Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Feather-Like Gold Nanostructures Anchored onto 3D-Mesoporous Laser-Scribed Graphene: A Highly Sensitive Platform for Enzymeless Glucose Electrochemical Detection in Neutral Media

Version 1 : Received: 26 May 2023 / Approved: 29 May 2023 / Online: 29 May 2023 (08:54:03 CEST)

A peer-reviewed article of this Preprint also exists.

Berni, A.; Amine, A.; García-Guzmán, J.J.; Cubillana-Aguilera, L.; Palacios-Santander, J.M. Feather-like Gold Nanostructures Anchored onto 3D Mesoporous Laser-Scribed Graphene: A Highly Sensitive Platform for Enzymeless Glucose Electrochemical Detection in Neutral Media. Biosensors 2023, 13, 678. Berni, A.; Amine, A.; García-Guzmán, J.J.; Cubillana-Aguilera, L.; Palacios-Santander, J.M. Feather-like Gold Nanostructures Anchored onto 3D Mesoporous Laser-Scribed Graphene: A Highly Sensitive Platform for Enzymeless Glucose Electrochemical Detection in Neutral Media. Biosensors 2023, 13, 678.

Abstract

The authors present a novel sensing platform for a disposable electrochemical, non-enzymatic glucose sensor strip at physiological pH. The sensing material is based on dendritic gold nanostructures (AuNs) resembling feather branches, which are electrodeposited onto a Laser-scribed 3D-Graphene electrode (LSGE). The LSGEs were fabricated via a one-step laser scribing process on a commercially available polyimide sheet. This study investigates several parameters that influence the morphology of the deposited Au nanostructures and the catalytic activity towards glucose electro-oxidation. The electrocatalytic activity of AuNs-LSGE was evaluated using Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), and Amperometry, and was compared to commercially available carbon electrodes prepared under the same electrodeposition conditions. The sensor demonstrated good stability and high selectivity of the amperometric response in the presence of interfering agents, such as ascorbic acid, when a Nafion membrane was applied over the electrode surface. The proposed sensing strategy offers a wide linear detection range, from 0.5 to 20 mM, which covers normal and elevated levels of glucose in the blood, with a detection limit of 0.21 mM. The AuNs-LSGE platform exhibits great potential for use as a disposable glucose sensor strip for point-of-care applications, including self-monitoring and food management. Its non-enzymatic features reduce dependence on enzymes, making it suitable for practical and cost-effective biosensing solutions.

Keywords

Non-enzymatic Detection; Laser-scribed Graphene; Gold Nanostructures; Neutral medium; Disposable sensor; Glucose sensor

Subject

Chemistry and Materials Science, Analytical Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.