Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Establishment of a Hydrometallurgical Scheme for Cleaning Cu-Ni Smelter Slag From Botswana and Its Economic Evaluation

Version 1 : Received: 17 May 2023 / Approved: 18 May 2023 / Online: 18 May 2023 (05:01:03 CEST)

A peer-reviewed article of this Preprint also exists.

Godirilwe, L.L.; Haga, K.; Altansukh, B.; Jeon, S.; Danha, G.; Shibayama, A. Establishment of a Hydrometallurgical Scheme for the Recovery of Copper, Nickel, and Cobalt from Smelter Slag and Its Economic Evaluation. Sustainability 2023, 15, 10496. Godirilwe, L.L.; Haga, K.; Altansukh, B.; Jeon, S.; Danha, G.; Shibayama, A. Establishment of a Hydrometallurgical Scheme for the Recovery of Copper, Nickel, and Cobalt from Smelter Slag and Its Economic Evaluation. Sustainability 2023, 15, 10496.

Abstract

In pursuit of carbon neutrality, the demand for metals that are necessary for the development of clean energy technologies is rapidly increasing. Metallurgical waste, such as slag, presents a promising secondary source of these key metals. This research aims to develop an eco-friendly hydrometallurgical process to recover Cu, Ni, and Co from discarded copper/nickel slag. The high-pressure acid leaching (HPAL) was used to selectively leach Ni, Cu, and Co from the fayalite slag, yielding high leaching efficiencies of 99.9%, 89.4%, and 99.9%, respectively, with low Fe and Si tenors to the pregnant leach solution (PLS). The solvent extraction (SX) technique utilizing LIX 984N was used to selectively extract and enrich copper from the dilute PLS to about 23 g/L Cu with a very low Fe concentration of 0.05 g/L. Potassium amyl xanthate (PAX) solution was used to form Ni and Co xanthate complexes from the raffinate solution. Nickel was selectively recovered using ammonia solution, while cobalt xanthate complex was thermally decomposed and recovered as cobalt oxide solids of about 25 wt.% Co. A comprehensive process flowsheet is presented, furthermore, to realize the real application of the developed slag cleaning process, a preliminary economic evaluation was performed.

Keywords

slag; copper; nickel; cobalt; recovery; high-pressure leaching; solvent extraction; complexation; hydrometallurgy; waste

Subject

Engineering, Metallurgy and Metallurgical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.