Preprint
Article

This version is not peer-reviewed.

3D Analysis of the Upper and Lower Arches Using Digital Technology: Measurement of the Index of Bolton and Correspondence between Arch Shape and Orthodontic Arches

A peer-reviewed article of this preprint also exists.

Submitted:

22 June 2023

Posted:

23 June 2023

You are already at the latest version

Abstract
Introduction: Due to the great development of digital technology, through CAD (Computer - Aided Design) and CAM (Computer - Aided Manufacturing) systems, digital models could be used in orthodontic treatment planning decision-making, as there are numerous studies in the literature that support the validity of measurements of digital models of anterior teeth and the total coefficient of Bolton analysis. The aim of the study was to compare the average length value of the current upper and lower arches with that of a hypothetical nickel-titanium wire and the accuracy of the Bolton index measurement. In the present study, 138 dental casts were analyzed using Ortho3Shape software. Using the Ortho3Shape software, it was possible to measure the real and ideal lower arch lengths and, with regard to Bolton analysis, the values of the anterior and total Bolton coefficients. By comparing the values obtained with those of the study by A. Anand Kumar et al. using CBCT and plaster casts, the reliability of the measurements obtained with such CAD/CAM orthodontic software was evaluated. Considering the validity of digital measurements demonstrated by the studies and systematic reviews in the literature, it can be stated that CAD/CAM digital models can be a viable alternative to plaster models in the coming years, as they can facilitate model preservation and retrieval. For future studies and research, it would be preferable to use intra-oral scanners (IOS) in order to ensure greater accuracy, requiring only one step and ensuring a better outcome for the patient.
Keywords: 
;  ;  ;  

1. Introduction

Thanks to the great development of digital technology, through CAD (Computer - Aided Design) and CAM (Computer - Aided Manufacturing) systems, it has been possible to observe an important simplification of diagnosis and an improvement in the planning and execution of orthodontic treatment.
There are three pillars supporting CAD/CAM technology: the first is the acquisition of digital images of patients' dental arches patients' dental arches, the second is the visualisation and manipulation of these images in specific software, and finally the 3D printing files, whether of the devices designed or the models in which the devices will be manufactured [1].
Digital models could be used in decision-making and treatment planning, as there are many studies in the literature that support the validity of the measurements of digital models of the dental arch, the accuracy of the measurements of these models and the measurements of the anterior and total coefficients of the Bolton analysis being confirmed [2,3,4,5].
The Bolton analysis is useful for evaluating this aspect in the search for possible disproportions between the arches. In fact, this analysis is carried out by means of a calculation developed by Wayne Bolton in 1958, from which the Bolton index can be derived, which numerically expresses the ideal ratio between the mesio-distal diameters of the teeth of the upper arch compared to those of the lower arch, of which the mesio-distal diameters, at the contact points, of all the elements from the central incisors to the first molar must first be calculated.
As demonstrated in the literature, the rotational and translational movements of teeth can be analysed and reproduced with great precision using digital configurations and, in more complex orthodontic treatments, a preliminary virtual plan has the potential to allow a significant reduction in errors with a greater probability of predicting the outcome
In addition, digital technologies and artificial intelligence may allow greater opportunities for such planning, as they can be applied in the early stages of the clinical examination to develop a simultaneous virtual plan of all stages of treatment [6,7].
Recently, it has been shown that 3D printing can be a method to digitally design and then produce customisable clear aligners with greater precision as an alternative to conventional orthodontic appliances, while also offering greater fit and effectiveness [8].
The aim of the study, using an extra oral scanner and the Ortho3Shape software, was to compare the mean value of the length of the current upper and lower arches with that of a hypothetical nickel titanium wire and the accuracy of the measurement of the anterior and total coefficient of the Bolton index.

2. Materials and Methods

In the present study, in which all operations were performed by the same operator, data from the 138 selected dental casts were measured using the Ortho3Shape software. The mean value of the current upper and lower arches were compared with hypothetical nickel titanium orthodontic wire.

2.1. Dental casts selection

The inclusion criteria were:
  • Caucasian ethnicity.
  • Permanent dentition.
  • Class I and absence of severe malocclusions.
  • Absence of extractions or extensive reconstructions.
  • Absence of trauma and maxillo-facial surgery.
  • Absence of previous mobile and fixed orthodontic treatment.
  • Plaster models correctly scanned in 3D using Ortho3shape software.
The exclusion criteria were:
  • Presence of deciduous dental elements.
  • Abnormalities of eruption or formation of dental elements.
  • Rotated dental elements.
  • Agenesis of canine and central incisors.
  • Edentulous posterior dental elements.
  • Oligontia.

2.2. Procedures

In the present study, all operations were carried out by the same operator, the values taken into consideration (maximum, minimum, mean) from the dental casts selected, were calculated by using the Ortho3Shape software for the different measurements analysed: current length and of a hypothetical nickel-titanium orthodontic wire, the anterior and total Bolton coefficient.
For the analysis of the Bolton index, the lengths of the six anterior teeth of the upper arch and the six anterior teeth of the lower arch were measured (both lengths measured by summing the mesiodistal diameter of each of the dental elements from canine to canine). In order to measure the total coefficient, the lengths of the twelve maxillary and twelve mandibular teeth (both lengths measured by adding up the mesiodistal diameter of each of the dental elements from molar to molar) were measured.
To confirm the accuracy of the measurements of the Bolton indices of the anterior and total coefficients, the mean value of both values, calculated in the present study, were compared with those found in the study by A. Anand Kumar et al. and then both studies are compared with the student t-test [4].
The parameters used were:
  • Bolton analysis: this analysis consists of the calculation developed by Wayne Bolton, from which the Bolton index is obtained, which numerically expresses the ideal ratio between the mesio-distal diameters of the teeth of the upper arch in relation to those of the lower arch.
  • Anterior Bolton coefficient: ratio between the mesio-distal widths of the 6 mandibular anterior teeth and the mesio-distal widths of the 6 maxillary anterior teeth.
  • Total Bolton coefficient: ratio between the mesio-distal widths of the 12 mandibular teeth and the mesio-distal widths of the 12 maxillary teeth, from the contralateral first permanent molar to the contralateral first permanent molar.
Figure 1. Digitally reproducedd image of a plaster model of a patient with an occlusion in the maximum intercuspation position, frontal, back, left and right lateral vision can be observed.
Figure 1. Digitally reproducedd image of a plaster model of a patient with an occlusion in the maximum intercuspation position, frontal, back, left and right lateral vision can be observed.
Preprints 77421 g001

2.3. Statistical analysis

Each models was evaluated twice, with an interval of 2 weeks, by the same operator. Intraobserver variabilità was caluclated by using Cohen’s Kappa coeffficient. The coefficient obtained ranged between 0.9 and 0.97, that we assessed statistically significant.
The mean value were measured and Student’s T test was adopted, the level of signifacance was set at P < 0.05.
The statistical analysis was performer with the SPSS (Statistical Package for Social Sciences, Chigago, USA) 22.0 program.
The mean value of the anterior and total Bolton coefficients in the present study were calculated and then compared with those in the study by A. Anand Kumar et al. (using CBCT and plaster casts) in order to assess the compatibility of the measurements and values obtained [9].
Subsequently, both studies were compared with the student t-test, in order to compare the mean value of the present study with that of study A. Anand Kumar et al. considering p < 0.05 as the cut-off value for a significant difference [9].
The study by A. Anand Kumar et al. included a sample of 50 adults all over the age of 18, with similar inclusion criteria as in our study:
  • Full permanent dentition from first molar to first molar in both upper and lower arch.
  • The participant does not have to undergo orthodontic treatment.
  • No severe crowding in the dentition [9].

3. Results

The results of the values examined in this study have been listed below in several tables, the average length of the current lower and upper arches and the corresponding hypothetical orthodontic nickel-titanium wires, the anterior and total Bolton coefficient.
Next, the mean value of the anterior and total coefficients of the Bolton analysis in the present study were compared with those calculated in the study by A. Anand Kumar et al. by CBCT and plaster casts, and finally these studies are compared by means of the student t-test [9].

3.1. Digital model arch analysis

Current length and of a hypothetical nickel-titanium orthodontic wire of the upper arch: the mean value calculated in the present study for the current length of the upper arch was 92.13 mm, while the mean value calculated for the hypothetical length of a nickel-titanium orthodontic wire of the upper arch was 103.79 [Table 1].
Table 1.
Upper Arch Analysis Hypothetical nickel titanium orthodontic wire upper arch lenght (mm) Current upper arch length (mm)
Maximum Value 124.33 108.07
Minimum Value 80.03 66.47
Mean Value 103.79 92.13
Consequently, it was possible to conclude that the mean value of the hypothetical length of a nickel-titanium orthodontic wire of the lower arch was 11.66 mm longer than that calculated for the current length of the upper arch.
Current length and of a hypothetical nickel-titanium orthodontic wire of the lower arch: the mean value calculated in the present study for the current length of the upper arch was 88.26 mm, while the mean value calculated for the hypothetical length of a nickel-titanium orthodontic wire of the upper arch was 94.71 mm [Table 2].
Table 2.
Lower Arch Analysis Hypothetical nickel titanium orthodontic wire lower arch lenght (mm) Current lower arch length (mm)
Maximum Value 109.91 107.63
Minimum Value 75.32 68.47
Mean Value 94.71 88.26
Consequently, it was possible to conclude that the mean value of the hypothetical length of a nickel-titanium orthodontic wire of the lower arch was 6.45 mm longer than that calculated for the current length of the lower arch.

3.2. Bolton analysis digital models

Table 3.
Bolton Analysis: Total Coefficient Sum 12 maxillary teeth (mm) Sum 12 mandibular teeth (mm) Report
Maximum Value 89.25 88.78 1.21
Minimum Value 58.10 53.39 0.68
Mean Value 78.99 73.77 0.94
Table 4.
Bolton Analysis: Anterior Coefficient Sum 6 maxillary teeth (mm) Sum 6 mandibular teeth (mm) Report
Maximum Value 45.54 35.69 1.16
Minimum Value 24.33 22.58 0.62
Mean Value 38.16 30.10 0.79

3.3. Comparison analysis Bolton present study and A. Anand Kumar et al. study [4]

  • Anterior coefficient (Bolton): In the study by A. Anand Kumar et al., the mean value of the anterior Bolton coefficient of the 50 subjects examined was 0.76 for both CBCT and plaster model measurements, and was compatible with that calculated in our study, which was 0.79 [9] [Table 5].
  • Total coefficient (Bolton): In the study by A. Anand Kumar et al., the mean value of the total Bolton coefficient of the 50 subjects examined was 0.91 for both CBCT and plaster model measurements, and was compatible with that calculated in our study, which was 0.94 [9] [Table 5].
Table 5.
Mean Value A. Anand Kumar et al. study Present study P Value
Anterior coefficient 0.76 0.79 0.0028
Total coefficient 0.91 0.94 0.0009

3.3. Comparison by student t-test of the anterior and total Bolton coefficients of the two studies

  • Student t-test: following the test, the value for the anterior coefficient was found to be P = 0.0028 and for the total coefficient was found to be P = 0.0009 both indicating a significant difference.
  • The differences found in Student's t-test are due to the different population size of the two studies compared: in the present study, 138 dental casts were examined, whereas in the study by A. Anand Kumar et al. the total number of patients examined was 50 [9] [Table 5].

4. Discussion

As has been done previously in other studies, dental models were digitised to obtain STL format files, the 'Standard Triangulation Language', using CAD/CAM technology, which allow the surface data of the dental arches to be saved on the computer in three-dimensional imaging [10,11,12].
STL files can allow clinicians to quickly obtain diagnostic information, arch width and perimeter, model discrepancies, Bolton discrepancy, overjet and overbite, as well as for the simulation of tooth movements [13].
Thus, the diagnostic configurations obtained through STL files can be used to evaluate better treatment strategies, increase their effectiveness and also allow, through digital planning, a better position of the fixed multibracket appliance on the teeth.
In fixed orthodontic therapy, brackets, bands and buccal tubes are used to transfer force and torque to the teeth, thus inducing tooth movement.
The accurate placement of orthodontic brackets is crucial, as deviations from the correct position of the brackets can lead to undesirable tooth movement.
Deviations from the correct bracket positions can lead to unwanted tooth movement, poor results and prolonged treatment times.
Computer-aided planning and production technology enables virtual planning of bracket positions and the of bracket positions, and bracket transfer splints can therefore be produced economically and easily and also digital processing can minimise positioning errors and increase treatment efficiency.
The accuracy of the final bracket position is defined as the deviation between the planned and actual bracket position [14,15,16].
The stereolithographic format can also be used in 3D printing software to be able to generate the necessary information for the production of 3D printed models, which can enable a more efficient workflow while saving time, a set of errors for linear measurements considered clinically acceptable when replicating plaster models or printing digital models for diagnostic purposes have therefore been defined [17,18].
Again analysing the STL files of the present study, a comparison was made between the average value of the length of the ideal arch and the present arch.
The average value of the length of a hypothetical orthodontic nickel titanium wire of the ideal upper arch is 11.66 mm longer than the average value of the current upper arch length.
The average length value of a hypothetical ideal lower arch nickel titanium orthodontic wire is 6.45 mm longer than the average length value of the current lower arch.
A comparison analysis was then carried out between the present study and that of A. Anand Kumar et al. [9].
Apart from the result of the student's t-test (whose significant difference is due to the different sample sizes of the two studies being compared: 138 dental casts were examined in the present study, whereas 50 patients were examined in the other study), the mean value for the anterior and total coefficient of the Bolton index in the present study were compatible with those calculated in the other study [9].
Thus being able to confirm the reliability of the digitally taken measurements.
Consequently, the measurements that were made in the present retrospective study, both for the ideal and current upper and lower arch lengths, and for the anterior and total Bolton coefficients of the 138 dental casts examined, are useful to be able to establish the standard of such measurements in the Italian adolescent population.
The limitation of the present study is the double step for model reproduction, the first being the reproduction by plaster casts of the dental arches (scanned later) and the second by measuring the digital models using Ortho3Shape software.

5. Conclusions

The present study confirmed what has already been demonstrated in the scientific literature, that digital orthodontics and the reproduction of 3D digital models can contribute to the simplification of diagnosis and treatment planning in Orthodontics.
In the present study, the mean value of the anterior coefficients of the Bolton index was compatible with those of the study by A. Anand Kumar et al. confirming the reliability of digital measurements [9].
In the future, it would be preferable for studies and research to be conducted with the aid of intra-oral scanners (IOS) to ensure greater accuracy, requiring only one step and ensuring a better result for the patient.

6. Full presentation of all results

Upper Arch Analysis Current upper arch length (mm) Hypothetical nichel titanium orthodontic wire lower arch lenght (mm)
Patient 1 94,70 102,36
Patient 2 94,50 108,85
Patient 3 94,44 101,37
Patient 4 81,62 97,00
Patient 5 95,72 108,36
Patient 6 90,33 100,29
Patient 7 79,86 88,12
Patient 8 89,67 108,06
Patient 9 78,74 99,55
Patient 10 83,76 92,20
Patient 11 91,00 110,58
Patient 12 86,58 110,04
Patient 13 92,59 101,63
Patient 14 92,37 99,90
Patient 15 90,30 109,69
Patient 16 82,01 108,37
Patient 17 93,87 111,27
Patient 18 101,64 114,35
Patient 19 88,62 95,76
Patient 20 80,47 96,34
Patient 21 86,98 105,62
Patient 22 86,23 94,75
Patient 23 83,54 89,70
Patient 24 102,56 111,30
Patient 25 91,37 94,42
Patient 26 104,08 115,41
Patient 27 106,23 110,76
Patient 28 98,82 109,05
Patient 29 81,83 84,01
Patient 30 101,04 107,49
Patient 31 92,41 97,13
Patient 32 89,72 105,47
Patient 33 83,72 98,82
Patient 34 91,70 104,02
Patient 35 94,56 104,93
Patient 36 92,10 107,76
Patient 37 89,59 103,34
Patient 38 72,29 80,03
Patient 39 94,31 106,65
Patient 40 97,73 109,58
Patient 41 66,47 81,03
Patient 42 88,89 105,33
Patient 43 89,50 108,16
Patient 44 88,84 104,82
Patient 45 104,13 114,82
Patient 46 94,84 104,13
Patient 47 94,55 105,17
Patient 48 83,18 91,92
Patient 49 99,83 111,57
Patient 50 81,87 96,40
Patient 51 86,87 94,73
Patient 52 95,57 109,20
Patient 53 78,22 81,32
Patient 54 80,31 88,51
Patient 55 94,72 106,17
Patient 56 101,66 112,43
Patient 57 98,68 107,85
Patient 58 93,59 106,49
Patient 59 75,14 98,14
Patient 60 105,13 110,52
Patient 61 98,93 114,18
Patient 62 93,49 108,29
Patient 63 88,48 112,58
Patient 64 100,83 106,87
Patient 65 99,57 109,59
Patient 66 93,37 107,73
Patient 67 93,27 103,72
Patient 68 93,37 97,27
Patient 69 84,75 96,49
Patient 70 94,21 109,93
Patient 71 94,76 111,29
Patient 72 96,07 107,55
Patient 73 91,42 98,41
Patient 74 75,93 98,57
Patient 75 92,49 102,35
Patient 76 100,02 113,14
Patient 77 81,98 102,29
Patient 78 98,58 108,87
Patient 79 89,80 103,67
Patient 80 90,66 106,21
Patient 81 98,43 109,06
Patient 82 81,87 96,40
Patient 83 83,59 93,65
Patient 84 86,54 88,03
Patient 85 95,62 113,91
Patient 86 82,61 94,96
Patient 87 92,62 104,29
Patient 88 95,11 108,58
Patient 89 87,93 103,75
Patient 90 95,92 115,54
Patient 91 97,56 114,93
Patient 92 91,05 105,26
Patient 93 89,65 104,38
Patient 94 90,31 100,07
Patient 95 99,80 108,69
Patient 96 99,25 107,74
Patient 97 99,65 108,51
Patient 98 93,23 106,62
Patient 99 98,74 107,73
Patient 100 103,20 114,91
Patient 101 83,50 98,43
Patient 102 77,34 91,35
Patient 103 90,42 100,16
Patient 104 107,28 124,33
Patient 105 76,72 82,74
Patient 106 95,59 105,94
Patient 107 89,20 96,43
Patient 108 74,33 98,75
Patient 109 90,46 103,82
Patient 110 81,16 91,02
Patient 111 97,46 114,01
Patient 112 105,58 113,23
Patient 113 90,71 100,67
Patient 114 103,88 109,00
Patient 115 81,19 89,56
Patient 116 92,63 104,66
Patient 117 101,73 105,60
Patient 118 103,52 112,50
Patient 119 108,07 116,11
Patient 120 83,94 89,74
Patient 121 97,23 108,51
Patient 122 83,76 91,38
Patient 123 98,95 107,48
Patient 124 104,91 109,86
Patient 125 94,60 107,47
Patient 126 105,49 117,68
Patient 127 101,20 109,80
Patient 128 94,43 100,00
Patient 129 85,01 106,50
Patient 130 97,13 104,90
Patient 131 85,04 91,41
Patient 132 105,15 113,90
Patient 133 106,77 105,89
Patient 134 96,75 106,45
Patient 135 106,53 112,55
Patient 136 96,22 103,69
Patient 137 94,04 106,94
Patient 138 85,78 101,97
Maximum value 108,07 124,33
Minimum value 66,47 80,03
Mean value 92,13 103,79
Lower Arch Analysis Current lower arch length (mm) Hypothetical nichel titanium orthodontic wire lower arch lenght (mm)
Patient 1 68,47 85,41
Patient 2 90,68 94,25
Patient 3 73,30 88,62
Patient 4 84,00 97,62
Patient 5 78,06 95,87
Patient 6 89,25 93,99
Patient 7 81,05 89,37
Patient 8 87,74 98,10
Patient 9 79,19 86,99
Patient 10 75,78 83,42
Patient 11 85,70 100,02
Patient 12 83,67 98,45
Patient 13 82,47 89,67
Patient 14 87,30 95,95
Patient 15 84,22 98,38
Patient 16 86,76 97,96
Patient 17 90,59 105,06
Patient 18 91,70 103,28
Patient 19 83,95 89,23
Patient 20 78,75 94,90
Patient 21 90,21 98,00
Patient 22 79,52 83,99
Patient 23 75,64 81,76
Patient 24 93,27 104,15
Patient 25 86,93 90,49
Patient 26 94,47 102,75
Patient 27 99,76 97,65
Patient 28 95,43 99,54
Patient 29 71,78 75,99
Patient 30 95,41 93,65
Patient 31 82,87 86,96
Patient 32 85,00 93,60
Patient 33 81,27 90,92
Patient 34 80,58 90,43
Patient 35 89,49 96,01
Patient 36 87,21 93,02
Patient 37 97,93 103,89
Patient 38 73,15 76,08
Patient 39 84,74 95,59
Patient 40 93,58 99,93
Patient 41 75,28 80,92
Patient 42 84,32 97,00
Patient 43 82,06 95,63
Patient 44 81,52 90,16
Patient 45 92,44 99,72
Patient 46 90,96 94,75
Patient 47 88,40 95,31
Patient 48 92,14 100,20
Patient 49 95,21 98,78
Patient 50 87,76 98,03
Patient 51 78,81 82,86
Patient 52 89,38 96,24
Patient 53 80,24 84,03
Patient 54 86,77 88,60
Patient 55 96,09 102,17
Patient 56 99,58 103,42
Patient 57 79,48 94,85
Patient 58 90,82 94,42
Patient 59 78,16 86,88
Patient 60 97,80 101,31
Patient 61 92,60 103,85
Patient 62 92,25 99,34
Patient 63 93,97 106,03
Patient 64 102,75 103,27
Patient 65 90,83 97,30
Patient 66 88,25 98,70
Patient 67 88,94 96,92
Patient 68 82,31 85,30
Patient 69 86,31 91,18
Patient 70 70,14 92,27
Patient 71 89,72 105,32
Patient 72 91,16 95,94
Patient 73 91,63 92,23
Patient 74 78,33 96,21
Patient 75 82,64 89,71
Patient 76 93,51 106,16
Patient 77 82,53 92,30
Patient 78 96,09 99,16
Patient 79 92,12 94,01
Patient 80 90,04 97,57
Patient 81 92,38 96,86
Patient 82 87,76 98,03
Patient 83 78,22 83,61
Patient 84 93,54 97,31
Patient 85 92,09 100,18
Patient 86 84,37 93,27
Patient 87 91,86 96,61
Patient 88 89,90 94,03
Patient 89 78,94 93,77
Patient 90 92,47 101,37
Patient 91 92,32 103,49
Patient 92 84,88 93,14
Patient 93 84,33 95,19
Patient 94 87,94 88,81
Patient 95 98,28 96,67
Patient 96 92,50 98,61
Patient 97 94,61 94,17
Patient 98 78,79 88,32
Patient 99 91,01 94,48
Patient 100 97,02 100,66
Patient 101 80,01 92,01
Patient 102 77,34 81,02
Patient 103 90,74 94,81
Patient 104 107,63 109,91
Patient 105 78,90 83,85
Patient 106 94,60 98,87
Patient 107 97,58 98,79
Patient 108 86,93 90,41
Patient 109 94,15 96,98
Patient 110 77,96 88,47
Patient 111 93,85 99,43
Patient 112 93,53 102,21
Patient 113 96,29 98,78
Patient 114 97,60 99,00
Patient 115 91,03 93,02
Patient 116 76,87 79,41
Patient 117 89,07 94,48
Patient 118 102,22 100,63
Patient 119 101,27 105,05
Patient 120 77,37 80,99
Patient 121 89,64 99,42
Patient 122 94,65 100,29
Patient 123 105,04 101,05
Patient 124 88,78 89,58
Patient 125 90,17 95,10
Patient 126 104,66 108,18
Patient 127 96,83 102,96
Patient 128 75,93 77,34
Patient 129 85,97 87,94
Patient 130 82,99 75,32
Patient 131 90,08 91,73
Patient 132 102,15 99,97
Patient 133 99,64 93,74
Patient 134 84,95 94,45
Patient 135 103,16 102,17
Patient 136 87,26 96,62
Patient 137 94,32 94,63
Patient 138 90,99 93,64
Maximum value 107,63 109,91
Minimum value 68,47 75,32
Mean value 88,26 94,71
Bolton Analysis:
Anterior Coefficient
Sum 6 maxillary teeth (mm) Sum 6 mandibular teeth
(mm)
Report
Patient 1 38,60 28,28 0,73
Patient 2 39,88 30,66 0,77
Patient 3 38,99 31,08 0,80
Patient 4 33,81 26,18 0,77
Patient 5 39,52 28,88 0,73
Patient 6 33,60 29,78 0,86
Patient 7 35,13 25,26 0,72
Patient 8 37,57 28,00 0,75
Patient 9 32,47 25,31 0,78
Patient 10 36,03 27,78 0,77
Patient 11 33,99 26,83 0,79
Patient 12 33,99 26,73 0,79
Patient 13 34,33 26,19 0,76
Patient 14 40,00 29,74 0,74
Patient 15 35,88 27,72 0,77
Patient 16 24,33 28,22 1,16
Patient 17 37,34 28,85 0,77
Patient 18 38,35 30,71 0,80
Patient 19 34,72 27,88 0,80
Patient 20 35,64 27,2 0,76
Patient 21 32,36 28,05 0,87
Patient 22 36,88 29,54 0,80
Patient 23 37,22 26,55 0,71
Patient 24 42,70 33,61 0,79
Patient 25 37,87 27,92 0,74
Patient 26 45,54 33,35 0,73
Patient 27 44,95 35,38 0,79
Patient 28 36,94 29,24 0,79
Patient 29 38,23 28,49 0,75
Patient 30 43,01 31,35 0,73
Patient 31 36,50 24,59 0,67
Patient 32 34,82 27,29 0,78
Patient 33 35,99 30,54 0,85
Patient 34 36,34 22,58 0,62
Patient 35 36,12 28,24 0,78
Patient 36 34,41 28,22 0,82
Patient 37 39,17 29,64 0,76
Patient 38 34,33 30,47 0,89
Patient 39 35,08 27,09 0,77
Patient 40 36,49 28,13 0,77
Patient 41 36,36 29,89 0,82
Patient 42 35,24 27,13 0,77
Patient 43 34,58 26,88 0,78
Patient 44 32,42 24,71 0,76
Patient 45 40,75 30,62 0,75
Patient 46 40,19 32,15 0,80
Patient 47 39,15 29,34 0,75
Patient 48 40,45 31,58 0,78
Patient 49 39,93 30,40 0,76
Patient 50 40,04 33,43 0,83
Patient 51 38,08 27,24 0,72
Patient 52 37,37 29,95 0,80
Patient 53 36,78 27,96 0,76
Patient 54 37,86 28,33 0,75
Patient 55 37,27 31,89 0,86
Patient 56 41,98 33,34 0,79
Patient 57 38,40 30,96 0,81
Patient 58 38,55 33,72 0,87
Patient 59 29,69 27,88 0,94
Patient 60 41,31 30,85 0,75
Patient 61 42,65 32,01 0,75
Patient 62 36,76 27,52 0,75
Patient 63 40,38 32,29 0,80
Patient 64 41,88 34,12 0,81
Patient 65 38,80 28,92 0,75
Patient 66 35,30 28,41 0,80
Patient 67 37,32 29,41 0,79
Patient 68 36,74 26,87 0,73
Patient 69 36,23 30,24 0,83
Patient 70 38,52 29,30 0,76
Patient 71 36,27 30,55 0,84
Patient 72 36,83 28,73 0,78
Patient 73 36,68 28,44 0,78
Patient 74 36,87 29,01 0,79
Patient 75 35,11 27,12 0,77
Patient 76 39,51 32,26 0,82
Patient 77 33,75 26,33 0,79
Patient 78 39,62 30,26 0,76
Patient 79 33,75 30,08 0,89
Patient 80 36,37 29,33 0,81
Patient 81 38,69 29,71 0,77
Patient 82 44,04 33,43 0,83
Patient 83 39,19 31,40 0,80
Patient 84 39,71 31,86 0,80
Patient 85 40,01 31,51 0,79
Patient 86 34,63 28,44 0,82
Patient 87 39,02 31,82 0,82
Patient 88 37,22 30,48 0,82
Patient 89 36,43 26,99 0,74
Patient 90 38,97 30,85 0,79
Patient 91 42,33 30,00 0,71
Patient 92 34,38 28,21 0,82
Patient 93 34,77 27,51 0,79
Patient 94 34,24 29,18 0,85
Patient 95 38,60 30,32 0,79
Patient 96 38,73 30,84 0,80
Patient 97 39,93 32,52 0,81
Patient 98 41,81 33,98 0,81
Patient 99 41,55 30,92 0,74
Patient 100 42,06 31,52 0,75
Patient 101 30,15 28,04 0,93
Patient 102 31,87 30,54 0,96
Patient 103 34,20 28,44 0,83
Patient 104 44,46 35,12 0,79
Patient 105 34,02 28,32 0,83
Patient 106 39,12 30,72 0,79
Patient 107 45,32 32,24 0,71
Patient 108 37,38 29,10 0,78
Patient 109 36,08 32,02 0,89
Patient 110 37,49 31,00 0,83
Patient 111 43,61 31,03 0,71
Patient 112 44,64 34,26 0,77
Patient 113 40,43 32,80 0,81
Patient 114 41,66 31,44 0,75
Patient 115 36,54 30,32 0,83
Patient 116 42,50 33,02 0,78
Patient 117 40,72 33,38 0,82
Patient 118 43,55 34,79 0,80
Patient 119 44,49 32,76 0,74
Patient 120 36,88 27,11 0,74
Patient 121 41,03 30,03 0,73
Patient 122 38,39 28,84 0,75
Patient 123 40,35 33,91 0,84
Patient 124 42,67 33,54 0,79
Patient 125 39,79 30,13 0,76
Patient 126 44,65 35,69 0,80
Patient 127 38,72 33,58 0,87
Patient 128 45,16 31,93 0,71
Patient 129 27,94 30,96 1,11
Patient 130 41,78 34,55 0,83
Patient 131 40,47 32,08 0,79
Patient 132 43,94 35,36 0,80
Patient 133 43,29 35,40 0,82
Patient 134 40,02 29,72 0,74
Patient 135 43,18 34,79 0,81
Patient 136 38,47 30,82 0,80
Patient 137 40,94 33,51 0,82
Patient 138 38,51 32,16 0,83
Maximum value 45,54 35,69 1,16
Minimum value 24,33 22,58 0,62
Mean value 38,16 30,12 0,79
Bolton Analysis: Total Coefficient Sum 12 maxillary teeth (mm) Sum 12 mandibular teeth
(mm)
Report
Patient 1 79,71 60,18 0,75
Patient 2 79,46 74,27 0,93
Patient 3 79,56 60,33 0,76
Patient 4 73,23 69,17 0,94
Patient 5 80,14 62,02 0,77
Patient 6 74,55 71,79 0,96
Patient 7 76,63 66,54 0,90
Patient 8 70,15 70,37 1,00
Patient 9 65,69 63,29 0,96
Patient 10 83,76 75,78 0,90
Patient 11 71,76 68,57 0,96
Patient 12 71,51 66,77 0,93
Patient 13 72,83 67,41 0,93
Patient 14 78,07 71,93 0,92
Patient 15 75,28 67,96 0,90
Patient 16 67,79 69,77 1,03
Patient 17 78,43 72,83 0,93
Patient 18 83,91 74,73 0,89
Patient 19 74,07 67,44 0,91
Patient 20 73,92 63,64 0,86
Patient 21 73,58 72,44 0,98
Patient 22 86,23 79,52 0,92
Patient 23 83,54 75,64 0,91
Patient 24 87,13 77,42 0,89
Patient 25 75,66 69,59 0,92
Patient 26 88,02 78,2 0,89
Patient 27 88,40 84,63 0,96
Patient 28 78,85 75,50 0,96
Patient 29 81,83 71,78 0,88
Patient 30 83,93 76,22 0,91
Patient 31 75,25 66,12 0,88
Patient 32 74,96 69,05 0,92
Patient 33 75,92 73,60 0,97
Patient 34 76,33 63,90 0,84
Patient 35 79,47 73,84 0,93
Patient 36 73,46 70,17 0,96
Patient 37 82,88 77,39 0,93
Patient 38 72,29 73,15 1,01
Patient 39 76,82 67,92 0,88
Patient 40 78,20 75,53 0,97
Patient 41 66,47 75,28 1,13
Patient 42 71,67 66,22 0,92
Patient 43 73,97 66,47 0,90
Patient 44 72,44 65,45 0,90
Patient 45 85,10 74,81 0,88
Patient 46 77,97 74,75 0,96
Patient 47 77,33 70,72 0,91
Patient 48 83,18 78,16 0,94
Patient 49 85,19 76,66 0,90
Patient 50 81,87 79,99 0,98
Patient 51 79,64 70,23 0,88
Patient 52 80,13 72,62 0,91
Patient 53 78,22 72,10 0,92
Patient 54 80,31 76,87 0,96
Patient 55 78,15 76,65 0,98
Patient 56 83,80 80,25 0,96
Patient 57 81,18 79,48 0,98
Patient 58 77,03 74,29 0,96
Patient 59 75,14 78,16 1,04
Patient 60 85,68 80,50 0,94
Patient 61 82,58 76,18 0,92
Patient 62 76,94 74,10 0,96
Patient 63 80,99 78,76 0,97
Patient 64 87,42 85,77 0,98
Patient 65 81,57 73,55 0,90
Patient 66 75,95 71,09 0,94
Patient 67 78,47 71,89 0,92
Patient 68 76,55 69,20 0,90
Patient 69 71,97 71,12 0,99
Patient 70 78,18 53,39 0,68
Patient 71 76,22 71,99 0,94
Patient 72 78,24 72,60 0,93
Patient 73 75,69 70,67 0,93
Patient 74 59,30 62,59 1,06
Patient 75 75,49 65,94 0,87
Patient 76 84,03 76,50 0,91
Patient 77 68,61 66,22 0,97
Patient 78 82,27 77,23 0,94
Patient 79 73,10 74,18 1,01
Patient 80 74,58 72,24 0,97
Patient 81 80,43 74,68 0,93
Patient 82 81,87 79,99 0,98
Patient 83 83,59 78,22 0,94
Patient 84 86,54 76,28 0,88
Patient 85 79,63 75,18 0,94
Patient 86 74,92 68,35 0,91
Patient 87 78,50 74,70 0,95
Patient 88 79,18 72,66 0,92
Patient 89 72,44 64,74 0,89
Patient 90 80,33 76,36 0,95
Patient 91 82,71 75,55 0,91
Patient 92 76,64 69,24 0,90
Patient 93 73,39 67,12 0,91
Patient 94 74,48 70,11 0,94
Patient 95 82,51 78,94 0,96
Patient 96 81,43 76,89 0,94
Patient 97 81,95 76,02 0,93
Patient 98 79,82 70,85 0,89
Patient 99 83,42 73,96 0,89
Patient 100 85,51 77,54 0,91
Patient 101 68,02 66,64 0,98
Patient 102 77,34 77,34 1,00
Patient 103 75,97 72,11 0,95
Patient 104 89,25 84,89 0,95
Patient 105 76,72 72,10 0,94
Patient 106 80,43 76,22 0,95
Patient 107 89,20 78,27 0,88
Patient 108 58,10 70,39 1,21
Patient 109 74,51 76,06 1,02
Patient 110 74,26 62,71 0,84
Patient 111 84,33 75,43 0,89
Patient 112 85,75 76,45 0,89
Patient 113 81,74 78,90 0,97
Patient 114 85,86 78,61 0,92
Patient 115 74,33 73,96 1,00
Patient 116 82,26 76,87 0,93
Patient 117 86,05 80,28 0,93
Patient 118 87,69 83,21 0,95
Patient 119 88,77 81,23 0,92
Patient 120 83,94 77,37 0,92
Patient 121 81,57 71,91 0,88
Patient 122 83,76 78,54 0,94
Patient 123 82,46 80,93 0,98
Patient 124 86,55 88,78 1,03
Patient 125 77,75 72,97 0,94
Patient 126 89,17 84,58 0,95
Patient 127 74,84 79,81 1,07
Patient 128 88,77 75,93 0,86
Patient 129 69,74 76,45 1,10
Patient 130 81,50 82,99 1,02
Patient 131 85,04 85,37 1,00
Patient 132 86,49 83,02 0,96
Patient 133 87,06 81,67 0,94
Patient 134 81,12 69,22 0,85
Patient 135 89,25 85,09 0,95
Patient 136 80,35 73,51 0,91
Patient 137 80,16 76,82 0,96
Patient 138 74,83 74,35 0,99
Maximum value 89,25 88,78 1,21
Minimum value 58,10 53,39 0,68
Mean value 78,99 73,77 0,94

References

  1. Ardila, C.M.; Elorza-Durán, A.; Arrubla-Escobar, D. Efficacy of CAD/CAM Technology in Interventions Implemented in Orthodontics: A Scoping Review of Clinical Trials. BioMed Res. Int. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
  2. Ferreira, J.B.; O Christovam, I.; Alencar, D.S.; Da Motta, A.F.J.; Mattos, C.T.; Cury-Saramago, A. Accuracy and reproducibility of dental measurements on tomographic digital models: a systematic review and meta-analysis. Dentomaxillofacial Radiol. 2017, 46, 20160455. [Google Scholar] [CrossRef] [PubMed]
  3. Hoffmann, L.; Sabbagh, H.; Wichelhaus, A.; Kessler, A. Bracket transfer accuracy with two different three-dimensional printed transfer trays vs silicone transfer trays. Angle Orthod. 2022, 92, 364–371. [Google Scholar] [CrossRef]
  4. Zhou, X.; Zheng, Y.; Zhang, Z.; Zhang, Z.; Wu, L.; Liu, J.; Yang, W.; Wang, J. Customized maxillary incisor position relative to dentoskeletal and soft tissue patterns in Chinese women: A retrospective study. Korean J. Orthod. 2022, 52, 150–160. [Google Scholar] [CrossRef] [PubMed]
  5. Kustrzycka, D.; Marschang, T.; Mikulewicz, M.; Grzebieluch, W. Comparison of the Accuracy of 3D Images Obtained fromDifferent Types of Scanners: A Systematic Review. J. Heal. Eng. 2020, 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
  6. Sabbagh, H.; Heger, S.M.; Stocker, T.; Baumert, U.; Wichelhaus, A.; Hoffmann, L. Accuracy of 3D Tooth Movements in the Fabrication of Manual Setup Models for Aligner Therapy. Materials 2022, 15, 3853. [Google Scholar] [CrossRef] [PubMed]
  7. Nota, A.; Chegodaeva, A.D.; Ryakhovsky, A.N.; Vykhodtseva, M.A.; Pittari, L.; Tecco, S. One-Stage Virtual Plan of a Complex Orthodontic/Prosthetic Dental Rehabilitation. Int. J. Environ. Res. Public Heal. 2022, 19, 1474. [Google Scholar] [CrossRef] [PubMed]
  8. Tartaglia, G.M.; Mapelli, A.; Maspero, C.; Santaniello, T.; Serafin, M.; Farronato, M.; Caprioglio, A. Direct 3D Printing of Clear Orthodontic Aligners: Current State and Future Possibilities. Materials 2021, 14, 1799. [Google Scholar] [CrossRef] [PubMed]
  9. Kumar, A.A.; Phillip, A.; Kumar, S.; Rawat, A.; Priya, S.; Kumaran, V. Digital model as an alternative to plaster model in assessment of space analysis. J. Pharm. Bioallied Sci. 2015, 7, 465–9. [Google Scholar] [CrossRef] [PubMed]
  10. Moura, W.; Henriques, J.F.C.; Gambardela-Tkacz, C.M.; Cotrin, P.; Garib, D.; Janson, G. Mandibular incisor inclination and gingival recession after treatment with the Jasper Jumper: a 10-year follow-up. Prog. Orthod. 2021, 22, 1–8. [Google Scholar] [CrossRef]
  11. Cunha, T.d.M.A.d.; Barbosa, I.d.S.; Palma, K.K. Orthodontic digital workflow: devices and clinical applications. Dent. Press J. Orthod. 2021, 26, e21spe6. [Google Scholar] [CrossRef] [PubMed]
  12. Mai, H.-N.; Lee, D.-H. Accuracy of Mobile Device–Compatible 3D Scanners for Facial Digitization: Systematic Review and Meta-Analysis. J. Med Internet Res. 2020, 22, e22228. [Google Scholar] [CrossRef] [PubMed]
  13. Weinstein, T.; Marano, G.; Aulakh, R. Five-to-five clear aligner therapy: predictable orthodontic movement for general dentist to achieve minimally invasive dentistry. BMC Oral Heal. 2021, 21, 1–14. [Google Scholar] [CrossRef]
  14. Pachêco-Pereira, C.; Canto, G.D.L.; Major, P.W.; Flores-Mir, C. Variation of orthodontic treatment decision-making based on dental model type: A systematic review. Angle Orthod. 2014, 85, 501–509. [Google Scholar] [CrossRef] [PubMed]
  15. Hoffmann, L.; Sabbagh, H.; Wichelhaus, A.; Kessler, A. Bracket transfer accuracy with two different three-dimensional printed transfer trays vs silicone transfer trays. Angle Orthod. 2022, 92, 364–371. [Google Scholar] [CrossRef] [PubMed]
  16. Faus-Matoses, I.; Barona, C.G.; Barona, C.G.; Barona, C.G.; Zubizarreta-Macho. ; Paredes-Gallardo, V.; Faus-Matoses, V. A Novel Digital Technique for Measuring the Accuracy of an Indirect Bonding Technique Using Fixed Buccal Multibracket Appliances. J. Pers. Med. 2021, 11, 932. [Google Scholar] [CrossRef] [PubMed]
  17. Jaber, S.T.; Hajeer, M.Y.; Khattab, T.Z.; Mahaini, L. Evaluation of the fused deposition modeling and the digital light processing techniques in terms of dimensional accuracy of printing dental models used for the fabrication of clear aligners. Clin. Exp. Dent. Res. 2020, 7, 591–600. [Google Scholar] [CrossRef] [PubMed]
  18. Etemad-Shahidi, Y.; Qallandar, O.B.; Evenden, J.; Alifui-Segbaya, F.; Ahmed, K.E. Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review. J. Clin. Med. 2020, 9, 3357. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated