef]
- Deters, E.L.; VanDerWal, A.J.; VanValin, K.R.; Hansen, S.L. Relative Bioavailability of Organic Bis-Glycinate Bound Copper Relative to Inorganic Copper Sulfate in Beef Steers Fed a High Antagonist Growing Diet. Journal of Animal Science 2021, 99, skab111. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.P.; O’Kiely, P.; Reynolds, C.K.; Schwarm, A.; Shingfield, K.J.; Yu, Z.; et al. Design, Implementation and Interpretation of in Vitro Batch Culture Experiments to Assess Enteric Methane Mitigation in Ruminants—a Review. Animal Feed Science and Technology 2016, 216, 1–18. [Google Scholar] [CrossRef]
- Fellner, V.; Durosoy, S.; Kromm, V.; Spears, J. Effects of Supplemental Zinc on Ruminal Fermentation in Continuous Cultures. Applied Animal Science 2021, 37, 27–32. [Google Scholar] [CrossRef]
- Wilk, M.; Pecka-Kiełb, E.; Pastuszak, J.; Asghar, M.U.; Mól, L. Effects of Copper Sulfate and Encapsulated Copper Addition on In Vitro Rumen Fermentation and Methane Production. Agriculture 2022, 12, 1943. [Google Scholar] [CrossRef]
- Vigh, A.; Criste, A.; Gragnic, K.; Moquet, L.; Gerard, C. Ruminal Solubility and Bioavailability of Inorganic Trace Mineral Sources and Effects on Fermentation Activity Measured in Vitro. Agriculture 2023, 13, 879. [Google Scholar] [CrossRef]
- Vigh, A.; Criste, A.; Corcionivoschi, N.; Gragnic, K.; Gerard, C. Effects of Sulfur Sources on Ruminal S Bioavailability, Fermentation Activity and Microbial Populations Measured In Vitro. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Animal Science and Biotechnologies 2023, 80, 15–26. [Google Scholar] [CrossRef]
- Arelovich, H.M.; Owens, F.N.; Horn, G.W.; Vizcarra, J.A. Effects of Supplemental Zinc and Manganese on Ruminal Fermentation, Forage Intake, and Digestion by Cattle Fed Prairie Hay and Urea. J Anim Sci 2000, 78, 2972–2979. [Google Scholar] [CrossRef]
- Caldera, E.; Weigel, B.; Kucharczyk, V.N.; Sellins, K.S.; Archibeque, S.L.; Wagner, J.J.; Han, H.; Spears, J.W.; Engle, T.E. Trace Mineral Source Influences Ruminal Distribution of Copper and Zinc and Their Binding Strength to Ruminal Digesta1,2,3. Journal of Animal Science 2019, 97, 1852–1864. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Guo, G.; Huo, W.J.; Ma, L.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L.; Wang, H. Effects of Rumen-Protected Folic Acid on Ruminal Fermentation, Microbial Enzyme Activity, Cellulolytic Bacteria and Urinary Excretion of Purine Derivatives in Growing Beef Steers. Animal Feed Science and Technology 2016, 221, 185–194. [Google Scholar] [CrossRef]
- Henry, P.R.; Ammerman, C.B.; Littell, R.C. Relative Bioavailability of Manganese from a Manganese-Methionine Complex and Inorganic Sources for Ruminants. J Dairy Sci 1992, 75, 3473–3478. [Google Scholar] [CrossRef] [PubMed]
- Wong-Valle, J.; Henry, P.R.; Ammerman, C.B.; Rao, P.V. Estimation of the Relative Bioavailability of Manganese Sources for Sheep2. Journal of Animal Science 1989, 67, 2409–2414. [Google Scholar] [CrossRef] [PubMed]
- HIDIROGLOU, M. MANGANESE IN RUMINANT NUTRITION. Canadian Journal of Animal Science 1979, 59, 217–236. [Google Scholar] [CrossRef]
- Schlattl, M.; Buffler, M.; Windisch, W. Clay Minerals Affect the Solubility of Zn and Other Bivalent Cations in the Digestive Tract of Ruminants In Vitro. Animals 2021, 11, 877. [Google Scholar] [CrossRef] [PubMed]
- Arce-Cordero, J.A.; Monteiro, H.F.; Lelis, A.L.; Lima, L.R.; Restelatto, R.; Brandao, V.L.N.; Leclerc, H.; Vyas, D.; Faciola, A.P. Copper Sulfate and Sodium Selenite Lipid-Microencapsulation Modifies Ruminal Microbial Fermentation in a Dual-Flow Continuous-Culture System. J Dairy Sci 2020, 103, 7068–7080. [Google Scholar] [CrossRef]
- Son, A.-R.; Islam, M.; Kim, S.-H.; Lee, S.-S.; Lee, S.-S. Influence of Dietary Organic Trace Minerals on Enteric Methane Emissions and Rumen Microbiota of Heat-Stressed Dairy Steers. Journal of Animal Science and Technology 2023, 65, 132–148. [Google Scholar] [CrossRef]
- Wang, C.; Han, L.; Zhang, G.W.; Du, H.S.; Wu, Z.Z.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Zhang, Y.L.; et al. Effects of Copper Sulphate and Coated Copper Sulphate Addition on Lactation Performance, Nutrient Digestibility, Ruminal Fermentation and Blood Metabolites in Dairy Cows. British Journal of Nutrition 2021, 125, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Bonhomme, A.; Durand, M.; Dumay, C.; Beaumatin, P. Etude in vitro du comportement des populations microbiennes du rumen en présence de zinc sous forme de sulfate. Ann. Biol. anim. Bioch. Biophys. 1979, 19, 937–942. [Google Scholar] [CrossRef]
- Nathaniel, G.; Annisa, T.; Muktiani, A.; Harjanti, D.; Widiyanto, W. The Effect of Zinc-Proteinate Supplementation on the In Vitro Digestibility and Ruminal Fermentation in Goat. ANIMAL PRODUCTION 2021, 23, 180–186. [Google Scholar] [CrossRef]
- Petrič, D.; Mravčáková, D.; Kucková, K.; Kišidayová, S.; Cieslak, A.; Szumacher-Strabel, M.; Huang, H.; Kolodziejski, P.; Lukomska, A.; Slusarczyk, S.; et al. Impact of Zinc and/or Herbal Mixture on Ruminal Fermentation, Microbiota, and Histopathology in Lambs. Front Vet Sci 2021, 8, 630971. [Google Scholar] [CrossRef]
- Ishaq, S.L.; Page, C.M.; Yeoman, C.J.; Murphy, T.W.; Van Emon, M.L.; Stewart, W.C. Zinc AA Supplementation Alters Yearling Ram Rumen Bacterial Communities but Zinc Sulfate Supplementation Does Not1. Journal of Animal Science 2019, 97, 687–697. [Google Scholar] [CrossRef]
- Kišidayová, S.; Pristaš, P.; Zimovčáková, M.; Blanár Wencelová, M.; Homol’ová, L.; Mihaliková, K.; Čobanová, K.; Grešáková, Ľ.; Váradyová, Z. The Effects of High Dose of Two Manganese Supplements (Organic and Inorganic) on the Rumen Microbial Ecosystem. PLoS One 2018, 13, e0191158. [Google Scholar] [CrossRef]
- Amat, S.; Holman, D.B.; Schmidt, K.; Menezes, A.C.B.; Baumgaertner, F.; Winders, T.; Kirsch, J.D.; Liu, T.; Schwinghamer, T.D.; Sedivec, K.K.; et al. The Nasopharyngeal, Ruminal, and Vaginal Microbiota and the Core Taxa Shared across These Microbiomes in Virgin Yearling Heifers Exposed to Divergent In Utero Nutrition during Their First Trimester of Gestation and in Pregnant Beef Heifers in Response to Mineral Supplementation. Microorganisms 2021, 9, 2011. [Google Scholar] [CrossRef]
- Menezes, A.C.B.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; Reynolds, L.P.; et al. Vitamin and Mineral Supplementation and Rate of Gain during the First Trimester of Gestation Affect Concentrations of Amino Acids in Maternal Serum and Allantoic Fluid of Beef Heifers. J Anim Sci 2021, 99, skab024. [Google Scholar] [CrossRef]
- Zhao, Z.W.; Ma, Z.Y.; Wang, H.C.; Zhang, C.F. Effects of Trace Minerals Supply from Rumen Sustained Release Boluses on Milk Yields and Components, Rumen Fermentation and the Rumen Bacteria in Lactating Yaks (Bos Grunniens). Animal Feed Science and Technology 2022, 283, 115184. [Google Scholar] [CrossRef]
| Experimental model | Cu dosage | Cu source | Solubilization time /supplementation period | Ruminal solubility* | Ref. |
|---|---|---|---|---|---|
| in vivo | 5 and 25 mg/kg DM | CuSO4 | 12 days | ↑; ~ 17 and 14 % | [62] |
| Cu-Hyd | ↓; ~ 15 and 9 % | ||||
| in vivo | 20 mg/kg DM | CuSO4 | 24 hours | ↑; ~ 68, 30 and 12% after 4, 12 and 24 hours following ruminal administration | [70] |
| Cu-Hyd | ↓; ~ 15, 20 and 15% after 4, 12 and 24 hours following ruminal administration | ||||
| in vitro | 4, 12, 96 mg/kg DM (with 0.1% DM of S or 2% DM of urea) | Cu-Lys | 24 hours | ↑ (with urea)↓ (with S) | [59] |
| CuSO4 | ↓ (with S) | ||||
| in vitro | 4 mM solution | CuSO4 | 25 hours | ↑; ~ 49% | [60] |
| CuCl2 | ↑; ~ 49% | ||||
| CuO | ↓; ~ 9% | ||||
| CuCO3 | ↓; ~ 19% | ||||
| Cu-Hyd | ↓; ~ 17% | ||||
| Cu EDTA | ↑; ~ 49% | ||||
| Cu-Prot | ↑; ~ 49% | ||||
| Cu-Acet | ↓; ~ 33% | ||||
| in vitro | 100 and 500 mg/kg DM | CuSO4 | 22, 46 and 70 hours | ↑; ~ 42, 37 and 57 % | [67] |
| in vitro | 12 mg/kg fresh matter | CuSO4 | 24 hours | ↑ | [66] |
| Enc. Cu | ↓ |
| Experimental model | Mn dosage | Mn source | Solubilization time /supplementation period | Ruminal solubility* | Ref. |
|---|---|---|---|---|---|
| in vivo | 40 mg/kg DM | MnSO4 | 24 hours | ↑; ~ 20, 12 and 6 % after 4, 12 and 24 hours following ruminal administration | [70] |
| Mn-Hyd | ↓; ~ 10, 7 and 15 % after 4, 12 and 24 hours following ruminal administration | ||||
| in vivo | 40 mg/kg DM | MnCl2 | 16 days | ↓ | [69] |
| in vivo | 15 and 60 mg/kg DM | MnSO4 | 12 days | ↑; ~ 62 and 65 % | [62] |
| Mn-Hyd | ↓; ~ 50 and 66 % | ||||
| in vitro | 600 mg/kg DM | MnSO4 | 22, 46 and 70 hours | ↑; ~ 94, 91 and 93 % | [67] |
| MnO | ↑; ~ 84, 88 and 93 % |
| Experimental model | Zn dosage | Zn source | Solubilization time /supplementation period | Ruminal solubility* | Ref. |
|---|---|---|---|---|---|
| in vivo | 60 mg/kg DM | ZnSO4 | 24 hours | ↑; ~ 39, 15 and 15 % after 4, 12 and 24 hours following ruminal administration | [70] |
| Zn-Hyd | ↓; ~ 10, 5 and 10 % after 4, 12 and 24 hours following ruminal administration | ||||
| in vivo | 30, 250 and 470 mg/kg DM | ZnCl2 | 16 days | ↑; linear increase of Zn concentration in the rumen fluid (2.26, 7.6 and 11.6 mg/L) | [69] |
| in vivo | 30 and 120 mg/kg DM | ZnSO4 | 12 days | ↓; ~ 12 and 7 % | [62] |
| Zn-Hyd | ↑; ~ 14 and 11 % | ||||
| in vitro | Nitrous-Zn | ↓ (with clay) | [75] | ||
| in vitro | 500 mg/kg DM | ZnSO4 | 22, 46 and 70 hours | ↑; ~ 19, 17 and 32 % | [67] |
| ZnO | ↓; ~ 10, 9 and 25 % | ||||
| in vitro | 30 and 120 mg/kg DM | ZnO | ↓ | [65] | |
| HiZox | 8 days continuous culture fermentation | ↑ |
| Cu source | GP | CH4 | VFA | A:P | pH | DMd | NH3-N | MPS | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| Cu-Lys | ND | ND | ND | ND | ND | - | ND | ND | [59] |
| CuSO4 | ND | ND | ND | ND | ND | - | ND | ND | |
| Cu-Gly | ND | = | = | = | = | ND | + | ND | [77] |
| Lip.Enc. CuSO4 | ND | ND | - + | - | = | = | = | = | [76] |
| CuSO4 | ND | ND | ND | ND | = | = | ND | ND | [70] |
| Cu-Hyd | ND | ND | ND | ND | = | = | ND | ND | |
| CuSO4 | ND | ND | ND | ND | = | - | ND | ND | [62] |
| Cu-Hyd | ND | ND | ND | ND | = | = | ND | ND | |
| CuSO4 | = | ND | = | = | = | = | ND | = | [67] |
| CuSO4 | + | = | = | - | = | = | ND | ND | [66] |
| Enc. Cu | = | = | = | = | = | = | ND | ND | |
| CuSO4 | ND | ND | + | + | - | + | - | ND | [78] |
| Coat. CuSO4 | ND | ND | + | + | - | + | - | ND |
| Mn source | GP | CH4 | VFA | A:P | pH | DMd | NH3-N | MPS | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| MnSO4 | ND | ND | ND | ND | = | = | ND | ND | [70] |
| Mn-Hyd | ND | ND | ND | ND | = | = | ND | ND | |
| MnCl2 | ND | ND | = | = | = | + | = | ND | [69] |
| MnSO4 | ND | ND | ND | ND | = | - | ND | ND | [62] |
| Mn-Hyd | ND | ND | ND | ND | = | = | ND | ND | |
| MnSO4 | - | ND | = | = | = | - | ND | = | [67] |
| MnO | - | ND | = | = | = | - | ND | = |
| Zn source | GP | CH4 | VFA | A:P | pH | DMd | NH3-N | MPS | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| Zn-Gly | ND | = | = | = | = | ND | + | ND | [77] |
| ZnSO4 | ND | ND | ND | ND | = | = | ND | ND | [70] |
| Zn-Hyd | ND | ND | ND | ND | = | = | ND | ND | |
| ZnCl2 | ND | ND | - | - | - + | - | - | ND | [69] |
| ZnSO4 | ND | ND | ND | ND | = | - | ND | ND | [62] |
| Zn-Hyd | ND | ND | ND | ND | = | = | ND | ND | |
| ZnSO4 | - | ND | = | = | = | = | ND | - | [67] |
| ZnO | - | ND | = | = | = | - | ND | - | |
| ZnO | ND | - | = | - | + | = | - | ND | [65] |
| HiZox | ND | = | = | + | + | - | = | ND | |
| Zn-Prot | ND | = | = | = | ND | + | ND | ND | [80] |
| Zn-AA | - | - | = | ND | = | = | = | ND | [81] |
| ZnSO4 | ND | ND | + | + | = | + | - | ND | [24] |
| Coat. ZnSO4 | ND | ND | + | + | = | + | - | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
