Submitted:
26 May 2023
Posted:
29 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
- Antibacterial substances secreted by Bacillus licheniformis
1. Bacteriocins
1.1. Class I - heat stable lanthionine-containing peptides smaller than 5 kDa
1.2. Class II – heat stable non-lanthionine peptides smaller than 10 kDa
1.2.1. B. licheniformis secreted peptides active only against Gram-positive microorganisms
1.2.2. B. licheniformis secreted peptides active against both Gram-positive and Gram-negative microorganisms
1.2.3. B. licheniformis peptides active against fungal pathogens
1.2.4. Amoebolytic substances from B. licheniformis
1.3. Class III – Proteins larger than 10 kDa
1.4. Class IV – complex with a lipid moiety or carbohydrate moiety
1.5. Bacteriocins with undetermined molecular weight
2. Non-ribosomal biosynthesized peptides
2.1. Bacitracin
2.2. Cyclic lipopeptides (Biosurfactants)
2.2.1. Surfactin homologues
2.2.2. Lichenysins
2.2.3. Licheniformin
2.2.4. Fengycins
2.3. Others lipopeptides
3. Exopolysaccharides
- Antimicrobial substances of B. licheniformis active against mycobacteria
- Prospects for using natural substance in the treatment of tuberculosis
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Lerminiaux, N.A.; Cameron, A.D.S. Horizontal Transfer of Antibiotic Resistance Genes in Clinical Environments. Can. J. Microbiol. 2019, 65, 34–44. [Google Scholar] [CrossRef]
- Shleeva, M.O.; Kudykina, Y.K.; Vostroknutova, G.N.; Suzina, N.E.; Mulyukin, A.L.; Kaprelyants, A.S. Dormant Ovoid Cells of Mycobacterium Tuberculosis Are Formed in Response to Gradual External Acidification. Tuberculosis 2011, 91, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Trutneva, K.A.; Shleeva, M.O.; Demina, G.R.; Vostroknutova, G.N.; Kaprelyans, A.S. One-Year Old Dormant, “Non-Culturable” Mycobacterium Tuberculosis Preserves Significantly Diverse Protein Profile. Front. Cell. Infect. Microbiol. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kaprelyants, A.; Salina, E.; Makarov, V. How to Kill Dormant Mycobacterium Tuberculosis. Int. J. Mycobacteriology 2018, 7, 399–400. [Google Scholar] [CrossRef]
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the Use of Bacillus Species for Industrial Production. Can J Microbiol.. 2004, 50, 1–17. [Google Scholar] [CrossRef]
- Stoica, R.-M.; Moscovici, M.; Tomulescu, C.; Casarica, A.; Babeanu, N.; Popa, O.; Kahraman, H.A. Antimicrobial Compounds of the Genus Bacillus: A Review. Rom Biotechnol Lett. 2019, 24, 1111–1119. [Google Scholar] [CrossRef]
- Lawton, E.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Two-Peptide Lantibiotics : A Medical Perspective. Mini-Reviews Med. Chem. 2007, 7, 1236–1247. [Google Scholar] [CrossRef]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins-a Viable Alternative to Antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef]
- Nishie, M.; Nagao, J.I.; Sonomoto, K. Antibacterial Peptides “Bacteriocins”: An Overview of Their Diverse Characteristics and Applications. Biocontrol Sci. 2012, 17, 1–16. [Google Scholar] [CrossRef]
- Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial Activities of Bacteriocins: Application in Foods and Pharmaceuticals. Front. Microbiol. 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Magashi, A.M. , Bukar, A., Omola, E.M., Halima, B.A. and Hadiza, M.S. BACTERIOCIN AND ITS APPLICATION – A REVIEW. Int. J. Adv. Acad. Res. | Sci. Technol. Eng. 2019, 5, 242–256. [Google Scholar]
- Yang, H.; Sun, Y.; Cai, R.; Chen, Y.; Gu, B. The Impact of Dietary Fiber and Probiotics in Infectious Diseases. Microb. Pathog. 2020, 140, 103931. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Olea, H.; Reyes-Ballesteros, B.; Chavez-Santoscoy, R.A. Potential Application of the Probiotic Bacillus Licheniformis as an Adjuvant in the Treatment of Diseases in Humans and Animals: A Systematic Review. Front. Microbiol. 2022, 13, 1–13. [Google Scholar] [CrossRef]
- Hallaj-Nezhadi, S.; Hamdipour, R.; Shahrvirani, M.; Zare tin, R.; Chapeland-leclerc, F.; Ruprich-Robert, G.; Esnaashari, S.; Elyasi Far, B.; Dilmaghani, A. Antimicrobial Activity of Bacillus Sp. Isolated Strains of Wild Honey. BMC Complement. Med. Ther. 2022, 22, 78. [Google Scholar] [CrossRef] [PubMed]
- Joerger, R.D. Alternatives to Antibiotics : Bacteriocins, Antimicrobial Peptides and Bacteriophages. Poult. Sci. 2003, 82, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Seal, B.S.; Drider, D.; Oakley, B.B.; Brüssow, H.; Bikard, D.; Rich, J.O.; Miller, S.; Devillard, E.; Kwan, J.; Bertin, G.; et al. Microbial - Derived Products as Potential New Antimicrobials. Vet. Res. 2018, 49, 66. [Google Scholar] [CrossRef]
- Reddy, K.V.R.; Yedery, R.D.; Aranha, C. Antimicrobial Peptides : Premises and Promises. Int. J. Antimicrob. Agents 2004, 24, 536–547. [Google Scholar] [CrossRef]
- Todorov, S.D.; Ivanova, I.V.; Popov, I.; Weeks, R.; Chikindas, M.L. Bacillus Spore-Forming Probiotics: Benefits with Concerns? Crit. Rev. Microbiol. 2022, 48, 513–530. [Google Scholar] [CrossRef]
- Nesemann, G.; Präve, P.; Sukatsch, D.; L. , V. Ein Polyen-Antibiotikum Aus Bakterien [A Polyene Antibiotic from Bacteria]. Naturwissenschaften 1972, 59, 81–82. [Google Scholar] [CrossRef]
- Girija, V.; Malaikozhundan, B.; Vaseeharan, B.; Vijayakumar, S.; Gopi, N.; Del, M.; Herrera, V.; Chen, J.; Santhanam, P. In Vitro Antagonistic Activity and the Protective Effect of Probiotic Bacillus Licheniformis Dahb1 in Zebrafish Challenged with GFP Tagged Vibrio Parahaemolyticus Dahv2. Microb. Pathog. 2018, 114, 274–280. [Google Scholar] [CrossRef]
- Rohith, H.S.; Halami, M.P. In Vitro Validation Studies for Adhesion Factor and Adhesion Efficiency of Probiotic Bacillus Licheniformis MCC 2514 and Bifidobacterium Breve NCIM 5671 on HT - 29 Cell Lines. Arch. Microbiol. 2021, 203, 2989–2998. [Google Scholar] [CrossRef] [PubMed]
- Sekar, A.; Kim, M.; Jeon, H.; Kim, K. Screening and Selection of Bacteria Inhibiting White Spot Syndrome Virus Infection to Litopenaeus Vannamei. Biochem. Biophys. Reports 2019, 19, 100663. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.-Y.; Horng, Y.-B.; Wu, C.-H.; Chang, C.-Y.; Chang, Y.-C.; Tsai, P.-S.; Jeng, C.-R.; Cheng, Y.-H.; Chang, H.-W. Evaluation of Antiviral Activity of Bacillus Licheniformis - Fermented Products against Porcine Epidemic Diarrhea Virus. AMB Express 2019, 9, 191. [Google Scholar] [CrossRef]
- Lee, T.-W.; Chao, T.-Y.; Chang, H.-W.; Cheng, Y.-H.; Wu, C.-H.; Chang, Y.-C. The Effects of Bacillus Licheniformis — Fermented Products on the Microbiota and Clinical Presentation of Cats with Chronic Diarrhea. Anim. 2022, 12, 2187. [Google Scholar] [CrossRef]
- Barba-Vidal, E.; Roll, V.F.B.; Castillejos, L.; Guerra-Ordaz, A.A.; Manteca, X.; Mallo, J.J.; Martin-Orúe, S.M. Response to a Salmonella Typhimurium Challenge in Piglets Supplemented with Protected Sodium Butyrate or Bacillus Licheniformis: Effects on Performance, Intestinal Health and Behavior. Transl Anim Sci 2017, 1, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Pahumunto, N.; Dahlen, G.; Teanpaisan, R. Evaluation of Potential Probiotic Properties of Lactobacillus and Bacillus Strains Derived from Various Sources for Their Potential Use in Swine Feeding. Probiotics Antimicrob. Proteins 2021. [Google Scholar] [CrossRef]
- Shanthi, S.; Jayaseelan, B.D.; Velusamy, P.; Vijayakumar, S.; Chih, C.T.; Vaseeharan, B. Biosynthesis of Silver Nanoparticles Using a Probiotic Bacillus Licheniformis Dahb1 and Their Antibiofilm Activity and Toxicity Effects in Ceriodaphnia Cornuta. Microb. Pathog. 2016, 93, 70–77. [Google Scholar] [CrossRef]
- Luca, M.; Mario, V.; Gino, N.; Felice, M. De Purification and Partial Characterization of Bacillocin 490, a Novel Bacteriocin Produced by a Thermophilic Strain of Bacillus Licheniformis. Microb. Cell Fact. 2002, 91, 1–5. [Google Scholar]
- Cladera-Olivera, F.; Caron, G.R.; Brandelli, A. Bacteriocin-like Substance Production by Bacillus Licheniformis Strain P40. Lett. Appl. Microbiol. 2004, 38, 251–256. [Google Scholar] [CrossRef]
- Muras, A.; Romero, M.; Mayer, C.; Otero, A. Biotechnological Applications of Bacillus Licheniformis. Crit. Rev. Biotechnol. 2021, 41, 609–627. [Google Scholar] [CrossRef]
- Shobharani, P.; Padmaja, R.J.; Halami, P.M. Diversity in the Antibacterial Potential of Probiotic Cultures Bacillus Licheniformis MCC2514 and Bacillus Licheniformis MCC2512. Res. Microbiol. 2015, 166, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, P.; Kaushik, J.K.; Grover, S.; Batish, V.K. Purification and Characterization of a Bacteriocin-like Compound (Lichenin) Produced Anaerobically by Bacillus Licheniformis Isolated from Water Buffalo. J. Appl. Microbiol. 2001, 91, 636–645. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Chen, W.L.; Liu, Y. Production and Partial Characterization of Bacteriocin-like Pepitdes by Bacillus Licheniformis ZJU12. Microbiol. Res. 2006, 161, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Kayalvizhi, N.; Gunasekaran, P. Production and Characterization of a Low-Molecular-Weight Bacteriocin from Bacillus Licheniformis MKU3. Lett. Appl. Microbiol. 2008, 47, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Anthony, T.; Rajesh, T.; Kayalvizhi, N.; Gunasekaran, P. Influence of Medium Components and Fermentation Conditions on the Production of Bacteriocin(s) by Bacillus Licheniformis AnBa9. Bioresour. Technol. 2009, 100, 872–877. [Google Scholar] [CrossRef]
- Korenblum, E.; Rosado, A.S.; Sebastia, G. V; Paiva, M.M. De; Seldin, L. Production of Antimicrobial Substances by Bacillus Subtilis LFE-1, B. Firmus H 2 O-1 and B. Licheniformis T6-5 Isolated from an Oil Reservoir in Brazil. J. AppliedMicrobiology 2005, 98, 667–675. [Google Scholar] [CrossRef]
- CALLOW, R.K.; WORK, T.S. Antibiotic Peptides from Bacillus Licheniformis; Licheniformins A, B and C. Biochem. J. 1952, 51, 558–568. [Google Scholar] [CrossRef]
- Präve, P.; Sukatsch, D.; Vértesy, L. Proticin, a New Phosphorus-Containing Antibiotic. I. Taxonomy, Fermentation, Isolation, and Biological Properties. J Antibiot 1972, 25, 1–3. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Cai, D.; Zhan, Y.; Wang, Q.; Chen, S. Identification and High-Level Production of Pulcherrimin in Bacillus Licheniformis DW2. Appl. Biochem. Biotechnol. 2017, 183, 1323–1335. [Google Scholar] [CrossRef]
- Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins : Safe, Natural Antimicrobials for Food Preservation. Int. J. Food Microbiol. 2001, 71, 1–20. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Ross, R.P.; Hill, C. Potential of Bacteriocin-Producing Lactic Acid Bacteria for Improvements in Food Safety and Quality. Biochimie 2002, 84, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Mercado, V.; Olmos, J. Bacteriocin Production by Bacillus Species : Isolation, Characterization, and Application. Probiotics Antimicrob. Proteins 2022, 14, 1151–1169. [Google Scholar] [CrossRef] [PubMed]
- Jack, R.W.; Tagg, J.R.; Ray, B. Bacteriocins of Gram-Positive Bacteria. Microbiol. Rev. 1995, 59, 171–200. [Google Scholar] [CrossRef] [PubMed]
- Abriouel, H.; Franz, C.M.A.P.; Omar, N. Ben; Galvez, A. Diversity Andapplications of Bacillus Bacteriocins. FEMS Microbiol Rev 2011, 35, 201–232. [Google Scholar] [CrossRef]
- Bernardo, S.P.C.; Rosana, A.R.R.; de Souza, A.N.; Chiorean, S.; Martins, M.L.L.; Vederas, J.C. Draft Genome Sequence of the Thermophilic Bacterium Bacillus Licheniformis SMIA-2, an Antimicrobial- and Thermostable Enzyme-Producing Isolate from Brazilian Soil. Microbiol Resour Announc 2020, 9, e00106-20. [Google Scholar] [CrossRef]
- Gálvez, A.; Maqueda, M.; Martínez-Bueno, M.; Lebbadi, M.; Valdivia, E. Isolation and Physico-Chemical Characterization of an Antifungal and Antibacterial Peptide Produced by Bacillus Licheniformis A12. Appl. Microbiol. Biotechnol. 1993, 39, 438–442. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C.; Ross, R.P. Food Microbiology: Bacteriocins: Developing Innate Immunity for Food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef]
- Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J.; et al. Ribosomally Synthesized and Post-Translationally Modified Peptide Natural Products: Overview and Recommendations for a Universal Nomenclature. Nat. Prod. Rep. 2013, 30, 108–160. [Google Scholar] [CrossRef]
- Du, A.; Staden, P. Van; van Zyl, W.F.; Trindade, M.; Dicks, L.M.T.; Smith, C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl. Environ. Microbiol. 2021, 87, e00186–21. [Google Scholar]
- Wiedemann, I.; Breukink, E.; van Kraaij, C.; Kuipers, O.P.; Bierbaum, G.; de Kruijff, B.; Sahl, H.-G. Specific Binding of Nisin to the Peptidoglycan Precursor Lipid II Combines Pore Formation and Inhibition of Cell Wall Biosynthesis for Potent Antibiotic Activity. J. Biol. Chem. 2001, 276, 1772–1779. [Google Scholar] [CrossRef]
- Hsu, S.D.; Breukink, E.; Tischenko, E.; Lutters, M.A.G.; Kruijff, B. De; Kaptein, R.; Bonvin, A.M.J.J.; van Nuland, N.A.J. The Nisin – Lipid II Complex Reveals a Pyrophosphate Cage That Provides a Blueprint for Novel Antibiotics. Nat Struct Mol Biol. 2004, 11, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Helander, I.M.; Mattila-Sandholm, T. Permeability Barrier of the Gram-Negative Bacterial Outer Membrane with Special Reference to Nisin. Int. J. Food Microbiol. 2000, 60, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Halami, P.M. Sublichenin, a New Subtilin-like Lantibiotics of Probiotic Bacterium Bacillus Licheniformis MCC 2512 T with Antibacterial Activity. Microb. Pathog. 2019, 128. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Hansen, J.N. Structure and Expression of a Gene Encoding the Precursor of Subtilin, a Small Protein Antibiotic. J. Biol. Chem. 1988, 263, 9508–9514. [Google Scholar] [CrossRef]
- Wei, Z.; Shan, C.; Zhang, L.; Ge, D.; Wang, Y.; Xia, X.; Liu, X.; Zhou, J. A Novel Subtilin-like Lantibiotics Subtilin JS-4 Produced by Bacillus Subtilis JS-4, and Its Antibacterial Mechanism against Listeria Monocytogenes. Lwt - Food Sci. Technol. 2021, 142, 110993. [Google Scholar] [CrossRef]
- Dischinger, J.; Josten, M.; Szekat, C.; Sahl, H.G.; Bierbaum, G. Production of the Novel Two-Peptide Lantibiotic Lichenicidin by Bacillus Licheniformis DSM 13. PLoS One 2009, 4. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Silva, Í.C.; Caetano, T.; Mösker, E.; Seidel, M.; Lourenço, J.; Süssmuth, R.D.; Santos, N.C.; Gonçalves, S.; Mendo, S. Assessing the Potential of the Two-Peptide Lantibiotic Lichenicidin as a New Generation Antimicrobial. World J. Microbiol. Biotechnol. 2022, 38, 18. [Google Scholar] [CrossRef]
- Begley, M.; Cotter, P.D.; Hill, C.; Ross, R.P. Identification of a Novel Two-Peptide Lantibiotic, Lichenicidin, Following Rational Genome Mining for LanM Proteins. Appl. Environ. Microbiol. 2009, 75, 5451–5460. [Google Scholar] [CrossRef]
- Shenkarev, Z.O.; Finkina, E.I.; Nurmukhamedova, E.K.; Balandin, S. V; Mineev, K.S.; Nadezhdin, K.D.; Yakimenko, Z.A.; Tagaev, A.A.; Temirov, Y. V; Arseniev, A.S.; et al. Isolation, Structure Elucidation, and Synergistic Antibacterial Activity of a Novel Two-Component Lantibiotic Lichenicidin from Bacillus Licheniformis VK21. Biochemistry 2010, 49, 6462–6472. [Google Scholar] [CrossRef]
- Prieto, M.L.; O’Sullivan, L.; Tan, S.P.; McLoughlin, P.; Hughes, H.; O’Connor, P.M.; Cotter, P.D.; Lawlor, P.G.; Gardiner, G.E. Assessment of the Bacteriocinogenic Potential of Marine Bacteria Reveals Lichenicidin Production by Seaweed-Derived Bacillus Spp. Mar. Drugs 2012, 10, 2280–2299. [Google Scholar] [CrossRef]
- Alvarez-Ordóñez, A.; Begley, M.; Clifford, T.; Deasy, T.; Considine, K.; O’Connor, P.; Paul Ross, R.; Hill, C. Investigation of the Antimicrobial Activity of Bacillus Licheniformis Strains Isolated from Retail Powdered Infant Milk Formulae. Probiotics Antimicrob. Proteins 2014, 6, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.C.; Goncalves, S.; Makowski, M.; Silva, I.C.; Caetano, T.; Schneider, T.; Mosker, E.; Süssmuth, R.D.; Santos, N.C.; Mendo, S.; et al. Insights into the Mode of Action of the Two-Peptide Lantibiotic Lichenicidin. Colloids Surfaces B Biointerfaces 2022, 211, 112308. [Google Scholar] [CrossRef] [PubMed]
- Panina, I.S.; Balandin, S. V.; Tsarev, A. V.; Chugunov, A.O.; Tagaev, A.A.; Finkina, E.I.; Antoshina, D. V.; Sheremeteva, E. V.; Paramonov, A.S.; Rickmeyer, J.; et al. Specific Binding of the α-Component of the Lantibiotic Lichenicidin to the Peptidoglycan Precursor Lipid II Predetermines Its Antimicrobial Activity. Int. J. Mol. Sci. 2023, 24. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mohsein, H.S.; Sasaki, T.; Tada, C.; Nakai, Y. Characterization and Partial Purification of a Bacteriocin-like Substance Produced by Thermophilic Bacillus Licheniformis H1 Isolated from Cow Manure Compost. Anim. Sci. J. 2011, 82, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Smitha, S.; Bhat, S.G. Thermostable Bacteriocin BL8 from Bacillus Licheniformis Isolated from Marine Sediment. J. Appl. Microbiol. 2013, 114, 688–694. [Google Scholar] [CrossRef]
- Characterization of a Bacteriocin Produced by Bacillus Licheniformis Cy2.Pdf.
- Esikova, T.Z.; Temirov, Y. V.; Sokolov, S.L.; Alakhov, Y.B. Secondary Antimicrobial Metabolites Produced by Thermophilic Bacillus Spp. Strains VK2 and VK21. Prikl. Biokhimiya i Mikrobiol. 2002, 38, 266–267. [Google Scholar]
- Berić, T.; Stanković, S.; Draganić, V.; Kojić, M.; Lozo, J.; Fira, D. Novel Antilisterial Bacteriocin Licheniocin 50.2 from Bacillus Licheniformis VPS50.2 Isolated from Soil Sample. J. Appl. Microbiol. 2014, 116, 502–510. [Google Scholar] [CrossRef]
- Mendo, S.; Faustino, N.A.; Sarmento, A.C.; Amado, F.; Moir, A.J.G. Purification and Characterization of a New Peptide Antibiotic Produced by a Thermotolerant Bacillus Licheniformis Strain. Biotechnol. Lett. 2004, 26, 115–119. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, R.L.; Kakkar, P. Bacillus Licheniformis IITRHR2: A Novel Source of Antimicrobial Proteinaceous Food Substance. J. Microbiol. Antimicrob. 2010, 2, 127–133. [Google Scholar]
- Guo, Y.; Yu, Z.; Xie, J.; Zhang, R. Identification of a New Bacillus Licheniformis Strain Producing a Bacteriocin-like Substance. J. Microbiol. 2012, 50, 452–458. [Google Scholar] [CrossRef]
- Nithya, V.; Halami, P.M. Antibacterial Peptides, Probiotic Properties and Biopreservative Efficacy of Native Bacillus Species Isolated from Different Food Sources. Probiotics Antimicrob. Proteins 2012, 4, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Vadakedath, N.; Halami, P.M. Characterization and Mode of Action of a Potent Bio-Preservative from Food-Grade Bacillus Licheniformis MCC 2016. Prep. Biochem. Biotechnol. 2019, 49, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Nithya, V.; Murthy, P.S.K.; Halami, P.M. Development and Application of Active Films for Food Packaging Using Antibacterial Peptide of Bacillus Licheniformis Me1. J. Appl. Microbiol. 2013, 115, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Callow, R.; Glover, R.; Hart, P.D.; Hills, G.M. Licheniformin, an Antibiotic Substance from Bacillus Licheniformis, Active against Mycobacterium Tuberculosis. Br. J. Exp. Pathol. 1947, 28, 418–440. [Google Scholar]
- Makumba, B.A.N.; Mwaura, F.B.; Mutitu, E.W. In Vitro and in Vivo Tests of Bacillus Licheniformis MGrP1 Antibiotics Culture Filtrate as a Potential Biocontrol Agent against Bean Anthracnose. East African J. Pure Appl. Sci. 2009, 2, 1–16. [Google Scholar]
- Lebbadi, M.; Galvez, A.; Maqueda, M.; Martinez-Bueno, M.; Valdivia, E. Fungicin M4 : A Narrow Spectrum Peptide Antibiotic from Bacillus Licheniformis M-4. J. Appl. Bacteriol. 1994, 77, 49–53. [Google Scholar] [CrossRef]
- Esmaeilishirazifard, E.; Dariush, A.; Moschos, S.A.; Keshavarz, T. A Novel Antifungal Property for the Bacillus Licheniformis ComX Pheromone and Its Possible Role in Inter-Kingdom Cross-Talk. Appl. Microbiol. Biotechnol. 2018, 102, 5197–5208. [Google Scholar] [CrossRef]
- Galvez, A.; Valdivia, E.; Gonzalez-segura, A.; Lebbadi, M.; Martinez-Bueno, M.; Maqueda, M. Purification, Characterization, and Lytic Activity against Naegleria Fowleri of Two Amoebicins Produced by Bacillus Licheniformis A12. Appl. Environ. Microbiol. 1993, 59, 1480–1486. [Google Scholar] [CrossRef]
- Lebbadi, M.; Gálvez, A.; Valdivia, E.; Martínez-Blueno, M.; Maqueda, M. Purification of Amoebolytic Substances from Bacillus Licheniformis M-4. Arch. Microbiol. 1994, 162, 98–102. [Google Scholar] [CrossRef]
- Galvez, A.; Maqueda, M.; Cordovilla, P.; Martinez-Bueno, M.; Lebbadi, M.; Valdivia, E. Characterization and Biological Activity against Naegleria Fowleri of Amoebicins Produced by Bacillus Licheniformis D-13. Antimicrob. Agents Chemother. 1994, 38, 1314–1319. [Google Scholar] [CrossRef]
- Yu, X.; Han, X.; Li, Y.; Sun, Z.; Dong, C. Isolation, Identification and Prokaryotic Expression of a Bacteriocin-like Substance from Bacillus Licheniformis. Sheng Wu Gong Cheng Xue Bao 2021, 37, 2453–2462. [Google Scholar] [CrossRef] [PubMed]
- Dusane, D.H.; Damare, S.R.; Nancharaiah, Y. V.; Ramaiah, N.; Venugopalan, V.P.; Kumar, A.R.; Zinjarde, S.S. Disruption of Microbial Biofilms by an Extracellular Protein Isolated from Epibiotic Tropical Marine Strain of Bacillus Licheniformis. PLoS One 2013, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Zheng, L.; Yang, X.; Liu, H.; Guo, J. Isolation and Characterization of an Antifungal Protein from Bacillus Licheniformis HS10. Biochem. Biophys. Res. Commun. 2014, 454, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.T.; Morris, P.C.; Hansen, R.; Jamieson, D.J.; Burgess, J.G.; Austin, B. Recovery and Characterization of a 30.7-KDa Protein from Bacillus Licheniformis Associated with Inhibitory Activity against Methicillin-Resistant Staphylococcus Aureus, Vancomycin-Resistant Enterococci, and Listeria Monocytogenes. Mar. Biotechnol. 2006, 8, 587–592. [Google Scholar] [CrossRef]
- Xiao, L.; Xie, C.C.; Cai, J.; Lin, Z.J.; Chen, Y.H. Identification and Characterization of a Chitinase-Produced Bacillus Showing Significant Antifungal Activity. Curr. Microbiol. 2009, 58, 528–533. [Google Scholar] [CrossRef]
- Toharisman, A.; Suhartono, M.T.; Spindler-Barth, M.; Hwang, J.K.; Pyun, Y.R. Purification and Characterization of a Thermostable Chitinase from Bacillus Licheniformis Mb-2. World J. Microbiol. Biotechnol. 2005, 21, 733–738. [Google Scholar] [CrossRef]
- Tantimavanich, S.; Pantuwatana, S.; Bhumiratana, A.; Panbangred, W. Multiple Chitinase Enzymes from a Single Gene of Bacillus Licheniformis TP-1. J. Ferment. Bioeng. 1998, 85, 259–265. [Google Scholar] [CrossRef]
- Slimene, I. Ben; Tabbene, O.; Gharbi, D.; Mnasri, B.; Schmitter, J.M.; Urdaci, M.C.; Limam, F. Isolation of a Chitinolytic Bacillus Licheniformis S213 Strain Exerting a Biological Control Against Phoma Medicaginis Infection. Appl. Biochem. Biotechnol. 2015, 175, 3494–3506. [Google Scholar] [CrossRef]
- Sasi, A.; Duraipandiyan, N.; Marikani, K.; Dhanasekaran, S.; Al-Dayan, N.; Venugopal, D. Identification and Characterization of a Newly Isolated Chitinase-Producing Strain Bacillus Licheniformis SSCL-10 for Chitin Degradation. Archaea 2020, 8844811. [Google Scholar] [CrossRef]
- Akeed, Y.; Atrash, F.; Naffaa, W. Partial Purification and Characterization of Chitinase Produced by Bacillus Licheniformis B307. Heliyon 2020, 6, e03858. [Google Scholar] [CrossRef]
- Cui, T.B.; Chai, H.Y.; Jiang, L.X. Isolation and Partial Characterization of an Antifungal Protein Produced by Bacillus Licheniformis BS-3. Molecules 2012, 17, 7336–7347. [Google Scholar] [CrossRef] [PubMed]
- Waghmare, S.R.; Randive, S.A.; Jadhav, D.B.; Nadaf, N.H.; Parulekar, R.S.; Sonawane, K.D. Production of Novel Antimicrobial Protein from Bacillus Licheniformis Strain JS and Its Application against Antibiotic-Resistant Pathogens. J. Proteins Proteomics 2019, 10, 17–22. [Google Scholar] [CrossRef]
- Korenblum, E.; Sebastián, G. V.; Paiva, M.M.; Coutinho, C.M.L.M.; Magalhães, F.C.M.; Peyton, B.M.; Seldin, L. Action of Antimicrobial Substances Produced by Different Oil Reservoir Bacillus Strains against Biofilm Formation. Appl. Microbiol. Biotechnol. 2008, 79, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Arbsuwan, N.; Sirithorn, P.; Daduang, S.; Dhiravisit, A.; Thammasirirak, S. Purification and Characterization of Antimicrobial Substances from Bacillus Licheniformis BFP011. Appl. Biochem. Microbiol. 2014, 50, 580–587. [Google Scholar] [CrossRef]
- Tareq, F.S.; Kim, J.H.; Lee, M.A.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Shin, H.J. Erratum: Ieodoglucomides A and B from a Marine-Derived Bacterium Bacillus Licheniformis (Organic Letters (1466)). Org. Lett. 2013, 15, 2071. [Google Scholar] [CrossRef]
- Tareq, F.S.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Shin, H.J. Ieodoglucomide C and Ieodoglycolipid, New Glycolipids from a Marine-Derived Bacterium Bacillus Licheniformis 09IDYM23. Lipids 2015, 50, 513–519. [Google Scholar] [CrossRef]
- Karim, R.; Mahmud, N.; Sharifuzzaman, M.; Islam, H. Production of Bacteriocin Like Substances as Antipathogenic Metabolites by Bacillus Licheniformis Isolated from Healthy Human Skin. Int. J. Sci. Basic Appl. Res. 2017, 36, 48–60. [Google Scholar]
- Karim, R.; Mahmud, N.; Hakim, M.A. Detection of Bacteriocin like Substances from Normal Skin Microflora as Alternative to Conventional Antibiotics. Asian J Agric Biol. 2019, 7, 531–537. [Google Scholar]
- Šurín Hudáková, N.; Kačírová, J.; Sondorová, M.; Šelianová, S.; Mucha, R.; Maďar, M. Inhibitory Effect of Bacillus Licheniformis Strains Isolated from Canine Oral Cavity. Life 2022, 12, 1–13. [Google Scholar] [CrossRef]
- Jebur, H.A.; Auda, J.M. Evalution of Antimicrobial Activity of Partial Purified Bacteriocin from Local Isolate of Bacillus Licheniforims HJ2020 MT192715.1. Iraqi J. Agric. Sci. 2020, 51, 1644–1652. [Google Scholar] [CrossRef]
- Finking, R.; Marahiel, M.A. Biosynthesis of Nonribosomal Peptides. Annu. Rev. Microbiol. 2004, 58, 453–488. [Google Scholar] [CrossRef] [PubMed]
- Süssmuth, R.D.; Mainz, A. Nonribosomal Peptide Synthesis — Principles and Prospects Reviews. Angew Chem Int Ed Engl. 2017, 56, 3770–3821. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.A.; Anker, H.; Meleney, F.L. BACITRACIN: A NEW ANTIBIOTIC PRODUCED BY A MEMBER OF THE B. SUBTILIS GROUP. Science (80-. ). 1945, 102, 376–377. [Google Scholar] [CrossRef]
- Logan, N.A. Bacillus Species of Medical and Veterinary Importance. J. Med. Microbiol. 1988, 25, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Tan, Z.; Wang, H.; Liu, W.; Miao, W. Antimicrobial Effect of Bacillus Licheniformis HN-5 Bacitracin A on Rice Pathogen Pantoea Ananatis. BioControl 2020, 66, 249–257. [Google Scholar] [CrossRef]
- Bernlohrl, R.W.; Novell, G.D. Some Characteristics of Bacitracin Producrion by Bacillus Licheniformis. Arch. Biochem. Biophys. 1960, 87, 232–238. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Q.; Xiao, T.; Zhu, Y.; Xiao, Y. Impact of Polymyxin Resistance on Virulence and Fitness among Clinically Important Gram-Negative Bacteria. Engineering 2022, 13, 178–185. [Google Scholar] [CrossRef]
- Cai, D.; Zhang, B.; Zhu, J.; Xu, H.; Liu, P.; Wang, Z.; Li, J.; Yang, Z.; Ma, X.; Chen, S. Enhanced Bacitracin Production by Systematically Engineering S-Adenosylmethionine Supply Modules in Bacillus Licheniformis. Front. Bioeng. Biotechnol. 2020, 8, 305. [Google Scholar] [CrossRef]
- Hills, G.M.; Belton, F.C.; Blatchley, E.D. AYFIVIN : PRODUCTION IN CHEMICALLY DEFINED MEDIA AND COMPARISON WITH LICHENIFORMIN. Br. J. Exp. Pathol. 1949, 30, 427–443. [Google Scholar]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus Subtilis Group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef]
- Toscano, W.A.; Storm, D.R. BACITRACIN. Pharmac. Ther. 1982, 16, 199–210. [Google Scholar] [CrossRef]
- Tran, C.; Cock, I.E.; Chen, X.; Feng, Y. Antimicrobial Bacillus : Metabolites and Their Mode of Action. Antibiot. MDPI 2022, 11, 88. [Google Scholar] [CrossRef]
- ZINTEL, H.A.; MA, R.A. The Absorption, Distribution, Excretion and Toxicity of Bacitracin In. Am. J. Med. Sci. 1949, 218, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Arrebola, Y.; Rivera, L.; Pedroso, A.; Mcguire, R.; Mario, E.; Tresanco, V.; Bergado, G.; Charli, J.; Sánchez, B.; Arrebola, Y.; et al. Bacitracin Is a Non-Competitive Inhibitor of Porcine M1 Family Neutral and Glutamyl Aminopeptidases. Nat. Prod. Res. 2019, 35, 2958–2962. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Sankar, S.; Neamati, N. Protein Disulfide Isomeras : A Promising Target for Cancer Therapy. Drug Discov. Today 2014, 19, 222–240. [Google Scholar] [CrossRef] [PubMed]
- Mendez, L.R.; Arrebola, Y.; Valdés-Tresanco, M.E.; Díaz-Guevara, L.; Bergado, G.; Sánchez, B.; Charli, J.; Alonso, I.P. Macromolecules Bestatin and Bacitracin Inhibit Porcine Kidney Cortex Dipeptidyl Peptidase IV Activity and Reduce Human Melanoma MeWo Cell Viability. Int. J. Biol. Macromol. 2020, 164, 2944–2952. [Google Scholar] [CrossRef] [PubMed]
- Ciesio, J.; Wrzesi, J.; Stokowa-so, K.; Nagaj, J.; Kasprowicz, A.; Leszek, B.; Szczepanik, W. Antibiotic Bacitracin Induces Hydrolytic Degradation of Nucleic Acids. Biochim. Biophys. Acta J. 2014, 1840, 1782–1789. [Google Scholar] [CrossRef]
- Wu, S.; Jia, S.; Sun, D.; Chen, M.; Chen, X.; Zhong, J.; Huan, L. Purification and Characterization of Two Novel Antimicrobial Peptides Subpeptin JM4-A and Subpeptin JM4-B Produced by Bacillus Subtilis. Curr. Microbiol. 2005, 51, 292–296. [Google Scholar] [CrossRef]
- Wu, S.; Zhong, J.; Huan, L. Genetics of Subpeptin JM4-A and Subpeptin JM4-B Production by Bacillus Subtilis JM4. Biochem. Biophys. Res. Commun. 2006, 344, 1147–1154. [Google Scholar] [CrossRef]
- Yan, L. cross-species induction of antimicrobial compounds in bacilli; Boyd, K.G.; Adams, D.R.; Burgess, J.G. Biofilm-Specific Cross-Species Induction of Antimicrobial Compounds in Bacilli. Appl. Environ. Microbiol. 2003, 69, 3719–3727. [Google Scholar] [CrossRef]
- Nijland, R.; Hall, M.J.; Grant Burgess, J. Dispersal of Biofilms by Secreted, Matrix Degrading, Bacterial DNase. PLoS One 2010, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mnif, I.; Ghribi, D. Microbial Derived Surface Active Compounds: Properties and Screening Concept. World J. Microbiol. Biotechnol. 2015, 31, 1001–1020. [Google Scholar] [CrossRef] [PubMed]
- Mnif, I.; Ghribi, D. Lipopeptides Biosurfactants: Mean Classes and New Insights for Industrial, Biomedical, and Environmental Applications. Biopolymers 2015, 104, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Ongena, M.; Jacques, P. Bacillus Lipopeptides: Versatile Weapons for Plant Disease Biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hu, J.; Zhang, S.; Zhou, P.; Zhao, X.; Xu, H.; Zhao, X.; Yaseen, M.; Lu, J.R. Molecular Mechanisms of Antibacterial and Antitumor Actions of Designed Surfactant-like Peptides. Biomaterials 2012, 33, 592–603. [Google Scholar] [CrossRef]
- Wang, D.; Richter, C.; Rühling, A.; Hüwel, S.; Glorius, F.; Galla, H.J. Anti-Tumor Activity and Cytotoxicity in Vitro of Novel 4,5-Dialkylimidazolium Surfactants. Biochem. Biophys. Res. Commun. 2015, 467, 1033–1038. [Google Scholar] [CrossRef]
- Bakr, S.A. Surface, Biological and Antitumor Activity of Some Thio- Based Cationic Surfactants. J. Am. Sci. 2017, 13, 106–120. [Google Scholar] [CrossRef]
- Ron, E.Z.; Rosenberg, E. Natural Roles of Biosurfactants. Environ. Microbiol. 2001, 3, 229–236. [Google Scholar] [CrossRef]
- Jenny, K.; Kiippeli, O.; Fiechter, A. Biosurfactants from Bacillus Licheniformis: Structural Analysis and Characterization. Appl Microbiol Biotechnol. 1991, 36, 5–13. [Google Scholar] [CrossRef]
- Yakimov, M.M.; Timmis, K.N.; Wray, V.; Fredrickson, H.L. Characterization of a New Lipopeptide Surfactant Produced by Thermotolerant and Halotolerant Subsurface Bacillus Licheniformis BAS50. Appl. Environ. Microbiol. 1995, 61, 1706–1713. [Google Scholar] [CrossRef]
- Eman Zakaria Gomaa Antimicrobial Activity of a Biosurfactant Produced by Bacillus Licheniformis Strain M104 Grown on Whey. African J. Microbiol. Res. 2012, 6. [CrossRef]
- Lin, L.; Chyau, C.; Hsu, W. Production and Properties of a Raw-Starch-Degrading Amylase from the Thermophilic and Alkaliphilic Bacillus Sp. TS-23. Biotechnol. Appl. Biochem. 1998, 28, 61–68. [Google Scholar]
- Bonmatin, J.; Laprévote, O.; Peypoux, F. Diversity Among Microbial Cyclic Lipopeptides: Iturins and Surfactins. Activity-Structure Relationships to Design New Bioactive Agents. Comb. Chem. High Throughput Screen. 2003, 6, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Baruzzi, F.; National, I.; Quintieri, L.; National, I.; Morea, M.; National, I.; Caputo, L. Antimicrobial Compounds Produced by Bacillus Spp . and Applications in Food. In Science against microbial pathogens: communicating current research and technological advances; 2011, F., Ed.; 2011.
- Li, Y.-M.; Namir, Y.L.; Haddad, N.I.A.; Yang, S.-Z.; Mu, B.-Z. Variants of Lipopeptides Produced by Bacillus Licheniformis HSN221 in Different Medium Components Evaluated by a Rapid Method ESI-MS. Int J Pept Res Ther 2008, 14, 229–235. [Google Scholar] [CrossRef]
- Price, N.P.J.; Rooney, A.P.; Swezey, J.L.; Perry, E.; Cohan, F.M. Mass Spectrometric Analysis of Lipopeptides from Bacillus Strains Isolated from Diverse Geographical Locations. FEMS Microbiol Lett. 2007, 271, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Arima, K.; Kakinuma, A.; Tamura, G. Surfactin, a Crystalline Peptidelipid Surfactant Produced by Bacillus Subtilis: Isolation, Characterization and Its Inhibition of Fibrin Clot Formation. Biochem Biophys Res Commun 1968, 31, 488–494. [Google Scholar] [CrossRef]
- Pecci, Y.; Rivardo, F.; Martinotti, M.G.; Allegrone, G. LC/ESI-MS/MS Characterisation of Lipopeptide Biosurfactants Produced by the Bacillus Licheniformis V9T14 Strain. J. Mass Spectrom. 2010, 45, 772–778. [Google Scholar] [CrossRef]
- He, L.; Chen, W. Synergetic Activity of Nisin with Cell-Free Supernatant of Bacillus Licheniformis ZJU12 against Food-Borne Bacteria. Food Res. Int. 2006, 39, 905–909. [Google Scholar] [CrossRef]
- Carrillo, C.; Teruel, J.A.; Aranda, F.J.; Ortiz, A. Molecular Mechanism of Membrane Permeabilization by the Peptide Antibiotic Surfactin. Biochim. Biophys. Acta 2003, 1611, 91–97. [Google Scholar] [CrossRef]
- Peypoux, F.; Bonmatin, J.M.; Wallach, J. Recent Trends in the Biochemistry of Surfactin. Appl Microbiol Biotechnol. 1999, 51, 553–563. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Mu, B. The Surfactin and Lichenysin Isoforms Produced by Bacillus Licheniformis HSN 221. Anal. Lett. 2010, 43, 929–940. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Mu, B. Structural Characterization of Lipopeptide Methyl Esters Produced by Bacillus Licheniformis HSN 221. Chem. Biodivers. 2010, 7, 2065–2075. [Google Scholar] [CrossRef]
- Tendulkar, S.R.; Saikumari, Y.K.; Patel, V.; Raghotama, S.; Munshi, T.K.; Balaram, P.; Chattoo, B.B. Isolation, Purification and Characterization of an Antifungal Molecule Produced by Bacillus Licheniformis BC98, and Its Effect on Phytopathogen Magnaporthe Grisea. J. Appl. Microbiol. 2007, 103, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, S.A.; Mou, H.; Ma, Y.; Li, M.; Hu, X. Characterization of Lipopeptide Biosurfactants Produced by Bacillus Licheniformis MB01 from Marine Sediments. Front. Microbiol. 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rivardo, F.; Turner, R.J.; Allegrone, G.; Ceri, H.; Martinotti, M.G. Anti-Adhesion Activity of Two Biosurfactants Produced by Bacillus Spp. Prevents Biofilm Formation of Human Bacterial Pathogens. Appl. Microbiol. Biotechnol. 2009, 83, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Díaz, P.R.; Torres, M.J.; Petroselli, G.; Erra-Balsells, R.; Audisio, M.C. Antibacterial Activity of Bacillus Licheniformis B6 against Viability and Biofilm Formation of Foodborne Pathogens of Health Importance. World J. Microbiol. Biotechnol. 2022, 38. [Google Scholar] [CrossRef]
- Horng, Y.B.; Yu, Y.H.; Dybus, A.; Hsiao, F.S.H.; Cheng, Y.H. Antibacterial Activity of Bacillus Species-Derived Surfactin on Brachyspira Hyodysenteriae and Clostridium Perfringens. AMB Express 2019, 9. [Google Scholar] [CrossRef]
- Lin, E.R.; Cheng, Y.H.; Hsiao, F.S.H.; Proskura, W.S.; Dybus, A.; Yu, Y.H. Optimization of Solid-State Fermentation Conditions of Bacillus Licheniformis and Its Effects on Clostridium Perfringens-Induced Necrotic Enteritis in Broilers. Rev. Bras. Zootec. 2019, 48. [Google Scholar] [CrossRef]
- Cheng, Y.; Horng, Y.; Dybus, A.; Yu, Y. Bacillus Licheniformis -Fermented Products Improve Growth Performance and Intestinal Gut Morphology in Broilers under Clostridium Perfringens Challenge. J Poult Sci. 2021, 58, 30–39. [Google Scholar] [CrossRef]
- Horng, Y.B.; Yu, Y.H.; Dybus, A.; Hsiao, F.S.-H.; Cheng, Y.-H. Antibacterial Activity of Bacillus Species - Derived Surfactin on Brachyspira Hyodysenteriae and Clostridium Perfringens. AMB Express 2019, 9, 188. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, C.; Chen, W.; Hua, K.; Liu, J.; Cheng, Y. Effectiveness of Bacillus Licheniformis -Fermented Products and Their Derived Antimicrobial Lipopeptides in Controlling Coccidiosis in Broilers. Animals 2021, 11, 3576. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, S.; Gilbert, J.N.; Griffin, W.M. Isolation and Characterization of a Surfactant Produced by Bacillus Licheniformis 86. J. Ind. Microbiol. 1990, 6, 243–248. [Google Scholar] [CrossRef]
- Horowitz, S.; Griffin, W.M. Structural Analysis of Bacillus Licheniformis 86 Surfactant. J. Ind. Microbiol. 1991, 7, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Thaniyavarn, J.; Roongsawang, N.; Kameyama, T.; Haruki, M.; Imanaka, T.; Morikawa, M.; Kanaya, S. Production and Characterization of Biosurfactants from Bacillus Licheniformis F2.2. Biosci. Biotechnol. Biochem. 2003, 67, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Yeak, K.Y.C.; Perko, M.; Staring, G.; Fernandez-Ciruelos, B.M.; Wells, J.M.; Abee, T.; Wells-Bennik, M.H.J. Lichenysin Production by Bacillus Licheniformis Food Isolates and Toxicity to Human Cells. Front. Microbiol. 2022, 13, 1–16. [Google Scholar] [CrossRef]
- Yakimov, M.M.; Timmis, K.N.; Wray, V.; Fredrickson, H.L. Characterization of a New Lipopeptide Surfactant Produced by Thermotolerant and Halotolerant Subsurface Bacillus Licheniformis BAS50. Appl. Environ. Microbiol. 1995, 61, 1706–1713. [Google Scholar] [CrossRef]
- Grangemard, I.; Wallach, J.; Maget-Dana, R.; Peypoux, F. Lichenysin: A More Efficient Cation Chelator Than Surfactin. Appl. Biochem. Biotechnol. 2001, 90, 199–210. [Google Scholar] [CrossRef]
- Joshi, S.J.; Geetha, S.J.; Desai, A.J. Characterization and Application of Biosurfactant Produced by Bacillus Licheniformis R2. Appl. Biochem. Biotechnol. 2015, 177. [Google Scholar] [CrossRef]
- Habe, H.; Taira, T.; Imura, T. Surface Activity and Ca 2 + -Dependent Aggregation Property of Lichenysin Produced by Bacillus Licheniformis NBRC 104464. J. Oleo Sci. 2018, 67, 1307–1313. [Google Scholar] [CrossRef]
- Konz, D.; Doekel, S.; Marahiel, M.A. Molecular and Biochemical Characterization of the Protein Template Controlling Biosynthesis of the Lipopeptide Lichenysin. J. Bacteriol. 1999, 181, 133–140. [Google Scholar] [CrossRef]
- Grangemard, I.; Bonmatin, J.M.; Bernillon, J.; Das, B.C.; Peypoux, F. Lichenysins G, a Novel Family of Lipopeptide Biosurfactants from Bacillus Licheniformis IM 1307: Production, Isolation and Structural Evaluation by NMR and Mass Spectrometry. J. Antibiot. (Tokyo). 1999, 52, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Nerurkar, A.S. Structural and Molecular Characteristics of Lichenysin and Its Relationship with Surface Activity. In Biosurfactants; 2010; pp. 304–315.
- Folmsbee, M.; Duncan, K.; Han, S.O.; Nagle, D.; Jennings, E.; McInerney, M. Re-Identification of the Halotolerant, Biosurfactant-Producing Bacillus Licheniformis Strain JF-2 as Bacillus Mojavensis Strain JF-2. Syst. Appl. Microbiol. 2006, 29, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.L.; Cladera-Olivera, F.; dos Santos, J.; Brandelli, A. Purification and Characterization of a Peptide from Bacillus Licheniformis Showing Dual Antimicrobial and Emulsifying Activities. Food Res. Int. 2009, 42, 63–68. [Google Scholar] [CrossRef]
- Biria, D.; Maghsoudi, E.; Roostaazad, R.; Dadafarin, H.; Lotfi, A.S.; Amoozegar, M.A. Purification and Characterization of a Novel Biosurfactant Produced by Bacillus Purification and Characterization of a Novel Biosurfactant Produced by Bacillus Licheniformis MS3. World J. Microbiol. Biotechnol. 2010, 26, 871–878. [Google Scholar] [CrossRef]
- Hathout, Y.; Ho, Y.; Ryzhov, V.; Demirev, P.; Fenselau, C. Kurstakins : A New Class of Lipopeptides Isolated from Bacillus Thuringiensis. J. Nat. Prod. 2000, 63, 1492–1496. [Google Scholar] [CrossRef]
- Hu, L. Bin; Shi, Z.Q.; Zhang, T.; Yang, Z.M. Fengycin Antibiotics Isolated from B-FS01culture Inhibit the Growth of Fusarium Moniliforme Sheldon ATCC 38932. FEMS Microbiol Lett. 2007, 272, 91–98. [Google Scholar] [CrossRef]
- Torres, M.J.; Brandan, C.P.; Petroselli, G.; Erra-balsells, R.; Audisio, M.C. Antagonistic Effects of Bacillus Subtilis Subsp. Subtilis and B. Amyloliquefaciens against Macrophomina Phaseolina : SEM Study of Fungal Changes and UV-MALDI-TOF MS Analysis of Their Bioactive Compounds. Microbiol. Res. 2016, 182, 31–39. [Google Scholar] [CrossRef]
- Lin, L.-Z.; Zheng, Q.-W.; Wei, T.; Zhang, Z.-Q.; Zhao, C.-F.; Zhong, H.; Xu, Q.-Y.; Lin, J.-F.; Guo, L.-Q. Isolation and Characterization of Fengycins Produced by Bacillus Amyloliquefaciens JFL21 and Its Broad-Spectrum Antimicrobial Potential Against Multidrug-Resistant Foodborne Pathogens. Front. Microbiol. 2020, 11, 579621. [Google Scholar] [CrossRef]
- Deleu, M.; Paquot, M.; Nylander, T. Fengycin Interaction with Lipid Monolayers at the Air – Aqueous Interface — Implications for the Effect of Fengycin on Biological Membranes. J. ofColloid Interface Sci. 2005, 283, 358–365. [Google Scholar] [CrossRef]
- Deleu, M.; Paquot, M.; Nylander, T. Effect of Fengycin, a Lipopeptide Produced by Bacillus Subtilis, on Model Biomembranes. Biophys. J. 2008, 94, 2667–2679. [Google Scholar] [CrossRef]
- Rivardo, F.; Giovanna, M.; Joseph, R.; Ceri, H. Synergistic Effect of Lipopeptide Biosurfactant with Antibiotics against Escherichia Coli CFT073 Biofilm. Int. J. Antimicrob. Agents 2011, 37, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Moryl, M.; Spętana, M.; Dziubek, K.; Paraszkiewicz, K.; Różalska, S.; Płaza, G.A.; Różalski, A. Antimicrobial, Antiadhesive and Antibiofilm Potential of Lipopeptides Synthesised by Bacillus Subtilis, on Uropathogenic Bacteria. Acta Biochim Pol. 2015, 62, 725–732. [Google Scholar] [CrossRef]
- Martinotti, G.; Vanderhye, P.C. Biosurfactant Composition Produced by a New Bacillus Licheniformis Strain, Uses and Products Thereof.
- Batrakov, S.G.; Rodionova, T.A.; Esipov, S.E.; Polyakov, N.B.; Sheichenko, V.I.; Shekhovtsova, N. V.; Lukin, S.M.; Panikov, N.S.; Nikolaev, Y.A. A Novel Lipopeptide, an Inhibitor of Bacterial Adhesion, from the Thermophilic and Halotolerant Subsurface Bacillus Licheniformis Strain 603. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 2003, 1634, 107–115. [Google Scholar] [CrossRef]
- Oita, S.; Horita, M.; Yanagi, S.O. Purification and Properties of a New Chitin-Binding Antifungal CB-1 from Bacillus Licheniformis. Biosci. Biotechnol. Biochem. 1996, 60, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Lawrance, A.; Balakrishnan, M.; Joseph, T.C.; Palaiya Sukumaran, D.; Nambali Valsalan, V.; Gopal, D.; Ramalingam, K. Functional and Molecular Characterization of a Lipopeptide Surfactant from the Marine Sponge-Associated Eubacteria Bacillus Licheniformis NIOT-AMKV06 of Andaman and Nicobar Islands, India. Mar. Pollut. Bull. 2014, 82, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.S.; Ryu, E.C.; Sukumaran, V.; Park, S.C. Antioxidant, Antibacterial, and Anti-Adhesive Activities of Biosurfactants Isolated from Bacillus Strains. Microb. Pathog. 2019, 132, 66–72. [Google Scholar] [CrossRef]
- Giri, S.S.; Sen, S.S.; Jun, J.W.; Sukumaran, V.; Park, S.C. Role of Bacillus Licheniformis VS16-Derived Biosurfactant in Mediating Immune Responses in Carp Rohu and Its Application to the Food Industry. Front. Microbiol. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Betzel, C.; Bellemann, M.; Pal, G.P.; Bajorath, J.; Saenger, W.; Wilson, K.S. X-ray and Model-building Studies on the Specificity of the Active Site of Proteinase K. Proteins Struct. Funct. Bioinforma. 1988, 4, 157–164. [Google Scholar] [CrossRef]
- Angelin, J.; Kavitha, M. Exopolysaccharides from Probiotic Bacteria and Their Health Potential. Int. J. Biol. Macromol. 2020, 162, 853–865. [Google Scholar] [CrossRef]
- Abdalla, A.K.; Ayyash, M.M.; Olaimat, A.N.; Osaili, T.M. Exopolysaccharides as Antimicrobial Agents : Mechanism and Spectrum of Activity. Front. Microbiol. 2021, 12, 664395. [Google Scholar] [CrossRef]
- Petrova, P.; Arsov, A.; Ivanov, I.; Tsigoriyna, L.; Petrov, K. New Exopolysaccharides Produced by Bacillus Licheniformis 24 Display Substrate-Dependent Content and Antioxidant Activity. Microorganisms 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Hertadi, R.; Permatasari, N.U.; Ratnaningsih, E. Box-Wilson Design for Optimization of in Vitro Levan Production and Levan Application as Antioxidant and Antibacterial Agents. Iran. Biomed. J. 2021, 25, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Nakapong, S.; Pichyangkura, R.; Ito, K.; Iizuka, M.; Pongsawasdi, P. High Expression Level of Levansucrase from Bacillus Licheniformis RN-01 and Synthesis of Levan Nanoparticles. Int. J. Biol. Macromol. 2013, 54, 30–36. [Google Scholar] [CrossRef]
- van Dyk, J.S.; Kee, N.L.A.; Frost, C.L.; Pletschke, B.I. EXTRACELLULAR POLYSACCHARIDE PRODUCTION IN BACILLUS LICHENIFORMIS SVD1 AND ITS IMMUNOMODULATORY EFFECT. BioResources 2012, 7, 4976–4993. [Google Scholar] [CrossRef]
- Abinaya, M.; Vaseeharan, B.; Divya, M.; Vijayakumar, S.; Govindarajan, M.; Alharbi, N.S.; Khaled, J.M.; Al-anbr, M.N.; Benelli, G. Structural Characterization of Bacillus Licheniformis Dahb1 Exopolysaccharide—Antimicrobial Potential and Larvicidal Activity on Malaria and Zika Virus Mosquito Vectors. Environ. Sci. Pollut. Res. 2018, 25. [Google Scholar] [CrossRef]
- Spanò, A.; Laganà, P.; Visalli, G.; Maugeri, T.L.; Gugliandolo, C. In Vitro Antibiofilm Activity of an Exopolysaccharide from the Marine Thermophilic Bacillus Licheniformis T14. Curr. Microbiol. 2016, 72, 518–528. [Google Scholar] [CrossRef]
- Sayem, S.M.A.; Manzo, E.; Ciavatta, L.; Tramice, A.; Cordone, A.; Zanfardino, A.; De Felice, M.; Varcamonti, M. Anti-Biofilm Activity of an Exopolysaccharide from a Sponge-Associated Strain of Bacillus Licheniformis. Microb. Cell Fact. 2011, 10, 1–12. [Google Scholar] [CrossRef]
- Lambert, P.A. Cellular Impermeability and Uptake of Biocides and Antibiotics in Gram-Positive Bacteria and Mycobacteria. J. Appl. Microbiol. Symp. Suppl. 2002, 92, 46S–54S. [Google Scholar] [CrossRef]
- Global Tuberculosis Report 2020; World Health Organization, 2020; ISBN 9789240013131.
- Zhang, Y. Persistent and Dormant Tubercle Bacilli and Latent Tuberculosis. Front. Biosci. 2004, 9, 1136–1156. [Google Scholar] [CrossRef]
- Patra, K.; Batabyal, S.; Mandal, K.; Ghose, D.; Sarkar, J. Tuberculosis and COVID-19: A Combined Global Threat to Human Civilization. Clin. Epidemiol. Glob. Heal. 2022, 15, 101031. [Google Scholar] [CrossRef]
- Mahapatra, S.; Yagi, T.; Belisle, J.T.; Espinosa, B.J.; Hill, P.J.; McNeil, M.R.; Brennan, P.J.; Crick, D.C. Mycobacterial Lipid II Is Composed of a Complex Mixture of Modified Muramyl and Peptide Moieties Linked to Decaprenyl Phosphate. J. Bacteriol. 2005, 187, 2747–2757. [Google Scholar] [CrossRef]
- Karczewski, J.; Krasucki, S.P.; Asare-Okai, P.N.; Diehl, C.; Friedman, A.; Brown, C.M.; Maezato, Y.; Streatfield, S.J. Isolation, Characterization and Structure Elucidation of a Novel Lantibiotic From Paenibacillus Sp. Front. Microbiol. 2020, 11, 598789. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.; Draper, L.A.; Connor, P.M.O.; Coffey, A.; Hill, C.; Ross, R.P.; Cotter, P.D.; Mahony, J.O. Comparison of the Activities of the Lantibiotics Nisin and Lacticin 3147 against Clinically Significant Mycobacteria. Int. J. Antimicrob. Agents 2010, 36, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Knights, V.; Tompsett, R. Relationship of Type of Growth of M. Tuberculosis to Antituberculous Activity of Subtilin. Exp. Biol. Med. 1950, 73, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Callow, R.; Hart, P. Antibiotic Material from Bacillus Licheniformis (Weigmann, Emend. Gibson) Active against Species of Mycobacteria. Nature 1946, 157, 334–335. [Google Scholar] [CrossRef]
- Keppie, J.; Ross, J.M.; Day, J.O.R. The Toxicity and Pharmacology of Licheniformin A5. Br. J. Pharmacol. 1950, 5, 474–484. [Google Scholar] [CrossRef]
- Rieber, M.; Imaeda, T.; Cesari, I.M. Bacitracin Action on Membranes of Mycobacteria. J. Gen. Microbiol. 1969, 55, 155–159. [Google Scholar] [CrossRef]
- Vértesy, L. Proticin, a New Phosphorus-Containing Antibiotic. II. Characterization and Chemical Studies. J Antibiot 1972, 25, 4–10. [Google Scholar] [CrossRef]
- Sosunov, V.; Mischenko, V.; Eruslanov, B.; Svetoch, E.; Shakina, Y.; Stern, N.; Majorov, K.; Sorokoumova, G.; Selishcheva, A.; Apt, A. Antimycobacterial Activity of Bacteriocins and Their Complexes with Liposomes. J. Antimicrob. Chemother. 2007, 59, 919–925. [Google Scholar] [CrossRef]
- Kaur, T.; Sharma, P.; Gupta, G.K.; Ntie-Kang, F.; Kumar, D. TREATMENT OF TUBERCULOSIS BY NATURAL DRUGS : A REVIEW. Plant Arch. 2019, 19, 2168–2176. [Google Scholar]
- Almatar, M.; Makky, E.A.; Yakıcı, G.; Var, I.; Kayar, B.; Köksal, F. Antimicrobial Peptides as an Alternative to Anti-Tuberculosis Drugs. Pharmacol. Res. 2018, 128, 288–305. [Google Scholar] [CrossRef]
- Silva, J.P.; Appelberg, R.; Miguel, F.M. Antimicrobial Peptides as Novel Anti-Tuberculosis Therapeutics. Biotechnol. Adv. 2016, 34, 924–940. [Google Scholar] [CrossRef]
- Abedinzadeh, M.; Gaeini, M.; Sardari, S. Natural Antimicrobial Peptides against Mycobacterium Tuberculosis. J. Antimicrob. Chemother. 2015, 70, 1285–1289. [Google Scholar] [CrossRef]
- Giuliani, A.; Pirri, G.; Nicoletto, S.F. Antimicrobial Peptides: An Overview of a Promising Class of Therapeutics; 2007; Vol. 2; ISBN 1153500700105.
- Ebenhan, T.; Gheysens, O.; Kruger, H.G.; Zeevaart, J.R.; Sathekge, M.M. Antimicrobial Peptides : Their Role as Infection-Selective Tracers for Molecular Imaging. Biomed Res. Int. 2014, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Gallo, R.L. AMPed up Immunity : How Antimicrobial Peptides Have Multiple Roles in Immune Defense. Trends Immunol. 2009, 30, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, K. Control of Cell Selectivity of Antimicrobial Peptides. Biochim. Biophys. Acta - Biomembr. 2009, 1788, 1687–1692. [Google Scholar] [CrossRef] [PubMed]
- Danquah, C.A.; Minkah, P.A.B.; Junior, I.O.D.; Amankwah, K.B.; Somuah, S.O. Antimicrobial Compounds from Microorganisms. Antibiotics 2022, 11, 285. [Google Scholar] [CrossRef]
- Carroll, J.; Field, D.; Connor, P.M.O.; Cotter, P.D.; Coffey, A.; Hill, C.; Mahony, J.O. Gene Encoded Antimicrobial Peptides, a Template for the Design of Novel Anti-Mycobacterial Drugs. Bioeng. Bugs 2010, 1, 408–412. [Google Scholar] [CrossRef]
- Cotter, P.D. Bioengineering: A Bacteriocin Perspective. Bioengineered 2015, 3, 313–319. [Google Scholar] [CrossRef]
- Liu, W.; Hansen, N. Enhancement of the Chemical and Antimicrobial Properties of Subtilin by Site-Directed Mutagenesis. J. Biol. Chem. 1992, 267, 25078–25085. [Google Scholar] [CrossRef]
- Moutinho, L.F.; Moura, F.R.; Silvestre, R.C.; Romão-Dumaresq, A.S. Microbial Biosurfactants: A Broad Analysis of Properties, Applications, Biosynthesis and Techno-Economical Assessment of Rhamnolipid Production. Biotechnol. Prog. 2020, 37, e3093. [Google Scholar] [CrossRef] [PubMed]
- Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front. Microbiol. 2017, 8, 1205. [Google Scholar] [CrossRef] [PubMed]
| 1.Bacteriocins | ||||
|---|---|---|---|---|
| Class I - heat stable lanthionine-containing peptides smaller than 5 kD | ||||
| Substance(s) Specific/Unspecific Name | Producing Strain | Molecular Mass | Activity Assay | Reference |
| Sublichenin | B. licheniformis MCC 2512 | 3348 kDa |
Kocuria rhizophila ATCC 9341 Pediococcus lolii MCC 2972 Enterococcus durans B20G1 Enterococcus faecalis MF3 E. faecalis MM2 E. faecalis CHL1 E. faecalis CHL3 E. faecalis CHL E. faecalis MCC 3063 E. faecalis MCC 2773 Enterococcus faecium MCC 2763 Entercoccus avium CS32 Enterococcus cecorum 1-40a Lactobacillus plantarum MCC 2774 Listeria monocytogenes Staphylococcus aureus Staphylococcus aureus (MRSA) Escherichia coli Klebsiella pneumoniae |
[53] |
| Lichenicidin |
Bacillus licheniformis DSM 13 (also produced by ATCC 14580, VK21, WIT 562, 564 and 566 strains, IMF20, IMF66, IMF69 and IMF80) |
3 kDa and 3,25 kDa |
Bacillus cereus DSM 31 Bacillus halodurans DSM 18197 Bacillus megaterium KM (ATCC 13632) Bacillus subtilis 168 (DSM 402) Bacillus spec. HIL Y-85,54728 Enterococcus faecium BM 4147–1 Enterococcus faecium L4001 Lactobacillus sake 790 E2 Lactococcus lactis NCTC 497 Micrococcus luteus DSM 1790 Micrococcus luteus ATCC 4698 Staphylococcus aureus ATCC 33592 (MRSA) S. aureus ATCC 29213 (MSSA) S. aureus 1450/94 S. aureus Cowan (ATCC 12598) S. aureus Newman (NCTC 8178) S. aureus SG511 S. aureus Wood 46 (ATCC 10832) Staphylococcus carnosus TM300 Staphylococcus gallinarum Tu¨ 3928 Staphylococcus saprophyticus DSM 20229 Staphylococcus simulans 22 S. aureus LT440/09 (community acquired MRSA) S. aureus LT420/09 (MRSA) S. aureus LT819/09 (MRSA, Rhine-Hessen epidemic strain) Enterococcus faecalis Streptococcus agalactiae |
[56,58,59,61,219] |
| class II – heat stable non-lanthionine peptides smaller than 10 kDa | ||||
| Peptides active only against Gram-positive microorganisms | ||||
| Bacillocin 490 | B. licheniformis 490/5 | 2 kDa |
Bacillus licheniformis 5 A2 Listeria innocua our isolates Staphylococcus epidermidis our isolates Bacillus anthracis 7700 Bacillus subtilis AZ56 Bacillus cereus 6A2 Bacillus stearothermophilus 9A19 Bacillus smithii PRO/S |
[28] |
| bacteriocin-like substance | Bacillus licheniformis H1 | 3,5 kDa |
E. faecalis ATCC 19433 L. monocytogenes ATCC 19111 B. cereus ATCC 14579, B. subtilis ATCC 6633 Lactobacillus species ATCC 33198 Lactobacillus fermentum P. fluoresce |
[64] |
| Bacteriocin-like antibacterial peptides | B. licheniformis AnBa9 | <10 kDa |
Staphylococcus aureus GCS1 Bacillus cereus GCS2 Staphylococcus epidermidis GCS4 Kurthia gibsonii GCS6 Micrococcus luteus GCS7 Streptococcus mitis GCS9 Bacillus subtilis B-4219 L. lactis B-1821 Staphylococcus epidermidis B-4268 Bacilus smithii NRS-173 Lactobacillus acidophilus B-4495 Micrococcus luteus B-287 Pediococcus acidilactici B-14958 Leuconostoc mesenteriodes |
[35] |
| Lichenin | B. licheniformis 26L10/3RA | 1400 Da |
Streptococcus bovis SB3 Streptococcus bovis 26 Ruminococcus avefaciens OF-2 Ruminococcus avefaciens C94 Ruminococcus albus B119 Ruminococcus albus A-6 Butyrivibrio fibrisolvens OR 12 Eubacterium ruminantium GA-195 Lactobacillus casei ED-108 |
[32] |
| Bacteriocin BL8 | B. licheniformis BTHT8 | 1,4 kDa |
Clostridium perfringens Staphylococcus aureus Bacillus cereus Bacillus circulans Bacillus pumilus |
[65] |
| BSCY2 | B.licheniformis CY2 | 6500 Da | B.subtilis 6633 | [66] |
| Secondary Antimicrobial Metabolites VK1, VK2 | B. licheniformis VK2 and VK21 |
Pseudomonas putida I-97 Staphylococcus sp. SA1 Rhodococcus sp. SS1 Bacillus megaterium VKM41 Micrococcus luteus E509 |
[67] | |
|
Licheniocin 50.2 |
B. licheniformis VPS50.2 | 3,25 KDa |
Bacillus subtilis ATCC 6633 B. subtilis 168 B. subtilis W23 Enterococcus faecalis ATCC 29212 Enterococcus saccharolyticus ATCC 43076 Lactobacillus plantarum LMG92088 Lactobacillus zeae Lactococcus lactis IL1403 Listeria monocytogenes ATCC 19111 Micrococcus luteus ATCC 7468 Staphylococcus aureus ATCC 25923 Staph. aureus ATCC 33591 Streptococcus agalactiae ATCC 12386 |
[68] |
| A89 | Bacillus licheniformis I89 | 3249 Da |
Bacillus subtilis ATCC 14593 Micrococcus luteus ATCC 9341 Staphylococcus aureus ATCC 6538 Staphylococcus aureus (hospital isolate) |
[69] |
| Peptides active against both Gram-positive and Gram-negative microorganisms | ||||
| Bacteriocin like inhibitory substance (BLIS) | Bacillus licheniformis IITRHR2 ( FJ447354) | 1,2 kDa |
Bacillus cereus MTCC1305 Bacillus subtilis MTCC736 Bifidobacterium bifidum NCDC235 Enterococcus faecalis MTCC439 Enterococcus faecalis NCDC114 Lactobacillus casei NCDC017 Lactobacillus lactis NCDC094 Leuconostoc mesenteroides NCDC219 Listeria monocytogenes MTCC387 Listeria monocytogenes MTCC1143 Pediococcus pentosaceus NCDC273 Staphylococcus thermophilus NCDC074 Escherichia coli MTCC1687 Pseudomonas aeruginosa MTCC9027 Shigella flexneri MTCC1457 Shigella sonnei MTCC2957 |
[70] |
| Bacteriocin MKU3 | B. licheniformis MKU3 | 1,5 kDa |
Bacillus subtilis B4219 Bacillus smithii NRS173 Lactobacillus acidophilus B4495 Lactobacillus fermentum B1840 Lactobacillus lactis B1821 Staphylococcus epidermidis B4268 Micrococcus luteus B287 Leuconostoc mesenteriodes B1118 Pediococcus acidilactici B14958 Staphylococcus aureus GCS1 Bacillus cereus GCS2 Bacillus cereus GCS3 Staphylococcus epidermidis GCS4 Staphylococcus epidermidis GCS5 Kurthia gibsonii GCS6 Micrococcus luteus GCS7 Bacillus subtilis GCS8 Streptococcus fecalis GCS9 Bacillus cereus GCS10 Bacillus cereus GCS11 Lactobacillus acidophilus GCS12 Escherichia coli DH5a Candida albicans MTCC 183 Aspergillus niger MKU1 Aspergillus fischeri FXN1 Aspergillus fumigatus MKU3 |
[34] |
| Bacteriocin-like substance | B. licheniformis B116 | 4 kDa |
B. cereus CGMCC1.230 Listeria monocytogenes CVCC1599 Micrococcus luteus CMCC28001 S. aureus CMCC26003 S. aureus CICC21601 S. aureus CVCC1885 Streptococcus equi subsp. zooepidemicus CVCC1903 E. coli CVCC245 E. coli CICC21525 E. coli CVCC195 E. coli CVCC249 S. enterica ser. Pullorum CVCC79301 S. enterica ser. Typhimurium CVCC541d |
[71] |
| ppABP | Bacillus licheniformis Me1 ( MCC 2016 ) | Between 3 and 3,5 kDa |
L. innocua FB 21 L. murrayi FB 69 M. luteus ATCC 9341 L. monocytogenes Scott A Staph. aureus FRI 722 B. cereus F 4433 Salm. typhimurium MTCC 1251, FB 231 Salm. paratyphi FB 254 E. coli CFR 02 Y. enterocolitica MTCC 859 K. rhizophila ATCC 9341 Shigella flexineri (clinical isolate) |
[72,73,74] |
| Licheniformins A,B,C | 3800-4800 Da |
Mycobacterium phlei E. coli Staphillococcus aureus |
[37,75] | |
| Antimicrobial compound | Bacillus licheniformis MCC2514 | o6.4 kDa |
M. luteus ATCC9341 S. aureus FRI722 Klebsiella sp. A. hydrophila NRRL B445 |
[31] |
| Peptides active againstfungal pathogens | ||||
| Bacteriocin-like peptides | Bacillus licheniformis ZJU12 | 3 kDa |
Bacillius subtilis (bean curd isolate) Enterococcus faecium (clinical isolate) Micrococcus flavus (bean curd isolate) Staphylococcus aureus ATCC 25923 Staphylococcus aureus (clinical isolate, MRSA) Staphylococcus epidermidis (clinical isolate) Xanthomonas oryzae pv.oryzae Zhe 173 Alternaria brassicae (cabbage isolate) Fusarium oxysporum (cotton isolate) Guignardia sp. (shihu isolate) Pyricularia grisea (rice isolate) Rhizoctonia solani (rice isolate) |
[33] |
| Antibiotics culture filtrate | Bacillus licheniformis strain MGrP1 | Colletotrichum lindemuthianum C. kahawae Fusarium oxysporum f.sp. phaseoli Alternaria solani |
[76] | |
| Fungicin M-4 | Bacillus licheniformis M-4 | 3600 Da |
Microsporum canis CECT 2797 Mucor mucedo CECT 2653 Mucor plumbeus CCM F 443 Sporothrix schenckii CECT 2799 Bacillus megaterium Corynebacterium glutamicum CECT 78 |
[220] |
| Peptide A12-C | B. licheniformis A12 | 770 Da |
Microsporum canis CECT 2797 Mucor mucedo CECT 2653 M. plumbeus CCM F 443 Sporothrix schenckii CECT 2799 Trychophyton mentagrophytes CECT 2793 Bacillus megaterium Corynebacterium glutamicum CECT 78 C. glutamicum CECT 80 Sarcina sp. Mycobacterium phlei |
[46] |
| QSM (ComX pheromone) | B. licheniformis NCIMB 8874 | ND | A. flavus NRL 3375 and ESP 15 | [78] |
| Amoebolytic substances from B. licheniformis | ||||
| Peptide A12-AиA12-B | Bacillus licheniformis A12 | 1,430-1,600 Da |
Acanthamoeba sp. strain Gr-1 N. fowlen S-3 (= ATCC 30809) N. fowlen HB-1 (= ATCC 30174) N. lovaniensis Aq/9/1/45D N. gruberi CCAP 1516/le Candida albicans CECT 1394 Cryptococcus neoformans CECT Saccharomyces heterogenicus Aspergillus niger CECT 2089 Microsporum canis CECT 2797 Mucor mucedo CECI 2653 Mucorplumbeus CCM F443 Sporothrix schenchii CECT 2799 Ttychophyton mentagrophytes CECT 2793 B. megaterium Cotynebactenum glutamicum CECT 78 Sarcina sp. |
[79] |
|
Amoebicins M4-a,b,c |
Bacillus licheniformis M-4 | 3 kDa-3,2 kDa |
Acanthamoeba sp. Gr-1 Naegleriafowleri S-3 (= ATCC 30809) N.fowleri HB-1 (= ATCC 30174) Naegleria lovaniensis Aq/9/1/45D Naegleria gruberi CCAP 1516/le Aspergillus niger CECT 2089 Candida albicans CECT 1394 Cryptococcus neoformans CECT 1075 Microsporum canis CECT 2797 Mucor mucedo CECT 2653 Mucorplumbeus CCM F443 Penicillium sp. Rhizopus oryzae CECT 2340 Saccharomyces cerevisiae Sporothrix schenckii CECT 2799 Trychophyton mentagrophytes CECT 2793 Alcaligenes faecalis Bacillum megaterium B. megaterium (spores) Corynebacterium glutaminicum CECT 78 |
[80] |
|
Amoebicins d13-A, d13-B and d13-C |
B. licheniformis strain D-13 |
1,870 Da |
Acanthamoeba sp. strain Gr-1 N. fowleri S-3 (= ATCC 30809) HB-1 (= ATCC 30174) Naegleria lovaniensis Aq/9/1/45D Naegleria gruberi CCAP 1516/le Alcaligenes facecalis B. licheniformis M-4, A12 Bacillus megaterium Corynebacterium glutamicum CECT 78 Enterococcus faecalis S-13, S-14, S-48, S-86 Micrococcus luteus Mycobacterium phlei Pseudomonas reptilovora N5 |
[81] |
| class III – heat-labile proteins larger than 10 kDa | ||||
| BLIS_SXAU06 | B. licheniformis SXAU06 | 14 kDa |
S. aureus S. epidermidis M. luteus L. monocytogenes |
[82] |
| BL-DZ1 (BL00275) |
B. licheniformis strain D1 |
14 kDa |
Candida albicans BH Pseudomonas aeruginosa PAO1 biofouling Bacillus pumilus TiO1 |
[83] |
|
Antifungal protein |
B. licheniformis HS10 | 55 kDa |
Phytophthora capsici Botrytis cinerea Sclerotinia sclerotiorum Bipolaris maydis Fusarium graminearum Bipolaris sorokinianum Gaeumannomyces graminis |
[84] |
| YbdN Protein | B. licheniformis (seaweed isolate) | 30,7 kDa |
MRSA 9551 MRSA J2407 VRE 788 VRE 1349 L. monocytogenes NCTC 7973,NCTC 10357 |
[85] |
| Chitinase | B. licheniformis MY75 (also produced by Mb-2,TP–1, S213, SSCL-10, B307 strains) |
55 kDa |
G. saubinetii A. niger |
[86] |
|
Antifungal Protein F2 |
B.licheniformis BS-3 |
31 kDA |
Aspergillus niger Magnaporthe oryzae Rhizoctonia solani Fusarium oxysporum (schl.)f.sp. momordicae. |
[92] |
| Antimicrobials protein | B. licheniformis JS | 16 kDa |
Bacillus cereus Bacillus subtilis Shigella dysenteriae Salminella typhimurium |
[93] |
| AMS | B. licheniformis T6-5 | 20 kDa |
Desulfovibrio alaskensis NCIMB 1349 |
[94,221] |
| AMS |
B. licheniformis H2O-1 |
between 90 and 120 kDa |
Desulfovibrio alaskensis NCIMB 1349 SRB-containing consortium T6-lab |
[94,221] |
| class IV – complex with a single lipid or carbohydrate moiety | ||||
| F4, F5 and F6 | B. licheniformis BFP011 | Less than 45 kDa |
B. amyloliquefaciens TISTR 1045 B. licheniformis TISTR 1010 B. subtilis ATCC 6633 B. subtilis TISTR 008 B. pumilus TISTR 905 B. cereus ATCC 11778 B. megaterium (clinical isolate) S. aureus ATCC 25923 E. coli O157: H7 S. typhi ATCC 5784 K. pneumonia ATCC 17736 V. cholarae (clinical isolate) C. capsici |
[95] |
| Ieodoglucomides A and B |
B. licheniformis 09IDYM23 | ND |
S. aureus B. subtilis B. cereus S. Typhi E. coli P. aeruginosa C. albicans A. niger |
[96] |
| Ieodoglucomide C and ieodoglycolipid |
B. licheniformis 09IDYM23 | ND |
Staphylococcus aureus Bacillus subtilis Bacillus cereus Salmonella typhi Escherichia coli Pseudomonas aeruginosa C. albicans A. niger R. solani C. acutatum B. cenerea |
[97] |
| class V - Bacteriocins with undetermined molecular weight | ||||
| Antipathogenic Metabolites | Bacillus licheniformis (Upper arm skin isolate) | ND |
Staph. aureus (ATCC 6538) Kl. pneumoniae subsp. Pneumonia (CMSOGH) |
[222] |
| Antipathogenic Metabolites | Bacillus licheniformis (Upper arm skin isolate) | ND |
Kl. pneumoniae subsp. pneumoniae |
[223] |
| Antimicrobial substance | B. licheniformis A-1-5B-AP | ND |
Porphyromonas gulae 3/H Prevotella intermedia 1/P Streptococcus mutans ATCC 35668. Micrococcus luteus DSM 1790 |
[100] |
| Bacteriocin | B. licheniformis HJ2020 MT192715.1 | ND |
Escherichia coli 0157:H7 Staphylococcus aureus Salmonella typhi Pseudomonas aeruginosa Bacillus cereus Candida albicans Bacillus subtilis |
[101] |
| 2. Non-ribosomal biosynthesized peptides | ||||
| Bacitracin | ||||
| Bacitracin/Ayfivin | Bacillus licheniformis strain EI-34-6, NH-5 | 1,42 kDa |
M. tuberculosis M. smegmatis Actinomyces israeli Pantoea ananatis gram-positive cocci staphlococci streptococci corynebacteria Treponema pallidum T. vincenti,, anaerobic cocci clostridia neisseria Gonococci meingococci |
[106,110,124,224] |
| Antimicrobial compound(a variant of subpeptin and bacitracin) | B. licheniformis IMF1, IMF2, IMF5, IMF6, IMF22 and IMF78 | 1,42 kDa |
L. lactis HP L. bulgaricus LMG 6901 S. aureus ST528 S. agalactiae ATCC 13813 L. innocua FH2333 L. monocytogenes LO28 |
[61] |
| Cyclic lipopeptides (Biosurfactants) | ||||
| Surfactinhomologues | ||||
|
Surfactin and lichenysin isoforms |
Bacillus licheniformis HSN 221 | 1048- 1063 Da | ND | [143] |
| Surfactin |
B. licheniformis BC98 |
1035 Da |
Sclerotium sclerotinii Phomopsis phyllanthi Rhizoctonia bataticola Aspergillus niger N 573 Curvularia lunata Magnaporthe grisea Helminthosporium sp. Chaetomium sp. Fusarium verticillioides Pestaliopsis magnifera Gleosporium magnefera |
[145] |
| Lipopeptides | B. licheniformis (soil isolate) | 1022 and 1036 Da |
B. licheniformis Pseudomonas aeruginosa Escherichia coli Candida utilis C. tropicalis Trichosporon cutaneum Saccharomyces cerevisiae Trichoderma reesei Penicillium oxalicum |
[225] |
| Lipopeptide biosurfactants | B. licheniformis MB01 | 994, 1008, 1022, and 1036 Da |
Escherichia coli Vibrio cholerae Vibrio parahaemolyticus Vibrio harveyi Pseudomonas aeruginosa Staphylococcus aureus Proteus species |
[146] |
|
Lipopeptide biosurfactants (surfactin homologues and fengycin A,B ) |
B. licheniformis V9T14 ( DSM 21038) | ND |
E. coli CFT073 (biofilm formation) |
[139,147] |
| Surfactin (major isoform – surfactin C) | B. licheniformis ATCC 12713 | ND |
B. hyodysenteriae ATCC 27164 C. perfringens ATCC13124 Staphylococcus aureus BCRC10780 Eimeria species |
[149,150] |
| Surfactant BL86 | Bacillus licheniformis BL86 | from 979 to 1091 Da and varying in increments of 14 Da | [154] | |
|
BL1193 (non-lipopeptide type biosurfactant together with lipopeptides, plipastatin, and surfactin) |
B. licheniformis F2.2 | 1,193 Da |
B. subtilis Pseudomonas aeruginosa Escherichia coli Aspergillus niger, Penicillium sp. Fusarium sp. Cladosporium sp. (inhibited by plipastatin) |
[156] |
| Lichenysins | ||||
| Lichenysin | B. licheniformis NBRC 104464 | ND | [161] | |
| Lichenysins A | B. licheniformis BAS50 | 1,006-1,034 Da |
Acinetobacter calcoaceticus Alcaligenes eutrophus Bacillus sp. strain ATCC 39307 Bacillus subtilis Escherichia coli Enterobacter sp. strain 306 Pseudomonas fluorescens Pseudomonas proteofaciens Staphylococcus aureus |
[131] |
|
Biosurfactant lichenoformin |
B. licheniformis MS3 | 1438 Da | [226] | |
| BLS | B. licheniformis P40 | 800 Da |
Bacillus cereus ATCC 14579 Bacillus cereus (food isolate) Bacillus subtilis (food isolate) Corynebacterium fimi NCTC 7547 Enterococcus faecalis (clinical isolate) Lactobacillus acidophilus ATCC 4356 Listeria monocytogenes ATCC 7644 Listeria inoccua (food isolate) Rhodococcus sp. Staphylococcus intermedius (clinical isolate) Streptococcus sp. (b-haemolytic) Streptococcus sp. (clinical isolate) Streptococcus sp. (clinical isolate) Aeromonas hydrophila (clinical isolate) Aeromonas sp. (clinical isolate) Enterobacter aerogenes (food isolate) Erwinia carotorovora (food isolate) Erwinia carotorovora 309 (food isolate) Erwinia carotorovora A325 (food isolate) Pasteurella haemolytica (clinical isolate) Salmonella Gallinarium (clinical isolate) |
[29,166] |
| Fengycins | ||||
| Fengycins A,B ( and surfactin homologues) |
B. licheniformis V9T14 (DSM 21038) (also produced by Bacillus licheniformis B6) |
ND |
E. coli CFT073 (biofilm formation) |
[139,147,148] |
| Lipopeptides (fengycins A and B, iturin,kurstakin, surfactin isophorms) | Bacillus licheniformis B6 | 1200-1650 Da |
Staphylococcus aureus Escherichia coli Klebsiella sp. E. coli |
[148] |
| Other lipopeptides | ||||
| Biosurfactant M104 |
Bacillus subtilis ATCC 6633 Bacillus thuringiensis var. kurstaki ATCC 19266 Bacillus thuringiensis ATCC 10792 Bacillus cereus ATCC 9634 Staphylococcus aureus ATCC 25928 Methicillin-resistant Staphylococcus aureus (MRSA), ATCC 25928 Pseudomonas aeruginosa ATCC 10145 Escherichia coli ATCC 11775 Escherichia coli ATCC 11246 Salmonella typhimurium ATCC 14028 Proteus vulgaris ATCC 13315 Candida albicans ATCC 70014 |
[227] | ||
|
Antiadhesin (I) |
B. licheniformis 603 | ND |
Corynebacterium variabilis Ac1122 Acinetobacter sp. |
[177] |
| CB-1 | Bacillus licheniformis | 42 kDa |
Pyriculariz oryzae MAFF 101002 Rhizoctonia solani CF-1 Corticium rolfsii MAFF 712043 Tyromyces palustris MAFF 420001 Botrytis cinerca MAFF 712057 Coriolus versicolor CF-2 Fusarium oxysporum NFRI 1011 Saccharomyces cerevisiaeY02587 Escherichia coli K-12 Bacillus cereus NFRI 8004 |
[178] |
| NIOT-AMKV06 | Bacillus licheniformis NIOT-AMKV06 | ND |
Proteus mirabilis MTCC142 Vibrio cholerae MTCC3904 Klebsiella pneumoniae MTCC109 Enterococcus faecalis MTCC439 Bacillus subtilis MTCC441 Staphylococcus aureus MTCC96 Shigella flexineri MTCC1457 Micrococcus luteus MTCC1541 Salmonella typhi MTCC734 |
[179] |
| 3.Exopolysaccharides | ||||
| Levan (fructan) | B. licheniformis BK1, BK2 | ~2-100 × 106 Da |
Staphylococcus aureus E. coli Pseudomonas aeruginosa |
[186] |
| EPS1 | B. licheniformis 24 | Vibrio cholerae non-O1 | [185] | |
|
Bl-EPS |
B. licheniformis Dahb1 |
B. subtilis KT763078.1 B. pumilus Dahb3 HQ693273.1 P. aeruginosa Dahp1 (HQ400663.1) P. vulgaris Dahp1 (HQ116441.1) C. albicans |
[189] | |
| EPS-T14 | B. licheniformis T14 | 1000 kDA |
multiresistant clinical strains: Escherichia coli Klebsiella pneumonia Pseudomonas aeruginosa Staphylococcus aureus |
[190] |
| Exopolysaccharide | B.licheniformis SP1 | 1800 kDa |
Escherichia coli PHL628 Pseudomonas fluorescens (only biofilms formation) |
[191] |
| Substance Name | Molecular Mass | Sensitivity to Enzymes | Sensitivity to Temperature | Reference |
|---|---|---|---|---|
| Bacitracin/Ayfivin | 1.42 kDa | ND | Resistant to temperature under 60 °C. |
[104,110] |
| Proticin | 560.666 Da | ND | ND | [38] |
| Peptide A12-C | 770 Da | resistant to trypsin, pronase and proteinase K, carboxypeptidase A, alkaline phosphatase, lipase, lysozyme, β-glucosidase and β-glucuronidase | resistant to heat (100°C for 30 min at pH 7.0) | [46] |
| Licheniformins | 3800-4800 Da | ND | ND | [37] |
| Amoebicins d13-A, d13-B, and d13-C | 1870 Da | Resistant to trypsin, pronase, proteinase , lipase and β-glucuronidase | retained 100% of the activity after being heated at 100°C for 30 min and also after being stored at -20°C for 6 months | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).