Submitted:
22 May 2023
Posted:
23 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
- –
- taste and quality: raspberry have a distinct, sweet and sour taste. The degree of ripeness, the variety, the content of simple sugars, organic acids and volatile substances determine the taste and aroma of the fruit. Fruit should also be fresh, juicy and of good quality to meet consumer expectations [7,8,9,10].
- –
- –
- naturalness and freshness: consumers want natural and fresh products, especially when it comes to fruit. Raspberry fruit is often perceived as a natural, seasonal fruit that can be eaten in its original form.
- –
- versatility of use: raspberry fruit can be eaten in many different ways - as an independent fruit, an addition to desserts, an ingredient in cocktails, jellies, jams, casseroles. This versatility attracts diverse groups of consumers,
- –
- –
2. Material and Methods
2.1. Characteristics of varieties

2.2. Agrotechnical conditions
- –
- the first dose (in the amount of 45 kg N.ha-1) was applied in early spring at the beginning of vegetation - in the form of 34% ammonium nitrate,
- –
- II dose - in the amount of 45 kg N.ha-1 was applied after flowering of raspberry shoots, in the form of 46% urea.
- –
- The dose of nitrogen in the amount of 135 kg N.ha-1 was divided into 3 parts:
- –
- the first dose (in the amount of 45 kg N.ha-1) was applied in early spring at the beginning of vegetation - in the form of 34% ammonium nitrate,
- –
- II dose - in the amount of 45 kg N.ha-1 was introduced before the flowering of raspberry shoots, in the form of 46% urea;
- –
- III dose - in the amount of: 45 kg N.ha-1 was applied after flowering of raspberry shoots in the foliar form. 100 kg of urea was dissolved in 900 l of water and used for 3 periods, every 7 days.
2.3. Fruit picking

2.4. Meteorological conditions
2.5. Soil conditions
2.6. Fruit quality assessment
- -
- fruits without visible structure damage were rated at 5 points,
- -
- a few pieces of slightly damaged fruit - 4 points,
- -
- half of the fruit structure damaged - 3 points,
- -
- most damaged and rotting processes started - 2 points,
- -
- rotting and mold development on damaged fruit - 1 point [39].
2.7. Statistical analysis
3. Results
3.1. Fruit yield
3.2. Thousands of fruits
3.3. Juice yield
3.4. Fruit dry matter content
3.5. Fruit quality
3.6. Transport resistance
3.7. Rheological features
3.8. Fruit storage life
4. Discussion
4.1. Influence of cultivars and fertilization on the size and quality of fruit yield
4.2. Influence of weather conditions on fruit yield and quality
4.3. Commodity characteristics and fruit quality
- –
- color: raspberry fruit should have an attractive, intense color. The fruit should be uniform in color, without spots, discoloration or signs of immaturity [19],
- –
- –
- firmness: fruits of this species should be firm, but at the same time delicate to the touch. Fruit that is too soft may indicate over-ripeness or damage,
- –
- taste and aroma of Rubus idaeus fruit should have a distinct, sweet and sour taste and an intense, characteristic aroma. The taste should be balanced, without an overly sour or bland aftertaste [14],
- –
- raspberry fruit should be juicy, with a lot of juice. Dry or not very juicy raspberry fruit may indicate immaturity or its low quality,
- –
- durability and freshness of the raspberry should be ensured by fresh and durable fruit, retaining their sensory properties for a sufficiently long period of time. Fruit should not be overripe, crushed, moldy or showing signs of deterioration [31].
4.4. Norms and standards of fruit
4.4. Trends in the cultivation, breeding, nutritional tradition and market of the raspberry
- a)
- organic farming: an increasing number of raspberry producers are switching to organic farming. Organic farming involves using natural methods and minimizing the use of pesticides and chemical fertilizers. This approach aims to produce healthier fruit with less environmental impact and greater respect for biodiversity [6],
- b)
- c)
- breeding of new varieties: in recent years, significant progress has been made in the breeding of new raspberry varieties. Breeders are trying to develop varieties with higher yields, larger fruits, better resistance to diseases and pests, longer harvesting period, excellent taste and attractive appearance. New varieties of raspberries are aimed at meeting consumer expectations and improving the profitability of cultivation [5,63],
- d)
- automation and technology in production in order to increase the efficiency and precision of production, more and more raspberry producers use modern technological solutions. Automated systems of irrigation, harvesting, sorting and packaging of fruit contribute to increasing productivity, improving fruit quality and reducing production costs [6,31,64],
- e)
- sustainable cultivation practices were developed in response to the growing interest of consumers in ecological products and sustainable development. Raspberry producers are increasingly using sustainable practices in their crops. These include: minimizing water consumption, optimal use of fertilizers, using natural pest and disease control methods, as well as monitoring and minimizing the impact of production on the natural environment [5,6,64].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hummer, KE, Janick, J. Rosaceae: taxonomy, economic importance, genomics. Genetics and Genomics of Rosaceae, 2009, 1-17.
- Krauze-Baranowska, M, Majdan, M. Raspberries – a source of therapeutically valuable secondary metabolites and vitamins. Panacea, 2009, 1(26): 14–15.
- Krauze-Baranowska, M.; Głód, D.; Kula, M.; Majdan, M.; Hałasa, R.; Matkowski, A.; Kozłowska, W.; Kawiak, A. Chemical composition and biological activity of Rubus idaeus shoots – a traditional herbal remedy of Eastern Europe. BMC Complement. Altern. Med. 2014, 14, 480. [Google Scholar] [CrossRef]
- Baranowska, A. , Mystkowska, I., Zarzecka, K., Gugała, M. 2017. Cenne owoce maliny właściwej (Fructus Rubi idaei). Herbalism, 3(1): 70-79.
- Titirică, I.; Roman, I.A.; Nicola, C.; Sturzeanu, M.; Iurea, E.; Botu, M.; Sestras, R.E.; Pop, R.; Militaru, M.; Ercisli, S.; et al. The Main Morphological Characteristics and Chemical Components of Fruits and the Possibilities of Their Improvement in Raspberry Breeding. Horticulturae 2023, 9, 50. [Google Scholar] [CrossRef]
- Wróblewska, W.; Pawlak, J.; Paszko, D. The influence of factors on the yields of two raspberry varieties (Rubus idaeus L.) and the economic results. Acta Sci. Pol. Hortorum Cultus 2020, 19, 63–70. [Google Scholar] [CrossRef]
- Aprea, E.; Biasioli, F.; Gasperi, F. Volatile Compounds of Raspberry Fruit: From Analytical Methods to Biological Role and Sensory Impact. Molecules 2015, 20, 2445–2474. [Google Scholar] [CrossRef]
- Purgar, D.D.; Duralija, B.; Voća, S.; Vokurka, A.; Ercisli, S. A Comparison of Fruit Chemical Characteristics of Two Wild Grown Rubus Species from Different Locations of Croatia. Molecules 2012, 17, 10390–10398. [Google Scholar] [CrossRef]
- Horuz, A, Korkmaz, A., Karaman, MR, Dizman, M, Turan, M. The evaluation of leaf nutrient contents and element ratios of different raspberry varieties. J. Food Agric. Environ, 2013, 11: 588-593.
- Quintanilla, A.; Mencia, A.; Powers, J.; Rasco, B.; Tang, J.; Sablani, S.S. Developing vacuum-impregnated dehydrofrozen red raspberries with improved mechanical properties. Dry. Technol. 2020, 40, 299–309. [Google Scholar] [CrossRef]
- Cosme, F.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Gonçalves, B. Red Fruits Composition and Their Health Benefits—A Review. Foods 2022, 11, 644. [Google Scholar] [CrossRef]
- Qian, M.C.; Rimando, A.M.; Reineccius, G.; Kahlon, T.S.; Du, X.; Liu, G.-Y.; Cadwallader, K.R.; Yang, E.; Zhao, Y.; Wang, Y.; et al. Flavor and Health Benefits of Small Fruits; American Chemical Society (ACS): Washington, DC, United States, 2010; ISBN 0841200025. [Google Scholar]
- Lopez-Corona, A.V.; Valencia-Espinosa, I.; González-Sánchez, F.A.; Sánchez-López, A.L.; Garcia-Amezquita, L.E.; Garcia-Varela, R. Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Phenolic Compound Family Extracted from Raspberries (Rubus idaeus): A General Review. Antioxidants 2022, 11, 1192. [Google Scholar] [CrossRef]
- de Ancos, B.; González, E.M.; Cano, M.P. Ellagic Acid, Vitamin C, and Total Phenolic Contents and Radical Scavenging Capacity Affected by Freezing and Frozen Storage in Raspberry Fruit. J. Agric. Food Chem. 2000, 48, 4565–4570. [Google Scholar] [CrossRef]
- Mullen, W.; Stewart, A.J.; Lean, M.E.J.; Gardner, P.; Duthie, G.G.; Crozier, A. Effect of Freezing and Storage on the Phenolics, Ellagitannins, Flavonoids, and Antioxidant Capacity of Red Raspberries. J. Agric. Food Chem. 2002, 50, 5197–5201. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2011, 132, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L, Seruga, M, Novak, I, Medvidovic-Kosanovic, M. Flavonols, phenolic acids and antioxidant activity of some red fruits. Deutsche Lebensmittel Rundschau, 2007, 103(8): 369-377.
- Wang, S.Y.; Chen, C.-T.; Wang, C.Y. The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem. 2009, 112, 676–684. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779–1361779. [Google Scholar] [CrossRef] [PubMed]
- Viskelis, P, Rubinskiene, M, Bobinaite, R, Dambrauskiene, E. Bioactive compounds and antioxidant activity of small fruits in Lithuania. J. Food Agric. Environ, 2010, 8(3-4): 259-263.
- Vrhovsek, U.; Giongo, L.; Mattivi, F.; Viola, R. A survey of ellagitannin content in raspberry and blackberry cultivars grown in Trentino (Italy). Eur. Food Res. Technol. 2007, 226, 817–824. [Google Scholar] [CrossRef]
- Ponder, A.; Hallmann, E. Phenolics and Carotenoid Contents in the Leaves of Different Organic and Conventional Raspberry (Rubus idaeus L.) Cultivars and Their In Vitro Activity. Antioxidants 2019, 8, 458. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv. Nutr. Int. Rev. J. 2016, 7, 44–65. [Google Scholar] [CrossRef]
- Larrosa, M.; García-Conesa, M.T.; Espín, J.C.; Tomás-Barberán, F.A. Ellagitannins, ellagic acid and vascular health. Mol. Asp. Med. 2010, 31, 513–539. [Google Scholar] [CrossRef]
- Haffner, K.; Rosenfeld, H.J.; Skrede, G.; Wang, L. Quality of red raspberry Rubus idaeus L. cultivars after storage in controlled and normal atmospheres. Postharvest Biol. Technol. 2002, 24, 279–289. [Google Scholar] [CrossRef]
- Temocico, G. , Stoian, E., Ion, V., Tudor, V. Results regarding behavior of some small fruits under controlled atmosphere conditions. Romanian Biotechnological Letters, 2014, 19(2): 9162-9169.
- Krüger, E.; Dietrich, H.; Schöpplein, E.; Rasim, S.; Kürbel, P. Cultivar, storage conditions and ripening effects on physical and chemical qualities of red raspberry fruit. Postharvest Biol. Technol. 2011, 60, 31–37. [Google Scholar] [CrossRef]
- González-Orozco, B.D.; Mercado-Silva, E.M.; Castaño-Tostado, E.; Vázquez-Barrios, M.E.; Rivera-Pastrana, D.M. Effect of short-term controlled atmospheres on the postharvest quality and sensory shelf life of red raspberry (Rubus idaeus L.). CyTA - J. Food 2020, 18, 352–358. [Google Scholar] [CrossRef]
- Forney, C.F.; Jamieson, A.R.; Pennell, K.D.M.; Jordan, M.A.; Fillmore, S.A. Relationships between fruit composition and storage life in air or controlled atmosphere of red raspberry. Postharvest Biol. Technol. 2015, 110, 121–130. [Google Scholar] [CrossRef]
- Valentinuzzi, F.; Pii, Y.; Mimmo, T.; Savini, G.; Curzel, S.; Cesco, S. Fertilization strategies as a tool to modify the organoleptic properties of raspberry (Rubus idaeus L.) fruits. Sci. Hortic. 2018, 240, 205–212. [Google Scholar] [CrossRef]
- Winiarska, J. , 1992. Niektóre cechy biologiczne i produkcyjne owocujących pędów dziesięciu odmian maliny (Rubus idaeus L.), Rozprawa habilitacyjna, Wyd. AR Lublin, ss. 60. [in Polish].
- UN/ECE FFV-32. Agricultural Quality Standards (WP.7) – UNECE/ https://unece.org › FFV-Standards, 2023Dane (accessed 15.05.2023).
- Danek, J. Uprawa maliny i jeżyny. Wyd. HORTPRESS, Warszawa, 2009: 7-60. [in Polish].
- Gacek, E. Lista odmian roślin sadowniczych wpisanych do krajowego rejestru w Polsce, Wyd. Centralnego Ośrodka Badania Odmian Roślin Uprawnych w Słupi Wielkiej, Słupia Wielka, 20-34 2012. [in Polish].
- HoruzA, Korkmaz A, Rüştü-Karaman M,elal.Th evaluation of leaf nutrient content sand element ratios of different raspberry varieties. J Food Agric Environ 2013: 11(1):588-93.
- Król K, Danek J, Skrzyński J. Odmiany maliny do produkcji owoców deserowych. Wyd. Instytutu Sadownictwa i Kwiaciarstwa, Brzezna, Poland, 2010: 13-20. [in Polish].
- Vinczeffy, I. The effect of some ecological factors on grass yield. Proc. of the 10th Gen. Meet. EGF, Norway, 1984, 76-79.
- Czarniecka-Skubina, E. , Nowak D. Technologia żywności. Część 1. Podstawy technologii żywności. 360 ss., 2010, Warszawa, ISBN: 978-83-891-8435-1 [in Polish].
- Pijanowski, E, Dłużewski, M, Dłużewska, A. 2010. Ogólna Technologia Żywności. 292 ss. Wyd. WNT, Warszawa. [in Polish].
- omnicki, A. Wprowadzenie do statystyki dla przyrodników. Wyd. PWN, 282 ss, 2023. ISBN: 9788301179489 [in Polish]. 9: ISBN, 9788. [Google Scholar]
- Krawiec P, Grenda A, Rybczyński R. Ocena efektywności fertygacji w malinach odmian powtarzających wg programu Yara. Biuletyn Związku Sadowników Rzeczpospolitej Polskiej, 2010, Informator 1/2010: 24-27.
- Rybczyński, R. Dobrzański B., Więźniarska J. Właściwości mechaniczne owoców maliny, Acta Agrophysica, 2001, 45, 167-175. [in Polish].
- Rumasz-Rudnicka, E. , Kaszyński Z. Reakcja maliny na zróżnicowane nawożenie azotem i nawadnianie kroplowe. IN. Rol. 5(103), 219-228. [in Polish].
- Lawson, HM, Waister, PD. The response to nitrogen of a raspberry plantation under contrasting systems of management for weed and sucker control. Hort Res., 1972, 12: 43-55.
- Papp, J. , Kobzos-Pápai, I., Nagy, J. Effect of nitrogen application on yield, leaf nutrient status and fruit chemical composition of raspberry and redcurrant varieties. Acta Agron. Acad. Sci. Hung, 1984, 33: 337–343.
- Rizzi, R.; Silvestre, W.P.; Rota, L.D.; Pauletti, G.F. Raspberry production with different NPK dosages in South Brazil. Sci. Hortic. 2019, 261, 108984. [Google Scholar] [CrossRef]
- Heiberg, N. EFFECT OF VEGETATION CONTROL AND NITROGEN FERTILIZATION IN RED RASPBERRY. Acta Hortic. 2002, 579–583. [Google Scholar] [CrossRef]
- Lu, Q.; Miles, C.; Tao, H.; DeVetter, L.W. Reduced Nitrogen Fertilizer Rates Maintained Raspberry Growth in an Established Field. Agronomy 2022, 12, 672. [Google Scholar] [CrossRef]
- Salvatierra GMA, Ortega BR. Effect of nitrogen and phosphorus fertilization on growth, yield and fruit quality of red raspberry (Rubus idaeus L.) cv. Heritage. Agricultura Tecnica (Chile) 1993, ISSN: 0365-2807.
- Spiers, J.M.; Braswell, J.H.; Gupton, C.L. INFLUENCE OF P, K, CA, AND MG RATES ON LEAF ELEMENTAL CONCENTRATION AND PLANT GROWTH OF ’DORMANRED’ RASPBERRY. Acta Hortic. 1999, 337–342. [Google Scholar] [CrossRef]
- Milinković, M, Vranić, D, Đurić, M, Paunović, SM. Chemical composition of organically and conventionally grown fruits of raspberry (Rubus idaeus L.) cv. Willamette. Acta Agriculturae Serbica, 2021, 26(51): 83-88.
- Treder, W. Wpływ nawadniania i ściółkowania czarną folią na plonowanie maliny odmiany Canby. Zeszyty Nauk Sadowniczych 1993, 1: 27-32. [in Polish].
- Koszański, Z. , Karczmarczyk, S., Podsiadło, C., Herman, B. Wpływ nawadniania i nawożenia azotem na plonowanie dwóch odmian malin uprawnych na glebie lekkiej. Folia Horiculture, 2003, Suplement 2: 246-248. [in Polish].
- Rebanel Z, Przypiecka M, Cofta H. Wpływ nawadniania na plonowanie i wzrost maliny odmiany Nora. Prace Institutes Sandinista i Kwiaciarstwa, Skierniewice, 1992, 69-70. [in Polish].
- Dobrzański B, Rybczyński R. Mechanical behaviour of raspberry fruit AT different ripeness stage. Proceedings of IAMC, Beijing, China, 1995: 26-31.
- Giovanelli, G.; Limbo, S.; Buratti, S. Effects of new packaging solutions on physico-chemical, nutritional and aromatic characteristics of red raspberries (Rubus idaeus L.) in postharvest storage. Postharvest Biol. Technol. 2014, 98, 72–81. [Google Scholar] [CrossRef]
- Bojkovska, K.; Jankulovski, N.; Mihajlovski, G.; Momirceski, J. ANALYSIS OF MARKET OPPORTUNITIES FOR RASPBERRY PRODUCTION IN THE REPUBLIC OF NORTH MACEDONIA. Int. J. Res. -GRANTHAALAYAH 2020, 8, 149–154. [Google Scholar] [CrossRef]
- Nunes, CN, Emond, JP. Relationship between weight loss and visual quality of fruits and vegetables. Proceedings of the Florida State Horticultural Society, 2007, 20: 235-245.
- Cortellino G, De Vecchi P, Lo Scalzo R, Ughini V, Granelli G. Buccheri M. Ready – to - eat raspberries: qualitative and nutraceutical characteristics during shelf-life. Adv. Hort. Sci., 2018, 32(3): 399-406.
- ISO 9001 (Systemy Zarządzania Jakością). Available online: https://www.iso.org.pl/uslugi-zarzadzania/wdrazanie-systemow/zarzadzanie-jakoscia/iso-9001/ (accessed on 14 May 2023).
- ISO 22000 (System Zrządzania Bezpieczeństwem Żywności – ISO 22000 – wymagania dla wszystkich organizacji należących do łańcucha żywnościowego (2008-04-21)). Available online: https://www.iso.org.pl/artykuly-i-informacje-dotyczace-systemow-zarzadzania/iso-22000-wymagania/ (accessed on 21 April 2008).
- Anonimous 2023. Najnowsze badania ISO – szybki wzrost popularności Systemu Zarządzania Energią! Available online: www.iso.org.pl/najnowsze-badania-iso (accessed on 14 March 2023).
- Kala, R. Elementy wnioskowania parametrycznego dla przyrodników. Wyd. AR, Poznań, 153 ss., 1993, ISBN: 978-83-716-0010-4. [in Polish].
- Rolbiecki S, Rolbiecki R, Czekanowski C. Nawadnianie jako czynnik przeciwdziałający skutkom posuch w uprawie maliny na glebie piaszczystej. IMUZ. Woda – Środowisko - Obszary Wiejskie, 2005, 5 (14): 243-260. [in Polish].
- Commission Implementing Regulation (Eu) No 543/2011 of 7 June 2011 laying down detailed rules for the application of Council Regulation (EC) No 1234/2007 as regards the fruit and vegetables sector and the processed fruit and vegetables sector. Official Journal of the European Union L 157/1, 15.6.2011.

| Year | Month | Monthly precipitation in mm | % of the norm* | Number of days with precipitation >0.5 mm |
Hydrothermal coefficient (HTC)*** |
|||||||
| Decade | Sum**** | multi-year average | Decade | Sum | ||||||||
| 1 | 2 | 3 | 1 | 2 | 3 | |||||||
| 2019 | July August September October November December |
81.2 12.6 0.0 0.0 0.0 10.3 |
76.1 11.3 0.0 7.8 0.6 10.5 |
78.1 6.8 8.3 22.1 0.0 6.4 |
235.4 30.7 8.3 29.9 0.6 27.2 |
95.2 68.2 54.6 41.5 33.2 28.4 |
247.3 45.0 15.2 72.0 1.8 95.8 |
8.0 2.0 0.0 0.0 0.0 11.0 |
10.0 6.0 0.0 1.0 3.0 7.0 |
5.0 1.0 6.0 6.0 0.0 2.0 |
23.0 9.0 6.0 7.0 3.0 20.0 |
2,5 1,5 0,5 2,7 0,1 0.0 |
| 2020 | January February March April May June July August |
8.0 0.0 12.7 9.0 23.5 24.0 19.3 0.0 |
10.6 12.8 15.4 0.0 33.9 16.8 17.4 28.6 |
31.2 12.6 0.0 18.6 0.0 12.4 12.0 29.3 |
49.8 25.4 28.1 27.6 57.4 53.2 48.7 57.9 |
34.3 29.5 35.1 45.9 66.1 78.4 95.2 68.2 |
145.2 86.1 80.1 60.1 86.8 67.9 51.2 84.9 |
2.0 0.0 3.0 4.0 3.0 5.0 7.0 0.0 |
6.0 6.0 7.0 0.0 8.0 3.0 1.0 9.0 |
15.0 8.0 0.0 11.0 0.0 1.0 1.0 3.0 |
23.0 14.0 10.0 15.0 11.0 9.0 9.0 12.0 |
0.0 0.0 0.0 6,1 4,0 2,7 2,0 2,7 |
| Total | 200,6 | 241.8 | 237.8 | 680.2 | 55.3 | 81.4 | 3.2 | 4.8 | 4.2 | 12.2 | 2.1 | |
| Year | Month | Air temperature in °C | |||||||||||||
| average over the decade | month average’ ** |
multi- year average [°C]* |
deviation from normal [°C] | minimum in a decade | maximum in a decade | ||||||||||
| 1 | 2 | 3 | 1 | 2 | 3 | mean | 1 | 2 | 3 | mean | |||||
| 2019 | July August September October November December |
20.2 23.6 19.1 13.2 7.4 4.1 |
17.9 19.5 16.8 10.9 3.2 1.2 |
18.6 18.2 15.2 9.1 2.4 -1.4 |
18.9 20.4 17.0 11.1 4.3 1.3 |
19.1 18.3 13.6 9.7 4.5 -0.5 |
0.2 -2.1 -3.4 -1.4 0.2 -1.8 |
14.4 13.7 9.7 4.1 1.2 0.5 |
17.4 13.9 10.2 4.6 1.0 -1.4 |
14.9 12.5 9.6 4.3 0.9 -2.9 |
15.6 13.4 9.8 4.3 1.0 -1.3 |
23.1 25.0 22.4 13.6 6.7 4.8 |
23.7 25.7 22.1 13.1 7.2 4.4 |
24.0 25.4 22.6 13.5 7.0 4.2 |
23.6 25.4 22.4 13.4 7.0 4.5 |
| 2020 | January February March April May June July August |
-1.9 -11.6 -9.7 0.7 9.4 19.1 22.7 22.8 |
-2.9 -15.1 -4.2 5.4 14.6 18.4 25.1 21.4 |
-3.6 -10.8 1.0 7.4 19.1 21.2 24.6 19.5 |
-2.8 -12.5 -4.3 4.5 14.4 19.6 24.1 21.2 |
-1.8 -8.8 -3.4 9.0 14.3 16.9 19.1 18.3 |
1.0 3.7 0.9 4.5 -0.1 -2.7 -5.0 -2.9 |
-6.2 -26.2 -5.6 4.1 8.7 13.1 15.3 13.7 |
-6.4 -24.5 -5.1 4.6 9.2 15.3 17.2 14.2 |
-6.8 -26.1 -5.9 5.1 9.1 15.2 19.6 13.2 |
-6.5 -25.6 -5.5 4.6 9.0 14.5 17.4 13.7 |
0.8 0.6 1.0 15.1 20.4 23.4 27.9 25.8 |
1.0 0.4 1.3 15.9 22.4 25.1 29.3 27.5 |
0.9 0.8 1.5 16.8 22.9 23.6 30.2 26.1 |
0.9 0.6 1.3 15.9 21.9 24.0 29.1 26.5 |
| Mean | 9.9 | 9.4 | 10.0 | 9.8 | 9.8 | -0.6 | 4.3 | 5.0 | 4.5 | 4.6 | 15.0 | 15.7 | 15.7 | 15.5 | |
| Year | Month | Total sunshine hours | ||||
| decade | Sum | |||||
| 1 | 2 | 3 | ||||
| 2019 | July August September October November December |
67.0 103.2 118.3 67.4 32.6 11.6 |
76.4 99.1 84.6 48.7 24.6 13.9 |
59.4 100.1 40.9 17.9 30.5 15.1 |
202.8 302.4 243.8 134.0 87.7 40.6 |
|
| 2020 | January February March April May June July August |
22.7 31.6 35.7 24.2 59.1 65.981.3 99.7 |
21.9 18.5 49.1 89.4 45.3 76.0 109.0 71.2 |
1.7 14.5 76.4 54.6 159.6 86.4 97.3 84.2 |
46.3 64.6 161.2 168.2 264.0 228.3 287.6 255.1 |
|
| Total | 820.3 | 827.7 | 838.6 | 2486.6 | ||
| Parameter* | Unit | 2019 | 2020 |
| pH in KCl | - | 5.9 | 6.2 |
| Organic carbon | % | 0.87 | 0.79 |
| P | mg 100 g-1 of soil | 86.8 | 79.6 |
| K | 189.7 | 194.5 | |
| Mg | 63 | 65 | |
| Fe | mg kg-1 of soil | 1510 | 2236 |
| Zn | 10.6 | 13.0 | |
| Mn | 348 | 433 | |
| Cu | 4.4 | 5.5 | |
| B | 1.2 | 1.1 |
| Division into fractions according to PN-R-04033 | ||||||||
| 2.0-1.0 | 1.0-0.5 | 0.5-0.25 | 0.25-0.10 | 0.10-0.05 | 0.05-0.02 | 0.02-0.005 | 0.005-0.002 | <0.002 |
| Percentage of mechanical fractions with a diameter in mm | ||||||||
| 0 | 1.06 | 2.01 | 2.24 | 16.98 | 40.17 | 25.6 | 6.56 | 5.37 |
| Varieties | Fertilization | Harvest dates* | Mean | |||
| 1 | 2 | 3 | ||||
| ‘Laszka’ | 0 45 90 135 |
4.31 6.35 9.26 12.97 |
4.35 6.03 9.07 12.90 |
4.12 6.28 9.31 12.81 |
4.26 6.22 9.21 12.89 |
|
| Mean | 8.22 | 8.09 | 8.13 | 8.15 | ||
| ‘Glen Ample’ | 0 4590 135 |
4.58 6.84 10.59 13.00 |
4.62 6.68 10.63 12.97 |
4.52 6.74 10.54 13.14 |
4.57 6.75 10.59 13.04 |
|
| Mean | 8.75 | 8.73 | 8.74 | 8.74 | ||
| Mean | 0 45 90 135 |
4.45 6.60 9.93 12.99 |
4.49 6.36 9.85 12.94 |
4.32 6.51 9.93 12.98 |
4.42 6.49 9.90 12.97 |
|
| Mean | 8.49 | 8.41 | 8.43 | 8.44 | ||
| LSDp0.05 | ||||||
| Varieties | 0.36 | |||||
| Fertilization | 0.90 | |||||
| Harvest dates | ns** | |||||
| Varieties x Fertilization | ns | |||||
| Harvest dates x Fertilization | ns | |||||
| Harvest dates x Varieties | ns | |||||
| Varieties | Fertilization | Harvest dates* | Mean | ||
| 1 | 2 | 3 | |||
| ‘Laszka’ | 0 45 90 135 |
8.34 9.85 9.77 10.29 |
7.81 8.55 8.90 9.70 |
7.18 7.41 7.90 8.11 |
7.78 8.60 8.86 9.37 |
| Mean | 9.56 | 8.74 | 7.65 | 8.65 | |
| ‘Glen Ample’ | 0 45 90 135 |
6.84 7.01 7.44 7.98 |
6.20 6.64 6.94 7.20 |
6.16 6.23 6.58 6.94 |
6.40 6.63 6.99 7.37 |
| Mean | 7.32 | 6.75 | 6.48 | 6.85 | |
| Average for fertilization | 0 45 90 135 |
7.59 8.43 8.61 9.14 |
7.01 7.60 7.92 8.45 |
6.67 6.82 7.24 7.53 |
7.09 7.62 7.92 8.37 |
| Mean | 8.44 | 7.74 | 7.06 | 7.75 | |
| LSDp0.05 | |||||
| Varieties | 0.4 | ||||
| Fertilization | 1.0 | ||||
| Harvest dates | 0.6 | ||||
| Varieties x Fertilization | ns** | ||||
| Harvest dates x Fertilization | ns | ||||
| Harvest dates x Varieties | ns | ||||
| Varieties | Fertilization | Harvest dates* | Mean | |||
| 1 | 2 | 3 | ||||
| ‘Laszka’ | 0 45 90 135 |
0.630 0.633 0.646 0.650 |
0.646 0.651 0.651 0.646 |
0.636 0.646 0.663 0.650 |
0.637 0.643 0.653 0.648 |
|
| Mean | 0.640 | 0.648 | 0.649 | 0.646 | ||
| ‘Glen Ample’ | 0 45 90 135 |
0.680 0.693 0.690 0.700 |
0.687 0.710 0.706 0.703 |
0.700 0.703 0.706 0.720 |
0.689 0.702 0.701 0.707 |
|
| Mean | 0.690 | 0.701 | 0.707 | 0.700 | ||
| Averege for fertilization | 0 45 90 135 |
0.655 0.663 0.668 0.675 |
0.667 0.680 0.679 0.674 |
0.668 0.675 0.685 0.685 |
0.663 0.673 0.677 0.678 |
|
| Mean | 0,665 | 0.675 | 0.678 | 0.673 | ||
| LSDp0.05 | ||||||
| Varieties | 0.34 | |||||
| Fertilization | ns** | |||||
| Harvest dates | ns | |||||
| Varieties x Fertilization | ns | |||||
| Harvest dates x Fertilization | ns | |||||
| Harvest dates x Varieties | ns | |||||
| Varieties | Fertilization | Harvest dates* | Mean | ||
| 1 | 2 | 3 | |||
| ‘Laszka’ | 0 45 90 135 |
25.00 22.67 21.90 20.67 |
23.67 23.33 21.33 19.00 |
20.33 18.67 18.00 14.67 |
23.00 21.56 20.41 18.11 |
| Mean | 22.58 | 21.83 | 17.92 | 20.77 | |
| ‘Glen Ample’ | 0 45 90 135 |
18.00 16.33 16.33 15.00 |
17.33 15.00 13.33 12.00 |
17.33 16.33 15.33 13.67 |
17.56 15.89 15.00 13.56 |
| Mean | 16.42 | 14.42 | 15.67 | 15.50 | |
| Average for fertilization | 0 45 90 135 |
21.50 19.50 19.12 17.83 |
20.50 19.17 17.33 15.50 |
18.83 17.50 16.67 14.17 |
20.28 18.72 17.71 15.83 |
| Mean | 19.49 | 18.13 | 16.79 | 18.13 | |
| LSDp0.05 | |||||
| Varieties | 0.98 | ||||
| Fertilization | 1.90 | ||||
| Harvest dates | 1.41 | ||||
| Varieties x Fertilization | ns* | ||||
| Harvest dates x Fertilization | ns | ||||
| Harvest dates x Varieties | 2.83 | ||||
| Varieties | Fertilization | Organoleptic assessment | ||||||||||
| Taste | Smell | Color | Shape | Appearance | Consistency | |||||||
| ‘Laszka’ | 0 | 4.3 | 4.7 | 4.8 | 4.9 | 4.8 | 4.8 | |||||
| 45 | 4.4 | 4.3 | 4.5 | 4.6 | 4.7 | 4.8 | ||||||
| 90 | 4.7 | 4.5 | 4.8 | 4.6 | 4.8 | 4.8 | ||||||
| 135 | 4.2 | 4.8 | 4.7 | 4.8 | 4.7 | 5.0 | ||||||
| Mean | 4.4 | 4.6 | 4.7 | 4.7 | 4.8 | 4.9 | ||||||
| ‘Glen Ample’ | 0 | 4.5 | 4.6 | 4.5 | 4.9 | 4.9 | 4.9 | |||||
| 45 | 4.5 | 4.7 | 4.7 | 4.6 | 4.8 | 4.9 | ||||||
| 90 | 4.5 | 4.6 | 4.8 | 4.7 | 4.7 | 4.8 | ||||||
| 135 | 4.5 | 4.4 | 4.5 | 4.7 | 4.7 | 4.6 | ||||||
| Mean | 4.5 | 4.6 | 4.6 | 4.7 | 4.8 | 4.8 | ||||||
| Average for fertilization | 0 | 4.4 | 4.7 | 4.7 | 4.9 | 4.9 | 4.9 | |||||
| 45 | 4.5 | 4.5 | 4.6 | 4.6 | 4.8 | 4.9 | ||||||
| 90 | 4.6 | 4.6 | 4.8 | 4.7 | 4.8 | 4.8 | ||||||
| 135 | 4.4 | 4.6 | 4.6 | 4.8 | 4.7 | 4.8 | ||||||
| Mean | 4.5 | 4.6 | 4.7 | 4.7 | 4.8 | 4.8 | ||||||
| LSDp0.05 | ||||||||||||
| Varieties | ns* | ns | ns | ns | ns | ns | ||||||
| Fertilization | ns | ns | ns | ns | ns | ns | ||||||
| Varieties x Fertilization | ns | ns | ns | ns | ns | ns | ||||||
| Varieties | Fertilization | Organoleptic assessment | ||||||
| Taste | Smell | Color | Shape | Appearance | Consistency | |||
| ‘Laszka’ | 0 45 90 135 |
4.3 4.2 4.5 4.2 |
4.5 4.5 4.64.8 |
4.8 4.8 4.8 4.7 |
4.6 5.0 4.6 4.8 |
4.7 4.8 4.6 4.7 |
4.6 4.8 4.9 5.0 |
|
| Mean | 4.3 | 4.6 | 4.8 | 4.8 | 4.7 | 4.8 | ||
| ‘Glen Ample’ | 0 45 90 135 |
4.4 4.6 4.7 4.6 |
4.6 4.7 4.5 4.5 |
4.5 4.6 4.6 4.4 |
4.9 4.6 4.6 4.7 |
4.9 4.4 4.7 4.6 |
4.9 4.9 4.8 4.6 |
|
| Mean | 4.6 | 4.6 | 4.5 | 4.7 | 4.7 | 4.8 | ||
| Average for fertilization | 0 45 90 135 |
4.4 4.4 4.6 4.4 |
4.6 4.6 4.6 4.7 |
4.7 4.7 4.7 4.6 |
4.8 4.8 4.6 4.8 |
4.8 4.6 4.7 4.7 |
4.8 4.9 4.9 4.8 |
|
| Mean | 4.4 | 4.6 | 4.7 | 4.7 | 4.7 | 4.8 | ||
| LSDp0.05 | ||||||||
| Varieties | 0.2 | ns* | 0.2 | ns | ns | ns | ||
| Fertilization | ns | ns | ns | ns | ns | ns | ||
| Varieties x Fertilization | ns | ns | ns | ns | ns | ns | ||
| Varieties | Fertilization | Organoleptic assessment | |||||
| Taste | Smell | Color | Shape | Appearance | Consistency | ||
| ‘Laszka’ | 0 45 90 135 |
4.3 4.2 4.6 4.2 |
4.7 4.3 4.4 4.7 |
4.6 4.6 4.9 4.6 |
4.9 4.7 4.6 4.7 |
4.7 4.7 4.9 4.5 |
4.8 4.8 4.9 4.9 |
| Mean | 4.3 | 4.5 | 4.7 | 4.7 | 4.7 | 4.9 | |
| ‘Glen Ample’ | 0 45 90 135 |
4.5 4.3 4.3 4.4 |
4.6 4.6 4.6 4.3 |
4.5 4.6 4.8 4.6 |
4.8 4.6 4.7 4.7 |
4.7 4.6 4.7 4.7 |
4.8 4.8 4.8 4.9 |
| Mean | 4.4 | 4.5 | 4.6 | 4.7 | 4.7 | 4.8 | |
| Average for fertilization | 0 45 90 135 |
4.4 4.3 4.5 4.3 |
4.7 4.5 4.5 4.5 |
4.6 4.6 4.9 4.6 |
4.9 4.7 4.7 4.7 |
4.7 4.7 4.8 4.6 |
4.8 4.8 4.9 4.9 |
| Mean | 4,4 | 4.5 | 4.7 | 4.7 | 4.7 | 4.8 | |
| LSDp0.05 | |||||||
| Varieties | ns* | ns | ns | ns | ns | ns | |
| Fertilization | ns | ns | ns | ns | ns | ns | |
| Varieties x Fertilization | ns | ns | ns | ns | ns | ns | |
| Varieties | Fertilization | Harvest dates* | Mean | ||
| 1 | 2 | 3 | |||
| ‘Laszka’ | 0 45 90 135 |
4.7 4.7 5.0 5.0 |
5.0 4.7 4.7 4.7 |
4.7 4.7 5.0 5.0 |
4.8 4.7 4.9 4.9 |
| Mean | 4.8 | 4.8 | 4.8 | 4.8 | |
| ‘Glen Ample’ | 0 45 90 135 |
4.3 4.7 5.0 4.7 |
4.0 4.3 4.7 4.7 |
3.7 4.3 4.7 4.3 |
4.0 4.4 4.8 4.6 |
| Mean | 4.7 | 4.4 | 4.3 | 4.4 | |
| Average for fertilization | 0 45 90 135 |
4.5 4.7 5.0 4.8 |
4.5 4.5 4.7 4.7 |
4.2 4.5 4.8 4.7 |
4.4 4.6 4.8 4.7 |
| Mean | 4.8 | 4.6 | 4.5 | 4.6 | |
| LSDp0.05 | |||||
| Varieties | 0.2 | ||||
| Fertilization | ns** | ||||
| Harvest dates | 0.3 | ||||
| Varieties x Fertilization | ns | ||||
| Harvest dates x Fertilization | ns | ||||
| Harvest dates x Varieties | ns | ||||
| Varieties | Fertilization | Rheological evaluation | ||
| Maximum load [g] | Work [mJ] | Final load [g] | ||
| ‘Laszka’ | 0 45 90 135 |
368.5 328.0 344.6 274.6 |
34.4 29.0 32.3 30.9 |
399.8 316.1 325.9 326.9 |
| Mean | 328.9 | 31.7 | 342.2 | |
| ‘Glen Ample’ | 0 45 90 135 |
368.4 429.1 363.7 449.5 |
34.4 42.3 38.3 40.3 |
366.5 425.7 362.7 404.6 |
| Mean | 402.7 | 38.8 | 389.9 | |
| Average for fertilization | 0 45 90 135 |
368.5 378.6 354.2 362.1 |
34.4 35.7 35.3 35.6 |
383.2 370.9 344.3 365.8 |
| Mean | 365.8 | 35.2 | 366.0 | |
| LSDp0.05 | ||||
| Varieties | 18.7 | 1.8 | 18.7 | |
| Fertilization | ns* | ns | ns | |
| Varieties x Fertilization | 74.6 | ns | ns | |
| Varieties | Fertilization | Harvest dates* | Mean | |||
| 1 | 2 | 3 | ||||
| ‘Laszka’ | 0 45 90 135 |
1.74 1.89 1.90 1.90 |
1.83 1.91 1.93 1.98 |
1.87 1.90 1.97 1.83 |
1.81 1.90 1.93 1.90 |
|
| Mean | 1.86 | 1.91 | 1.89 | 1.89 | ||
| ‘Glen Ample’ | 0 45 90 135 |
1.71 1.97 1.94 2.03 |
1.90 2.03 2.01 1.97 |
1.87 1.90 1.90 1.92 |
1.83 1.97 1.95 1.97 |
|
| Mean | 1.91 | 1.98 | 1.90 | 1.93 | ||
| Average for fertilization | 0 45 90 135 |
1.73 1.93 1.92 1.97 |
1.87 1.97 1.97 1.98 |
1.87 1.90 1.94 1.88 |
1.82 1.93 1.94 1.94 |
|
| Mean | 1.89 | 1.95 | 1.90 | 1.91 | ||
| LSDp0.05 | ||||||
| Varieties | ns** | |||||
| Fertilization | ns | |||||
| Harvest dates | ns | |||||
| Varieties x Fertilization | ns | |||||
| Harvest dates x Fertilization | ns | |||||
| Harvest dates x Varieties | ns | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
