Version 1
: Received: 25 May 2023 / Approved: 26 May 2023 / Online: 26 May 2023 (03:51:14 CEST)
Version 2
: Received: 30 May 2023 / Approved: 31 May 2023 / Online: 31 May 2023 (08:31:16 CEST)
Buya, S.; Usanavasin, S.; Gokon, H.; Karnjana, J. An Estimation of Daily PM2.5 Concentration in Thailand Using Satellite Data at 1-Kilometer Resolution. Sustainability2023, 15, 10024.
Buya, S.; Usanavasin, S.; Gokon, H.; Karnjana, J. An Estimation of Daily PM2.5 Concentration in Thailand Using Satellite Data at 1-Kilometer Resolution. Sustainability 2023, 15, 10024.
Buya, S.; Usanavasin, S.; Gokon, H.; Karnjana, J. An Estimation of Daily PM2.5 Concentration in Thailand Using Satellite Data at 1-Kilometer Resolution. Sustainability2023, 15, 10024.
Buya, S.; Usanavasin, S.; Gokon, H.; Karnjana, J. An Estimation of Daily PM2.5 Concentration in Thailand Using Satellite Data at 1-Kilometer Resolution. Sustainability 2023, 15, 10024.
Abstract
This study addresses the limited coverage of regulatory monitoring for particulate matter 2.5 microns or less in diameter (PM2.5) in Thailand due to the lack of ground station data by developing a model to estimate daily PM2.5 concentrations in small regions of Thailand using satellite data at a 1-kilometer resolution. The study employs multiple linear regression and three machine learning models and finds that the random forest model performs the best for PM2.5 estimation over the period of 2011-2020. The model incorporates several factors such as Aerosol Optical Depth (AOD), Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Elevation (EV), Week of the year (WOY), and year and applies them to the entire region of Thailand without relying on monitoring station data. Model performance is evaluated using the coefficient of determination (R2) and root mean square error (RMSE), and the results indicate high accuracy for training (R2: 0.95, RMSE: 5.58 μg/m3), validation (R2: 0.78, RMSE: 11.18 μg/m3), and testing (R2: 0.71, RMSE: 8.79 μg/m3) data. These PM2.5 data can be used to analyze the short- and long-term effects of PM2.5 on population health and inform government policy decisions and effective mitigation strategies.
Environmental and Earth Sciences, Atmospheric Science and Meteorology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.